

Electrical Engineering and Computer Science Department

Technical Report
NWU-EECS-08-02

April 26, 2008

Chip Multiprocessor Cooperative Cache Compression and
Migration

Lei Yang†, Xi Chen†, Robert P. Dick†, Li Shang‡, and Haris Lekastas§

†l-yang, dickrp, xi-chen-0@northwestern.edu, ‡li.shang@colorado.edu, §lekatsas@vorras.com

Abstract

CMPs are now in common use. Increasing core counts implies increasing demands for instruction and
data. However, processor-memory bus throughput has not kept pace. As a result, cache misses are
becoming increasingly expensive. Yet the performance benefits of using more cores limits the cache per
core, and cache per process, increasing the importance of efficiently using cache.

To alleviate the increasing scarcity of on-chip cache, we propose a cooperative and adaptive data
compression and migration technique and validate it with detailed hardware synthesis and full-system
simulation. This is the first work that completes optimized microarchitectural design and synthesis of the
hardware to support adaptive cache compression and migration. Full-system simulation on multi-
programmed and multithreaded workloads indicate that, for cache-sensitive applications, the maximum
CMP throughput improvement with the proposed technique ranges from 4.7%–160% (on average
34.3%), relative to a conventional private L2 cache architecture. No performance penalty is imposed for
cache-insensitive applications. Furthermore, we demonstrate that our cooperative techniques may
influence the optimal core cache area ratio for maximum CMP throughput, and has the potential to
reduce on-chip cache requirement, and thereby increase the number of cores.

This work was supported in part by AFOSR award FA9550-06-1-0152 and in part by NSF awards ITR-
CCR-0325207 and CNS-0347941.

Keywords: CMP, memory hierarchy, compression, migration

Chip Multiprocessor Cooperative Cache Compression and Migration

Abstract

CMPs are now in common use. Increasing core counts implies increasing demands for instruction

and data. However, processor-memory bus throughput has not kept pace. As a result, cache misses are

becoming increasingly expensive. Yet the performance benefits of using more cores limits the cache per

core, and cache per process, increasing the importance of efficiently using cache.

To alleviate the increasing scarcity of on-chip cache, we propose a cooperative and adaptive data

compression and migration technique and validate it with detailed hardware synthesis and full-system

simulation. This is the first work that completes optimized microarchitectural design and synthesis of

the hardware to support adaptive cache compression and migration. Full-system simulation on multi-

programmed and multithreaded workloads indicate that, for cache-sensitive applications, the maximum

CMP throughput improvement with the proposed technique ranges from 4.7%–160% (on average 34.3%),

relative to a conventional private L2 cache architecture. No performance penalty is imposed for cache-

insensitive applications. Furthermore, we demonstrate that our cooperative techniques may influence the

optimal core cache area ratio for maximum CMP throughput, and has the potential to reduce on-chip

cache requirement, and thereby increase the number of cores.

1. INTRODUCTION AND MOTIVATION

Increases in VLSI integration density and the increasing importance of power consumption are leading to the

use of chip-level multiprocessor (CMP) architectures. The move to CMPs substantially increases capacity pressure

on the on-chip memory hierarchy. The 2006 ITRS Roadmap [1] predicts that transistor speed will continue to grow

faster than DRAM speed and pin bandwidth. This means that cache miss costs will continue to increase. However,

increases in on-chip cache size may block the addition of processor cores, thereby resulting in suboptimal CMP

throughput. Our full-system simulation results indicate that under area constraints, the allocation of core-cache area

that achieves maximum CMP throughput use less cache per core than is common for existing processors. However,

such allocation increases capacity misses, and thereby reduces the performance of individual cores. As a result,

the marginal improvement in performance as a result of increasing usable cache size increases. In other words, the

move to CMPs increases the importance of carefully using available cache area.

In this paper, we address the problem of optimizing the use of on-chip cache to reduce off-chip memory access,

and thereby improve CMP throughput. We develop and evaluate our techniques for private on-chip L2 cache

hierarchy, because in contrast to a shared L2 cache, the performance and design styles of private L2 caches remain

consistent and predictable when the number of processor cores increases. The techniques proposed in this paper

address the weakness of private caches by increasing their capacity without significantly increasing their access

latency.

When data are evicted from a private L2 cache, they are generally discarded (if not modified) or transferred to

the next level of the memory hierarchy, i.e., off-chip memory. Writing to off-chip memory can cause contention

with other accesses to the processor-memory bus and result in significant latency when later reading back the same

data for reuse. In CMPs, lower-overhead alternatives should be considered, such as compressing data and storing

1

them locally, migrating data to the private L2 caches of other processor cores, or a combination of these techniques.

One can view compression and migration as introducing a new, virtual layer in the memory hierarchy. This new

layer permits an increase in usable L2 cache without increasing physical L2 cache size, at a cost of higher access

latency.

We propose a method of alleviating the increasing scarcity of on-chip memory via cooperative and adaptive cache

compression and migration. Both of these techniques introduce a number of design problems, and their cooperative

use compounds these problems. We propose a unifying adaptive policy that considers the time-varying merits of

the workloads. Defining this compression–migration policy and analyzing its hardware implications are the main

foci of our work.

2. CONTRIBUTIONS

This work is the first to cooperatively use cache compression and migration for CMPs. We propose an adap-

tive control policy integrating the two techniques and permitting run-time adaptation to workload. This control

policy is based on a new optimization metric: processor marginal performance gain. Compared to static tech-

niques, our adaptive techniques allow on average 42.3% greater performance improvement for cache-sensitive

applications and prevent performance degradation for cache-insensitive applications. We heavily modified the

MSI MOSI CMP directory cache coherence protocol provided by the GEMS infrastructure [2] to support cache

compression and migration.

This work is the fist to present optimized microarchitectural design and synthesis results for the hardware required

for control, compression/decompression, and migration. We propose a new scheme to organize compressed cache

lines, namely pair-matching, that is more efficient than commonly accepted segmentation based schemes. We also

present the first hardware implementation of the PBPM [3] compression/decompression algorithm. Compared to

prevailing cache compression/decompression algorithms, our implementation provides the best overall performance,

in terms of compression ratio, maximum frequency, decompression latency, power consumption, and area cost.

The proposed techniques are evaluated using full-system (application and OS) simulation of numerous multipro-

grammed SPEC CPU2000 benchmarks and Data-Intensive Systems (DIS) stressmarks [4] and multithreaded SPEC

OMP and Nasa Parallel Benchmarks. We found that they can improve the throughput of CMPs by up to 160% for

cache-sensitive applications. Consequently, given a fixed core count, our techniques can help reduce chip area by

allowing cache size reduction. Alternatively, given a fixed area, our techniques allow more processor cores to be

used while maintaining good performance for each core.

The rest of the paper is organized as follows. Section 3 describes the proposed cooperative cache compression

and migration techniques. Section 4 presents our implementation and evaluation of necessary hardware to support

cache compression and migration. Section 5 describes our simulation environment and workloads, and presents and

analyzes the simulation results. Section 6 discusses related work. We conclude in Section 7.

2

3. COOPERATIVE CACHE COMPRESSION AND MIGRATION

This section describes the proposed cooperative cache compression and migration techniques for optimizing

on-chip cache utilization. We first describe the problem definition for optimizing on-chip cache utilization, then

give an overview of the proposed architecture. Finally, we present the details of our technique to control adaptive

compression and migration.

3.A. Optimizing On-Chip Cache Utilization

Our objective is to improve the overall throughput of CMPs by optimizing the utilization of on-chip cache

resources. To that end, we consider two methods: (1) compressing data stored in its local cache or (2) making use

of the caches of other cores.

Designing the architectural extensions required to support either compression or migration is challenging, and

using the two techniques cooperatively complicates the problem. It is important to select the right lines to com-

press/migrate, determine the right moment to compress/migrate, and decide the locations of cache lines after

compression/migration. In addition, both compression and migration involve overhead and should only be used

when the CMP throughput can be improved. Furthermore, migration increases on-chip network traffic and may

result in contention if used improperly: only “useful” data should be migrated. Therefore, the overall technique

must be able to determine the time-varying cache requirement of the workload during execution and must adaptively

control compression and migration.

TABLE I
COMPARISON OF EVICTION, COMPRESSION, AND MIGRATION

Scheme ∆cycles

Eviction P · Miss PenaltyL2

Compression (P + P ′) · Decompress Penalty

Migration P · Remote LatencyL2 + P ′′
· Miss PenaltyL2

To further understand the costs associated with com-

pression and migration, Table I compares the first-order

effect on total CPU cycle count when a L2 cache line

is (1) evicted off-chip, (2) compressed locally, and (3)

migrated to a remote L2 cache. For compression, in

order to have the same effect as eviction, two lines must be compressed and placed in one cache line. We call that

compressed line the compression victim line. For migration, in order to accept the migrated block, a local cache

block must be evicted, which we call the migration victim line. P , P ′, and P ′′ represent the probability of the

cache line, the compression victim line, and the migration victim line being accessed again, respectively. To simplify

illustration, we assume P ′
≈ P ′′. Therefore, as long as Decompress Penalty < Remote LatencyL2, the penalty

of compression is always smaller than migration. In modern CMP cache hierarchies, the Remote LatencyL2

is usually greater than 15 cycles, while the Decompress Penalty of our proposed hardware is only 8 cycles.

Therefore we conclude that it is always more beneficial to compress than to migrate.

3.B. Overview of Proposed Solution

We propose a unified solution that uses compression and migration to cooperatively and adaptively manage on-

chip cache resource in CMPs. In our technique, when the running process can benefit from a larger cache size, the

3

least recently used (LRU) lines in local L2 cache are compressed. Depending on the sensitivity of the application

to cache size, the number of cache lines being compressed may continue to grow until all lines are compressed.

After all the lines in the local cache are compressed, if the running process would benefit from a further increased

cache size more than the processes on other cores, then the least recently used compressed lines are migrated to

remote on-chip caches. This allows the aggregate cache resources to adapt to the dynamic demands of different

applications. Migrated lines are transferred in compressed format and stay compressed once they arrive at their

targets. Based on the analysis in Section 3.A, local compression is used as a first defense to cache shortage and

migration is used as a last resort before evicting data off chip. We evaluate the marginal performance gain of an

application to decide its sensitivity to cache size, and organize compressed lines using our pair-matching scheme.

Memory

Directory

Interconnection Network

Migration to P
n

P
0

L1I L1D

L2 C

mg
0 Pn

L1I L1D

L2L2 C

mg
n

����mg
1

mg
n

Figure 1. Technique overview.

Figure 1 gives an overview of the proposed techniques. Each

processor has private L1 and L2 caches. For processor P0, the

whole L2 cache is compressed; for processor Pn, half of the L2

cache is compressed (L2C in the figure), which results in a four-

level cache hierarchy: L1, uncompressed L2, compressed L2, and

remote L2. Note that uncompressed L2 and compressed L2 share

the same resources but have different access latencies. After being

accessed, data are placed in L1 cache and are demoted through the

levels of the memory hierarchy until dropped or sent to off-chip

memory.

3.C. Effective System-Wide Compression Ratio and Pair-Matching Compressed Cache Organization

Compressor

Decompressor
L1 Cache / Network

Way 1, Uncompressed

v1 / v2 / t1 / t2 / s1 / s2 Data

01 0 x - 0

01 0 x - 0

00 0 x - 0

00 0 x - 0

01 0 x - 0

00 0 x - 0

01 0 x - 0

01 0 x - 0Set 0

Set 7

Way 2, Compressed

300 1 x x 34

221 0 x x 42

401 1 x x 16

640 0 x x 64

161 1 x x 24

81 0 x x 56

240 1 x x 40

301 1 x x 20

v1 / v2 / t1 / t2 / s1 / s2 Data

Compressed?

Yes

No

Compressed?
Yes

No

Figure 2. Compressed cache organization.

This section describes the or-

ganization of non-uniform sized

compressed lines. Organizing a

compressed cache is challenging

because the compression ratios of

different cache lines may vary dra-

matically. In the past, researchers

have proposed segmentation tech-

niques [5, 6] to handle this prob-

lem. The main idea is to divide

the compressed lines into fixed-

size segments, e.g., 8 bytes, and use indirect indexing to locate all segments for a compressed line. This approach

has significant overhead due to the latency and hardware cost required to address all segments. Consequently, the

4

number of segments per line is tightly constrained, resulting in wasted space.

In contrast, we propose a pair-matching scheme for the compressed line organization, i.e., each line of the

original length is used to store two lines after compression. In a pair-matching based cache, the location of a newly

compressed line depends on not only its own compression ratio but also the compression ratio of its “partner”. More

specifically, the compressed line first tries to locate the partner line with sufficient unused space for the compressed

line without replacing any existing compressed lines. The candidates for partner line are the other cache lines in the

same cache set, e.g., seven candidates if the set-associativity is eight. If no such line exists, one or two compressed

lines are evicted to store the new line. Note that successful placement of a line does not require that it has a

compression ratio smaller than 50%, but requires that the sum of the compression ratios of the line and its partner

is less than 100%. This scheme greatly simplifies designing hardware to manage the locations of compressed lines

compared to allowing arbitrary positions in segmentation-based techniques.

For both segmentation based and pair-matching based techniques, their effect on increasing cache capacity depends

on the number of compressed lines actually stored, which has a complex relationship between the compression

ratios of individual lines. We propose using system-wide compression ratio to evaluate such effectiveness. For pair

matching, a newly compressed line has an effective compression ratio of 100% when it takes up a whole cache

line, and an effective compression ratio of 50% when it is placed with its partner within one cache line. For line

segmentation, if a cache line is divided into 4 fixed-length segments, a compressed line has an effective compression

ratio of 25% when it takes up one segment, 50% for two segments, and so on. Varying raw compression ratio between

25% and 50% has little impact on the effective cache capacity. We collected real cache trace data from full-system

simulation, and evaluated the effective system-wide compression ratio for both schemes. Pair matching generally

achieves a better effective system-wide compression ratio (58%) than line segmentation with four segments per line

(62%) and the same compression ratio as line segmentation with eight segments, which would impose substantial

hardware overhead for indirect indexing.

The overhead of pair-matching is low relative to the effective cache size improvement resulting from compression.

Since any cache line may be used to store two compressed lines, each line has two valid bits and tag fields to

indicate status and indexing. When compressed, two lines share a common data field. There are two additional size

fields to indicate the compressed sizes of the two lines. Whether a line is compressed or not is indicated by its size

field. As shown in Figure 2 a size of zero is used to indicate uncompressed lines. For compressed lines, size is set

to the line size for an empty line, and the actual compressed size for a valid line. For a 64-byte line in a 32-bit

architecture the tag is no longer than 32 bits, hence the worst-case overhead is less than 32 (tag) + 1 (valid) + 2

× 7 (size) bits, i.e., 6 bytes.

5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

84211/21/41/81/16

Cache size (MB)

IPC of SPEC CPU2000 Applications

art
twolf

mgrid
mesa
applu

 0

 5

10

15

20

25

30

35

84211/21/41/81/16

Cache size (MB)

MPTI of SPEC CPU2000 Applications

art
twolf

mgrid
mesa
applu

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

84211/21/41/81/16

Cache size (MB)

IPC of DIS Stressmark Applications

field
matrix

pointer
transitive

update
 0

 2

 4

 6

 8

10

12

14

16

18

4211/21/41/81/16

Cache size (MB)

MPTI of DIS Stressmark Applications

field
matrix

pointer
transitive

update

Figure 3. Performance and miss ratio of representative SPEC CPU2000 benchmarks and DIS Stressmarks.

3.D. Marginal Performance Gain

As previously mentioned, compression and migration techniques should be adaptive because (1) the cache

requirements of different processors vary and the total on-chip cache resource should be allocated to optimize

overall performance, and (2) applications that can fit in the original cache can be hurt by the decompression

overhead and the migration overhead. This indicates that these techniques should only be used when the running

process may benefit from a larger cache size. In this section, we define precisely what we mean by “running process

may benefit from a larger cache size”.

We use marginal performance gain as a measure of the usefulness of cache space for an application, or more

specifically, the reduction in cycles per instruction (CPI) as a result of an incremental change to cache size. The

benefit of an increase in the effective cache size depends largely upon the current running application and the current

cache size. Figure 3 illustrates the impact of L2 cache size on performance as well as miss rate for ten representative

applications from the SPEC CPU2000 benchmark suite and the Data-Intensive System (DIS) stressmark suite [4].

Within a time period T , the marginal performance gain at a given cache size represents the number of cycles

saved executing the same number of instructions, if one more cache block were available. Thus, it indicates the

benefit of increasing cache size from c to c+1 for an application, or approximately the loss from decreasing cache

size from c to c− 1 (considering that the marginal performance gain curve is smooth). Whenever the least recently

used (LRU) line of processor i is accessed, if the number of cache lines of this processor is reduced by one, this

access will be a miss. Thus, the number of cycles necessary to finish this instruction will be increased by the miss

penalty, MPi. Therefore, the performance gain of process i can be estimated as:

gi(c) =
d

dc
CPIi(c) =

CycleCount i(c − 1) − CycleCount i(c)

InstructionCount i(c)
=

LRURefCount i(c) · MPi

InstructionCount i(c)
(1)

In reality, the MPi for a certain process at a certain cache allocation is non-uniform; it depends on the location

of the required data. If the required line is in off-chip memory, MPi is the memory access latency; if it is in one of

the on-chip caches, MPi is the communication latency between two processor nodes. The communication latencies

between every two nodes may also differ depending on their physical locations. We use the same MPi for all

processes in order to reduce hardware implementation complexity. We therefore define the marginal performance

6

gain of process i as:

MPGi(c) =
LRURefCount i(c)

InstructionCount i(c)
(2)

3.E. Adaptive Compression and Migration

We use marginal performance gain to compress and migrate lines only when the running application may benefit

from a larger cache size. The procedure of adaptive compression and migration operates as follows. Three marginal

performance gain thresholds are used to control adaption: MPGT1, MPGT2, and MPGT3. In Figure 2, we give

a simple example of 2-way associative cache. A cache with higher associativity would be organized into two

multi-way hierarchies.

1. When the marginal performance gain, mpg, of the running application is lower than the first threshold MPGT1,

neither cache way is compressed. However, a newly-loaded line is always placed in way-1 instead of way-2. Evicted

lines from way-1 are placed in way-2 instead of off-chip memory. Evicted lines from way-2 are evicted off-chip.

One can view way-2 as another level of cache hierarchy with the same access time as a regular L2 cache.

2. When mpg exceeds the first threshold MPGT1, the compression of way-2 starts. Note that way-2 stores older

data than way-1. Whenever a new line is sent to way-2, it is compressed, replacing a stale uncompressed line. The

additional space left in the data block will later be used to store another compressed line. At this point, way-2 is split

into two compressed ways. When mpg further exceeds the second threshold MPGT2, way-1 is also compressed,

following the same procedure.

3. When mpg decreases below MPGT2, the decompression of way-1 starts. Whenever any compressed line is

accessed, it is decompressed, evicting its partner compressed line, if presents. When mpg falls below MPGT1,

decompression of way-2 begins, following the same procedure.

4. When a compressed line in way-2 is to be evicted, if the current mpg exceeds MPGT3, depending on the

cache coherence protocol, data may be sent to the directory node. The directory node decides whether to drop the

line, migrate it to a remote on-chip cache, or send it to off-chip memory.

In practice, MPGT1, MPGT2, and MPGT3 can be decided via experiments on typical applications. Fixed

empirical values can then be used for all applications. Our experimental results validate this approach1. We now

discuss several important issues for compression and migration.

• Whenever a line is compressed, the technique first tries to find the best-fit compressed partner that has space

available in the data block. If that fails, the LRU line in the compressed ways is evicted to accommodate this line.

If necessary, the partner line of the LRU line is also evicted. Note that no processor stalls or additional buffers are

necessary to handle compression requests. Compression does not block the issue of later instructions because data

awaiting compression are placed in the input buffer of the hardware compressor. Furthermore, since compression

1The OS might potentially dynamically adjust threshold values, but fixed, empirically-determined values were sufficient for good results.

7

is only triggered by L2 cache misses, another compression request will not be generated before the first missed

line is sent to the processor, either from off-chip memory or from a remote L2 cache. In both cases the latency is

longer than compression plus arbitrating the location of a compressed line.

• Whenever a compressed line is accessed, it is decompressed and sent to the L1 cache or the on-chip network and

then forwarded to the requesting processor. The line is also sent back to the uncompressed ways of the same set

in the L2 cache. If there is no available space, the LRU line in the uncompressed ways is sent to the compressed

ways. Note that decompression is on the performance critical path and therefore its latency must be minimized.

• The LRU compressed lines in local L2 cache may be migrated to remote caches to remain on-chip. Cache

migration can improve the performance of the local processor, but may also hurt the performance of the remote

processor. Therefore, migration requests must be sent to the right target, i.e., a processor where the running

application has smaller marginal performance gain at its current cache size. Our goal is to minimize the total

CPI for simultaneous processes:

N∑

i=1

CPIi(ci) =

N∑

i=1

CycleCount i(ci)

InstructionCount i(ci)
(3)

In this equation,
∑N

i=1 ci = C, where C is the total number of cache lines in all on-chip L2 caches. To minimize the

total CPI, the net benefit of incrementing the number of cache lines for one processor and the loss of decrementing

the number of cache lines for another processor must be positive. Therefore, migration should only be allowed

from processors with higher marginal performance gains to processors with lower marginal performance gains.

4. HARDWARE SUPPORT FOR CONTROL, COMPRESSION, AND MIGRATION

In this section, we present the necessary hardware support to implement marginal performance gain, the adaptive

control logic, and compression/decompression algorithm.

4.A. Hardware Requirement for Marginal Performance Gain

We now describe the necessary hardware assistance to obtain runtime marginal performance gain. Over a time

period T , an approximation of MPG(c) can be obtained using two counters. The first counts the references to the

LRU line and the second counts the number of instructions executed. For set-associative caches, LRU ordering is

kept within each set. Therefore, we use set LRU to approximate global LRU, similar to Suh et al. [7]. Efficient

hardware implementations of approximated LRU for cache blocks are described in the literature [8]. When an LRU

line in any set is accessed, the LRU counter is incremented. During each time period T , each processor calculates

its marginal performance gain MPG(c) by dividing the value of the two counters, and stores the result in a special

register. The counters are then reset.

The marginal gain values of processors are also updated in the on-chip directory node. When the directory node

receives a cache migration request from a processor, it selects the processor with lowest marginal performance gain

8

as the target processor and forwards the migration request to it. If the marginal performance gain of the requestor

is lower than those of the remaining processors, the migration request is declined and the line is sent to off-chip

memory, if modified. Once a processor receives a migration request from the directory node, it must place the

compressed line in its own cache, even if this forces the eviction of one of its own cache lines.

We now describe how to decide update period T . A small T increases the accuracy of marginal performance

gain estimation but has higher computational overhead. A large T reduces the computational overhead but may

cause inaccurate estimation due to application phase changes being missed. Moreover, in a multitasking OS, T

must be smaller than the context switching period, which is typically within the range of 100 ms and 200 ms. When

developing their shared cache partitioning technique, Suh et al. [7] also encountered the problem of selecting an

appropriate repartitioning period. They experimented with different repartitioning periods and found that both 5

million cycles and 10 million cycles permitted accurate identification of program phase changes with low overhead.

We therefore used an update period of 10 million cycles. Note that at a CPU frequency of 1 GHz, 10 million cycles

(10 ms) is significantly shorter than the context switch period. In order to control the recalculation of marginal

performance gain, an OS timer may be used to interrupt the processor and switch to kernel mode every time

period T . The additional overhead of the context switch is usually less than 10 µs for modern processors, which is

negligible compared to the recalculation period.

4.B. Hardware Implementation for Compression and Decompression

Most existing work on cache compression assumes, or uses high-level evaluation to argue that, it is possible to

build control, compression, and decompression hardware with adequate compression ratio, performance, area, and

power consumption. In fact it is not obviously possible to build efficient hardware with a sufficient compression

ratio (approximately 50%). Detailed design is necessary to demonstrate feasibility, and may lead to changes in

higher-level architectural design decisions.

We developed a high-performance hardware compressor and decompressor for cache compression, based on the

PBPM algorithm [3], which was initially designed for on-line compression of data in main memory. Past work only

describes and evaluates a software implementation of the algorithm. In this section, we describe how PBPM can

be efficiently implemented in hardware and used for cache data. We also present the synthesis results and report

latency, area, and power consumption estimates.

The PBPM algorithm is based on the observations that frequently-encountered data patterns can be encoded to

save space and that there is similarity among words stored near each other in memory. Scanning through the input

data a word (32 bits) at a time, PBPM exploits patterns within each word by comparing against predefined data

patterns, and identifies similarities among words by searching for complete and partial matches with entries stored

in a small look-up table, i.e., a dictionary. The inherent parallelism of PBPM, e.g., parallel dictionary matching

and pattern matching, makes it a good candidate for hardware implementation.

9

TABLE II
DESIGN CHOICES FOR DIFFERENT PARAMETERS

Parameters Candidates Selected Candidate

Dictionary
(1) First-in first out (FIFO)

replacement
(2) Least recently used (LRU) FIFO - least HW complexity

policy
(3) Using two FIFO queues to simulate LRU with only 1.74% higher CR than best case

(4) FIFO combined with run-length encoding (RLE)

Coding scheme
(1) Huffman coding Two-level coding due to only up to 0.5%

(2) Two/Three-level coding increase in CR with best HW complexity

Dictionary size Ranging from 16 B to 512 B 32 B - optimal CR for FIFO and low HW cost

4.B.1) Design Trade-offs and Decisions: There are several important trade-offs during the design and imple-

mentation of our hardware compression and decompression algorithm. We list them below.

• Dictionary design and pattern coding: To optimize compression ratio (CR), we evaluated the impact of different

parameters of the compression/decompression algorithm, including dictionary replacement policy, dictionary size,

and coding scheme. Our input data are cache traces collected from a full-system simulation running various

workloads, e.g., media applications and SPEC CPU2000 benchmarks. An 8-way set associative cache with a 64 B

line size is used. The candidates for different parameters and the final selected values are shown in Table II. Note

that two/three level coding scheme in Table II refers to one in which the code length is fixed within the same

level, but differs from level to level. For example, a two-level code can contain 2-bit and 4-bit codes only. With

our selection of parameters, the average compression ratio for a 64 byte cache line is 52.3% on the test data.

• Trade-off between compression ratio and hardware complexity: In order to determine whether the mean and

variance of the compression ratio achieved by our hardware implementation of PBPM is sufficient for most lines

to find partners, we simulated a pair-matching based cache and computed the probability of two cache lines fitting

within one uncompressed cache line, using our cache trace data. We evaluated the “best fit + best fit” policy: for

a given compressed cache line, we first try to find the cache line with minimal but sufficient unused space. If the

attempt fails, the compressed line replaces one or two compressed lines. With this scheme, we are penalized only

when two lines are evicted to store the new line. Our simulation results indicate that the probability of fitting a

compressed line into the cache without additional penalty is at least 99.45%. We implemented and synthesized this

line replacement policy in hardware. The delay and area cost are reported in Table IV.

• Trade-off between area and decompression latency: Decompression latency is a critically-important metric.

During decompression, the processor may stall, waiting for data. Therefore, a high decompression latency can

undermine performance improvement. We use parallelism to increase the throughput of the compression hardware.

For example, our hardware decompresses the second word in parallel by combining bytes from the input and the

dictionary. This is challenging because the locations of the output bytes depend on the codes of the first word and

second word. Given each code can have 6 possible values (Table III), there are 36 possible combinations of two

codes, and 1,296 possible combinations for four codes. To achieve a balance between area and throughput, we

10

�������
� �	�
������ ����
�
�� � 	 �	 ��� ��	��� ���	�� �
��� 	 �	 ��� ��
� �
� �	 ���	�� �
��

�
�
�� ���
�� � � � �� � ����� �� � �� ���� ��� � �� �
�
�� �	��	 �� ���	�� �� ����� �
� ����� �� � � � ���� � ����� �
�
�� �	�� �
��
� �	 ��
���!�� 	 �����	�� �� � ���� �� �� � ��� ������
��� " #" ��
��
��	 ��$ �	 ��� � � ��� �
� ��
� �	 � �� �� ���
���!� �� 	 ����� �	 �� �� ��	���!� ��� �� ���

% ���� ���� � ���	� �� �
�� & �� � �
��
� �	 ���	�� �
�� �� � ����� ��� � ������� ����
� ������� ����& 	 ��� � � �
��� � � ������� �
� �� �

$ � � ���� � ���	 � �� �
��� 	��� ���	�� �
��'

(�� �
� �
� �	 ��
���!�� 	 �����	�� ��� �����
$ �� ���� �� �� 	� �� �
�� � � 	�
� ��� �
��� ����
�� �� ��� �
�� � �	�� �
�� " � ��)�
��	�'� �
�� � � �� �	 �
� 	 ����� ��� � �
�� �� ����
�� � �	�

� � � 	��� ���	�� �
��'� ��
�
�� � � � ���*� � �
�� � �� �� ����� �
�
�� ���	�� ��� ���� �	 �� �
� �
� �	 �� � ���
� �� ���*� � �
�� � � � �� ����� �
�
�� ���	�� ��� ���� � � �� � ��� �� ��
���" #" � �
��
� �	 ��� � 	�
� ��� �
�� � ����
�� �� ��� � ��� �� �	� " � ��)�
��	�'� �
�� � ��� �	�
� 	 ����� ���� �
�� �� ���� ��� �� �	�
� � � 	��� ���	�� �
��'� ��
�
�� � � � ���*� � � �� ��� �� �� ��� �� �
�
�� ���	�� ��� �����	 �� �
� �
� �	 �� � ���
� �� �� �* � � � ��� �� �� �� ����� �
�
�� ���	�� �� � ����� � �� � ��� �� ��
��� �
���
��
��	 ��

$ �� ��� � � �� �� ���� �� ��� �
�� � �� ��
& 	 ��� � � �
��� � $ �� ���� � �� �� ������ ��� �
�� � ��� � ���

��+ ����
% ���� ��� � � ���	� �� �
��

� �� � ��� � ��� �� �� ��
��� ��� � ����� ����� �
� �� � ��� �
�� � �� ��
��� ���� ����� ����� �

, - , . / 0 1 234 5 5 0 3

, - , . 64 0 1 2 34 5 5 0 3

Figure 4. Hardware compressor and decompressor.

decided to compress/decompress two words per cycle.

4.B.2) Description of the Hardware Compressor and Decompressor: Figure 4 illustrates the hardware com-

pression and decompression process. Compression is decomposed into three pipeline stages to improve performance.

The first pipeline stage performs pattern matching and dictionary matching on two uncompressed words in parallel.

It then determines whether to push the two words into the dictionary depending on the pattern matching results.

The second pipeline stage uses the dictionary matching results to compute the maximum number of matching bytes

and the corresponding dictionary index, and to compute the total length of the compressed words. The last stage

determines the final output for the two words by combining codes, matched bytes, and unmatched bytes from the

previous stages. The output register is then shifted to store the compressed words.

TABLE III
PATTERN ENCODING IN PBPM

Code Pattern Output Size (bits) Frequency

00 zzzz (00) 2 39.7%

01 xxxx (01)BBBB 34 32.1%

10 mmmm (10)bbb 5 7.6%

1100 mmxx (1100)bbbBB 23 6.1%

1101 zzzx (1100)B 12 7.3%

1110 mmmx (1110)bbbB 15 7.2%

The decompressor reads in the code for the first word (see Table III).

The first two bits of its code indicate its length. The data are then

decoded to obtain a pattern of this word. If there is a match, the original

word is recovered by combining zeroes and unmatched bytes. Otherwise,

the original word is recovered by combining bytes from input and the

corresponding dictionary entry; the word is then inserted into the dictionary. Note that unmatched bytes and

dictionary indices are determined from successive input bits. The word is finally pushed into the output buffer.

The same procedure is used for the second compressed word in the same cycle. Afterwards, the input line is shifted

11

using a barrel shifter by the length of the first two compressed words, and the next two words are decompressed.

4.C. Synthesis Results of Control, Compression, and Decompression Hardware

Designing hardware of sufficient efficiency and performance is not obviously possible. Therefore, we verified

feasibility by doing a detailed mostly-structural design of the compression and decompression hardware for PBPM

and synthesized our design in 180 nm, 90 nm, and 65 nm libraries, using Synopsys Design Compiler. Table IV

presents the resulting performance, area, and power consumption at maximum internal frequency. “Loc” refers to

the compressed line locater/arbitrator described in Section 3.C. The total power consumption of the compressor,

decompressor, and compressed line arbitrator at 1 GHz is about 69.7 mW in 65 nm technology. The total area cost

is 0.109 mm2.

4.D. Comparison with Literature
TABLE IV

SYNOPSYS DESIGN COMPILER SYNTHESIS RESULTS

Parameters 180 nm 90 nm 65 nm
Comp. Decomp. Loc. Comp. Decomp. Loc. Comp. Decomp. Loc.

Worst case delay (cycles) 11 8 2 11 8 2 11 8 2

Max. frequency (GHz) 0.46 0.38 0.48 1.25 1 1.72 1.43 1.25 1.89

Area (mm2) 0.867 0.661 0.080 0.099 0.075 0.017 0.058 0.043 0.008
Power consumption (mW) 116.78 91.23 191.95 59.98 76.37 19.79 26.05 37.61 6.04

In this section, we compare our

hardware implementation of PBPM

to three existing hardware compres-

sion designs that have been consid-

ered for cache compression, namely X-Match [9], FPC [10], and MXT [11]. To evaluate the compression ratio of

all algorithms, we used the same set of cache trace data, set the block size and dictionary size to 64 B and 32 B,

and simulated a pair-matching compressed cache. We used Lempel-Ziv implementation (LZSS) to approximate

compression results for an MXT implementation. Table V compares the average raw compression ratio (average

compression ratio on individual cache lines), system-wide compression ratio (as defined in Section 3.C), and

hardware performance (decompression latency, peak frequency, and area) of the candidates. Power consumption

comparison is excluded because none of the other algorithms havw reported the power consumption of the hardware.

Decompression latency is defined as the number of cycles to decompress a 64 B cache line, at the maximum claimed

frequency of the hardware.
TABLE V

COMPARISON OF CACHE COMPRESSION HARDWARE

Candidates Raw CR System-wide CR Impl. Peak Frequency Deco. Latency Area

MXT 71.68% 76.51% ASIC
133 MHz (0.25 µm)

16 cycles n.a.
511 MHz (65 nm)

X-Match 49.50% 58.47% FPGA 50 MHz (0.25 µm) 16 cycles n.a.

FPC 63.39% 64.28% n.a. n.a. n.a. > 0.31 mm2

PBPM 51.76% 58.15% ASIC 1 GHz (65 nm) 8 cycles 0.106 mm2

Table V shows that PBPM has

the best effective system-wide com-

pression ratio and MXT has the

worst. The poor compression ratio

produced by MXT is mainly due to

the limited dictionary size, which indicates MXT is not suitable for cache data compression. Because the raw

compression ratios of both X-Match and PBPM are close to 50%, they achieve similar effective system-wide

compression ratio.

Regarding the hardware performance comparison in Table V, MXT was implemented on a memory controller

chip operating at 133MHz using 0.25 µm CMOS ASIC technology. The decompression latency is 8 B/cycle with 4

12

decompression engines. We scale the frequency up to 511 MHz by a factor of (250/65), i.e., using constant electrical

field scaling, to reflect the move to 65 nm technology. FPC has not been implemented on a hardware platform; no

area, peak frequency, or power consumption numbers are reported. The authors claimed that assuming one processor

cycle requires 12 FO4 gate delays, the decompression latency is limited to five processor cycles. However, they did

not provide the synthesis results of their maximum frequency, and therefore we cannot compare performance with

FPC. To estimate the area cost of FPC, we observe that the FPC compressor and decompressor are decomposed

into multiple pipeline stages. Each of these stages imposes significant area overhead. For example, assuming each

2-to-1 multiplexer takes 5 gates, the fourth stage of the FPC decompression pipeline takes approximately 290 K

gates or 0.31 mm2 in 65 nm technology, more than the total area of our compressor and decompressor.

5. FULL-SYSTEM SIMULATION RESULTS

This section describes full-system simulation results of the proposed cooperative compression and migration

techniques. We first describe our simulation environment and workloads, and then present and analyze the results.

5.A. Simulation Environment

TABLE VI
PARAMETERS IN SIMULATIONS

Parameter Value
Processor In-order, 1 GHz
L1 I/D cache 32 KB, 2-way, 64 B line size, 2 cycles

L2 cache 8-way, 64 B line, 10 cycles private, 30 cycles shared

Off-chip memory 80 cycles, 10 bytes per cycle

On-chip network Point-to-point, 5 cycles/hop, 100 bytes/cycle

We used the Simics [12] full-system simulator and the

Ruby module from the GEMS infrastructure [2] to simu-

late the detailed memory system and interconnect network.

We heavily modified the MSI MOSI CMP directory cache

coherence protocol provided by GEMS to support cache

compression and migration. Our simulator is based on the Simics/Aurora SPARC Linux, which models the SPARC

V9 architecture in sufficient detail to run a Linux 2.6.13 SMP kernel. We used the in-order processor model provided

by Simics mainly to reduce simulation time. For all our simulations, each processor has private L1 instruction and

data caches, and a private L2 instruction/data cache. Inclusion is maintained between L1 and L2 caches. The

architectural parameters used in the simulations are listed in Table VI.

We used CACTI 5.0 beta [13] to estimate L2 cache area. We held line size (64 Byte) and associativity (8-way)

constant. All cache area estimates are based on 65 nm process. For CPU area estimation, we assume a fixed-area

processor model [14], in which each processor core and its associated L1 cache is have the same area as 1 MB of

L2 cache, i.e., approximately 20 mm2.

5.B. Workloads

To evaluate the cache compression and migration techniques, we used eight multiprogrammed workloads and

four multithreaded workloads. Our multiprogrammed workloads are combinations of ten heterogeneous SPEC

CPU2000 benchmarks and Data-Intensive Systems (DIS) stressmarks [4]. Our multithreaded workloads include

two benchmarks (ammp and art) from the SPEC OMP v3.2 and two benchmarks (CG and EP) from the Nasa

13

Parallel Benchmarks [15] (NPB) v3.2. Our benchmark configurations are listed in Table VII. Below we describe

the set up of the multiprogrammed and multithreaded benchmarks, respectively.

TABLE VII
BENCHMARKS

Multiprogrammed SPEC Benchmarks Multiprogrammed DIS Benchmarks

Mix 1 art, twolf T1 and T1 Mix 5 matrix, field T1 and T2
Mix 2 applu, mesa T2 and T2 Mix 6 transitive, update T1 and T1

Mix 3 art, mgrid T1 and T2 Mix 7 matrix, transitive T1 and T1

Mix 4 twolf, applu T1 and T2 Mix 8 field, pointer T2 and T2

For multiprogrammed workloads, we studied via

simulation the memory characteristics of the SPEC

CPU2000 benchmarks and the DIS stressmarks and

divided them into two categories: performance sensitive

to L2 cache size (T1) and performance-insensitive to L2

cache size (T2). We then used benchmark mixes that represent the following three types of application combinations:

(1) mix of two cache-sensitive applications, (2) mix of one cache-sensitive application and one cache-insensitive

application, and (3) mix of two cache-insensitive applications. For each mixed workload of two applications, we ran

the simulation twice, each time starting at the “early single” SimPoint [16] of a different application, and stopping

simulation when this application has executed 100 million instructions. We then averaged the results of the two

runs to approximate the performance of this benchmark mix.

For multithreaded workloads, we set the number of threads to the number of processors. For the two multithreaded

SPEC OMP benchmarks, ammp and art, we use the medium versions and the reference inputs. The central part of

these two benchmarks is a major loop whose body contains code executed by multiple threads in parallel. We first

fast forward to the major loop of the benchmarks, then warm up the cache with 100 million instructions, and finally

measure performance in the following 100 million instructions. For the two multithreaded NPB benchmarks, CG

and EP, we use the problem class S, warm up the cache with 100 million instructions, and then run to completion

and measure the performance.

5.C. Performance Evaluation on Multiprogrammed Workloads

For multiprogrammed workloads, we performed two sets of experiments to evaluate the impact of cooperative

and adaptive cache compression and migration on the overall system throughput and the performance of each

application. First, we fixed the number of cores to two and varied the L2 cache size. We show that our techniques

reduce cache requirements and thereby reduce total chip area. Second, we identify the impact of our techniques on

optimal core-cache area ratio given a fixed on-chip area.

For each set of experiments, we present the results of multiprogrammed benchmarks listed in Table VII under four

system settings: (1) basic private L2 cache, (2) compressed private L2 cache, (3) private L2 cache with migration

under the control of marginal performance gain (using MPGT1 to control when migration should start), and (4)

private L2 cache with adaptive and cooperative compression and migration. We use a fixed cache line decompression

latency of eight cycles as indicated by our hardware synthesis results.

In order to decide the appropriate threshold values MPGT1, MPGT2, and MPGT3, we measured the marginal

performance gain values of all evaluated applications at the cache size range of 64 KB to 8 MB. Three threshold

14

TABLE VIII
THROUGHPUT IMPROVEMENTS FOR EVALUATED TECHNIQUES AS FUNCTIONS OF L2 CACHE SIZE

mig. comp. coop. mig. comp. coop. mig. comp. coop. mig. comp. coop.

L2 size art, mgrid applu, mesa art, twolf applu, twolf

64 KB 0% 0.5% 0.7% 0.6% 0.5% 0.6% 6.5% 8.8% 9.9% 2.0% 3.9% 3.9%
128 KB 0% -0.5% 0% 0.5% 0% 0.5% 4.6% 6.3% 6.8% 1.8% 2.7% 2.8%
256 KB 0% -0.4% 0% 0% -1.8% 0% 3.4% 5.5% 5.7% 1.8% 2.8% 2.9%
512 KB 0% 2.0% 8.4% 0% -2.1% 0% 3.1% 10.7% 12.7% 2.6% 4.7% 4.7%

1 MB 6.9% 11.3% 12.6% 0% -2.0% 0% 1.1% 12.4% 17.0% 0% -1.9% 0%
2 MB 0.4% -1.7% 0.5% 0% -2.1% 0% 0% -10.7% 0% 0% -4.1% 0%

L2 size matrix, field matrix, transitive transitive, update field, pointer

64 KB 0.6% 1.0% 0.8% 2.1% 4.8% 2.7% 0.6% 1.1% 0.6% 0% -4.2% 0%
128 KB 0% 1.0% 1.1% 2.3% 14.6% 23.2% 0.2% 9.8% 15.2% 0% -4.6% 0%
256 KB 3.9% 3.3% 4.7% 18.8% 34.9% 37.5% 14.8% 16.9% 17.5% 0% -4.7% 0%
512 KB 0% -1.6% 0% 0% -8.3% 0% 0% -3.2% 1.8% 0% -4.8% 0%

1 MB 0% -1.8% 0% 0% -9.3% 0% 1.7% 3.0% 2.1% 0% -4.8% 0%
2 MB 0% -1.7% 0% 0% -9.2% 0% 0% -5.8% 0% 0% -4.9% 0%

art & mgrid

IP
C

0.95

1.00

1.05

1.10

1.15

1.20

1.25
art

0.10

0.15

0.20

0.25

0.30

0.35
mgrid

0.86

0.88

0.89

0.90

0.91

0.92

applu & mesa

1.66

1.67

1.68

1.69

1.70

1.71

1.72

1.73

1.74

1.75
applu

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

mesa

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

art & twolf

L2 Cache Size (MB)

1/16 1/8 1/4 1/2 1 2

IP
C

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
art

L2 Cache Size (MB)

1/16 1/8 1/4 1/2 1 2

0.10

0.15

0.20

0.25

0.30

0.35
twolf

L2 Cache Size (MB)

1/16 1/8 1/4 1/2 1 2

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
applu & twolf

L2 Cache Size (MB)

1/16 1/8 1/4 1/2 1 2

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60
applu

L2 Cache Size (MB)

1/16 1/8 1/4 1/2 1 2

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

twolf

L2 Cache Size (MB)

1/16 1/8 1/4 1/2 1 2

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

original adaptive migration static compression cooperative compression and migration

Figure 5. Performance of multiprogrammed SPEC benchmarks as a function of cache size.

values spanning the range of variation in performance for cache-sensitive applications were empirically determined

(MPGT1 = 0.0000375, MPGT2 = 0.0000625, and MPGT3 = 0.0001). A single set of thresholds were used: it

was not necessary to tune them to particular application.

5.C.1) Evaluation at Fixed Core Count: In this section, we show the evaluation of the cooperative compression

and migration techniques in a two-core CMP with varied private L2 cache sizes. The overall throughput and

individual performance of evaluated multiprogrammed benchmarks are shown in Figure 5 and Figure 6. Table VIII

summarizes the relative throughput improvements of the evaluated techniques: adaptive migration (mig.), static

compression (comp.), and cooperative and adaptive compression and migration (coop.).

As shown in Figure 5 and Figure 6, the cooperative cache compression and migration techniques provide the

maximum throughput improvement over all system settings whenever improvement is possible by increasing L2

cache size. When such improvement is not possible, the cooperative technique maintains the lowest performance

degradation due to its adaptive nature. We find that for the three T1 + T2 mixes (i.e., art and mgrid, applu and twolf,

as well as matrix and field) the proposed techniques result in significant throughput improvements. The maximum

improvements for these applications over different L2 cache sizes range from 4.7% to 12.6%. For the three T1

15

matrix & field
IP

C

1.32

1.34

1.36

1.38

1.40

1.42

1.44

1.46

1.48
matrix

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50
field

0.960

0.965

0.970

0.975

0.980
transitive & update

0.80

0.90

1.00

1.10

1.20

1.30

1.40
transitive

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
update

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

matrix & transitive

L2 Cache Size (MB)

1/16 1/8 1/4 1/2 1 2

IP
C

0.50

0.60

0.70

0.80

0.90

1.00

1.10
matrix

L2 Cache Size (MB)

1/16 1/8 1/4 1/2 1 2

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50
transitive

L2 Cache Size (MB)

1/16 1/8 1/4 1/2 1 2

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
field & pointer

L2 Cache Size (MB)

1/16 1/8 1/4 1/2 1 2

1.35

1.37

1.39

1.41

1.43

1.45

1.47
field

L2 Cache Size (MB)

1/16 1/8 1/4 1/2 1 2

0.960

0.962

0.964

0.966

0.968

0.970

0.972

0.974

0.976

pointer

L2 Cache Size (MB)

1/16 1/8 1/4 1/2 1 2

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

original adaptive migration static compression cooperative compression and migration

Figure 6. Performance of multiprogrammed DIS benchmarks as a function of cache size.

+ T1 mixes (i.e., art and twolf, matrix and transitive, as well as transitive and update) the maximum throughput

improvements range from 17% to 37.5%. The other two T2 + T2 mixes (i.e., applu and mesa, as well as field and

pointer) are not affected by our techniques because their performance cannot be improved with increased cache

size. We make the following observations on the evaluated techniques.:

1. The cooperative technique combine the advantages of both static compression and adaptive migration: in all

cases, it enables the maximum performance improvement in sensitive cache size ranges, and results in minimum

performance penalty in insensitive cache size ranges. Therefore, if compression and/or migration are used, they

should be adaptively guided using a metric such as the proposed marginal performance gain.

2. In their sensitive cache size ranges, T1 applications usually benefit more from static compression than adaptive

migration. This is because locally compressed caches have lower access latency than remote caches. However, in

cache size ranges for which performance is not strongly dependent on cache size, static compression usually results

in a performance penalty, due to the increased cache hit latency. In contrast, adaptive migration seldom imposes

any performance penalty because lines are not migrated in this case.

3. The cooperative technique has the greatest potential to reduce on-chip cache requirement. For example, for the

matrix and field mix, with the cooperative techniques, the throughput at the cache size of 256 KB is 99.4% of the

throughput at the cache size of 512 KB; the individual performance of matrix and field are also almost identical.

This implies that the actual cache area requirement can be reduced to half, and the total chip area requirement can

be reduced by 17%. For the mix of art and mgrid, to achieve similar performance of a 2 MB private cache (4 MB

in total for two cores), only half the cache area is required with the proposed technique, thereby reducing the total

chip area by 33%.

16

TABLE X
THROUGHPUT IMPROVEMENTS FOR EVALUATED TECHNIQUES FOR DIFFERENT CORE–CACHE AREA USAGES

mig. comp. coop. mig. comp. coop. mig. comp. coop. mig. comp. coop.

Cores art, mgrid applu, mesa art, twolf applu, twolf

2 0% -5.2% 0% 0% -2.0% 0% 0% -13.9% 0% 0% -4.1% 0%
4 5.6% 5.6% 9.9% 0% -1.2% 0% 4.9% 4.1% 7.9% 0% -3.0% 0%
6 0% 7.7% 8.1% 0% -2.1% 0% 3.5% 18.0% 18.0% 1.4% 1.4% 1.6%
8 0% -0.5% 0% 0% -1.1% 0% 3.2% 5.8% 7.6% 1.0% 1.8% 2.5%

Cores matrix, field matrix, transitive transitive, update field, pointer

2 0% -1.6% 0% 0% -9.8% 0% 0% -6.5% 0% 0% -4.9% 0%
4 0% -1.7% 0% 0% -9.9% 0.1% 0.7% -4.3% 1.1% 0% -4.7% 0.1%
6 0% -1.5% 0.1% 0% -4.6% 0% 1.0% -1.2% 2.8% 0% -4.8% 0%
8 3.7% 3.2% 4.3% 19.8% 34.0% 36.0% 11.0% 16.8% 17.6% 0% -4.4% 0%

art & mgrid

IP
C

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00
art

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
mgrid

0.00

0.20

0.40

0.60

0.80

1.00
applu & mesa

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00
applu

0.00

0.20

0.40

0.60

0.80

1.00
mesa

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

art & twolf

Number of Processors

2 4 6 8 10

IP
C

0.00

0.50

1.00

1.50

2.00

art

Number of Processors

2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
twolf

Number of Processors

2 4 6 8 10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70
applu & twolf

Number of Processors

2 4 6 8 10

0.00

1.00

2.00

3.00

4.00

5.00

6.00
applu

Number of Processors

2 4 6 8 10

0.00

0.20

0.40

0.60

0.80

1.00
twolf

Number of Processors

2 4 6 8 10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

original adaptive migration static compression cooperative compression and migration

Figure 7. Performance of multiprogrammed SPEC benchmarks for different cache–core area tradeoffs.

TABLE IX
EVALUATED CORE-CACHE AREA RATIOS

Core/L2 Number Core area L2 size Cache area Total area

area ratio of cores (mm2) (MB) (mm2) (mm2)

0.28 2 40 8 143.1 183.1
0.72 4 80 6 109.9 189.9
1.70 6 120 4 70.6 190.6
4.37 8 160 2 36.6 196.6
∞ 10 200 0 0 200

5.C.2) Evaluation at Various Core-Cache Area Ratio: This

section evaluates the impact of the proposed techniques on CMPs

with different core-cache area ratios given a fixed chip area

constraint. The total chip area is approximately the sum of the

cache area and the CPU area multiplied by number of CPUs. We

assume the L1 caches are integrated into the CPU cores, and use the CACTI 5.0 Beta model [13] to estimate the

area of L2 cache given its size (with a 65 nm technology). Finally, we set the total chip area constraint to 200 mm2:

the approximate area of a 10 MB L2 cache.

To demonstrate the effect of migration, we simulate configurations at two-processor increments to balance the

mixes of application types. Each core executes one thread. For example, in a six-core system, for benchmark mix

1, three copies of art and three copies of mgrid are executed, and each copy is assigned to a single processor core.

We evaluate the core-cache area ratios listed in Table IX, approximating the area constraint of 200 mm2 as closely

as possible. Figures 7 and 8 report the IPC of each individual core and the total throughput. Table X summarizes

the relative throughput improvements of the three evaluated techniques. Note that the 10-core configuration has

no L2 cache and therefore consistently suffered large performance penalties. We plot the results of 10-core CMP

17

matrix & field
IP

C

0.00

1.00

2.00

3.00

4.00

5.00

6.00
matrix

0.00

0.10

0.20

0.30

0.40

0.50
field

0.00

0.20

0.40

0.60

0.80

1.00
transitive & update

0.00

1.00

2.00

3.00

4.00

5.00
transitive

0.00

0.10

0.20

0.30

0.40

0.50

0.60
update

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

matrix & transitive

Number of Processors

2 4 6 8 10

IP
C

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00
matrix

Number of Processors

2 4 6 8 10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70
transitive

Number of Processors

2 4 6 8 10

0.00

0.10

0.20

0.30

0.40

0.50

0.60
field & pointer

Number of Processors

2 4 6 8 10

0.00

1.00

2.00

3.00

4.00

5.00

6.00
field

Number of Processors

2 4 6 8 10

0.00

0.20

0.40

0.60

0.80

1.00
pointer

Number of Processors

2 4 6 8 10

0.00

0.10

0.20

0.30

0.40

0.50

original adaptive migration static compression cooperative compression and migration

Figure 8. Performance of multiprogrammed DIS benchmarks for different cache-core area tradeoffs.

in the figures to illustrate an extreme case: with no on-chip L2 cache, none of the evaluated techniques can help

improve throughput.

The behavior of the evaluated technique for different benchmark mixes is similar to that shown in Section 5.C.1.

Recall that our goal is to optimize the overall throughput, i.e., total IPC over all cores. We make the following

observations on the evaluated techniques.

1. The area-constrained, performance-optimal solution uses less cache per core than is common for existing

processors. In current dual-core and quad-core processors, a significant portion of the chip area is devoted to

the cache. The Intel Core 2 Duo processor has a die size of 143 mm2, about 50% of which appears to be used

by the 4 MB L2 cache. The AMD Athlon 64 FX-62 processor also has 50% of its die area used as on-chip

cache. However, our experimental results indicate that adding processor cores often achieves better throughput than

increasing L2 cache size. We feel that the current design trend of CMPs has been influenced by the lack of on-line

techniques to adjust cache use to running applications. For example, for the mix of art and mgrid, when the core

count is increased from four to six, although the throughput is improved by 38%, the performance of art reduces

by 42.3%. The performance of mgrid is not affected by this change. However, with the proposed cooperative and

adaptive techniques, the individual performance of art at the core count of six is 97% of the original performance

without our techniques at the core count of four. This indicates that, for this benchmark mix, with the proposed

adaptive techniques, the 6-core design not only outperforms the 4-core design, providing 36% higher throughput,

but also guarantees same good performance for individual cores.

2. We found that the cooperative techniques may influence optimal core-cache area ratio for maximum throughput.

For the mix of art and twolf, without the cooperative techniques, the overall performances of 6-core CMP and 8-

core CMP are approximately the same. However, with the 18% performance improvement brought by cooperative

compression and migration, it is clear that the optimal core count is six instead of eight. On the contrary, for the

18

mix of matrix and transitive, without the cooperative techniques, the 6-core CMP has the maximum throughput.

However, with cooperative cache compression and migration, a 36% improvement makes the throughput of 8-core

13.5% higher than that of the 6-core design, thereby becoming the new optimal core-cache ratio. In summary, the

optimal core-cache ratio depends on the application mix for which the CMP is optimized and is influenced by the

use of adaptive cache compression and data migration.

5.D. Performance Evaluation on Multithreaded Workloads

In this section, we present the evaluation results of the cooperative cache compression and migration technique

on four multithreaded workloads. We compare the overall system throughput of our technique with that of a private

L2 cache and a shared L2 cache on a four-core CMP. We set the number of OpenMP threads to the number

of processors. We evaluated four L2 cache sizes; in each case, the aggregate cache size is the same for each

comparison, i.e., 1 MB private cache vs. 4 MB shared cache. The results are presented in Table XI.

TABLE XI
EVALUATION ON MULTITHREADED BENCHMARKS AS A

FUNCTION OF AGGREGATE L2 CACHE SIZE

Total L2 Pivate L2 Shared L2 Coop. +% private +% shared
ammp

1MB 1.37 2.98 1.37 0% -54%
2MB 1.39 3.00 3.61 160% 21%
4MB 4.23 3.00 4.23 0% 41%
8MB 4.25 3.01 4.25 0% 41%

art
1MB 3.01 3.13 3.01 0% -4%
2MB 3.08 3.23 3.14 2% -3%
4MB 3.26 3.34 3.26 0% -2%
8MB 3.30 3.35 3.31 0% -1%

CG
1MB 2.85 2.55 3.96 39% 55%
2MB 4.36 3.40 4.34 0% 28%
4MB 4.46 5.38 5.42 22% 1%
8MB 5.52 5.39 5.53 0% 3%

EP
1MB 5.41 5.37 5.41 0% 1%
2MB 5.46 5.40 5.89 8% 9%
4MB 6.18 6.31 6.88 11% 9%
8MB 7.06 6.74 7.05 0% 5%

The OpenMP implementations of the SPEC OMP and NPB

benchmarks achieve parallelization by searching for loops

with fully independent iterations and then annotating these

loops with OMP PARALLEL DO directives. Therefore, the

threads usually perform identical tasks and seldom commu-

nicate or share data. As a result, the marginal performance

gains of the threads are very similar and we observed

little migration for these benchmarks. The benefits of our

technique mainly comes from adaptive cache compression.

Table XI illustrates that our technique outperforms private

cache in all cases and outperforms shared cache in most

cases. In specific, for benchmark ammp, the maximum throughput improvement over private cache is 160%, and

the maximum throughput improvement over shared cache is 41%. The only case where our technique has a lower

performance than a shared cache is when the cache size per core is 256 KB. This is because at that cache size,

the marginal performance gain of ammp is not large enough to trigger compression. (Doubling cache size does

not improve throughput, but quadrupling it does.) The only case when shared L2 cache performs the best is for

benchmark art. The cooperative technique does not result in obvious throughput improvement for art because its

marginal performance gain is small over all evaluated cache sizes.

Our evaluation of cache-sensitive multithreaded benchmarks indicates that if the threads of the application execute

almost identical tasks, the difference between their marginal performance gain is too small to trigger migration.

Therefore, only compression may help improve the throughput. However, note that our migration technique is

orthogonal to replication techniques. Therefore, other replication techniques may also be deployed if the applications

19

exhibit good data sharing characteristics.

5.E. Sensitivity to Decompression Latency

0

5

10

15

20

25

30

35

40

45

50

 2 4 6 8 10 12T
h

ro
u

g
h

p
u

t
im

p
ro

v
e

m
e

n
t

(p
e

rc
e

n
ta

g
e

)

Decompression latency (cycles)

matrix transitive 256KB
transitive update 256KB

matrix field 256KB
applu twolf 512KB

art mgrid 1MB
art twolf 1MB

Figure 9. Sensitivity to decompression latency.

To determine the sensitivity of cooperative cache compression

and migration techniques to decompression latency, we performed

the following experiments. We used the experimental setup in

Section 5.C.1 with a fixed core count of two and evaluated

the benchmark mixes that benefit from cooperative techniques at

their largest performance improvement cache size. We varied the

decompression latency from 2 to 12 cycles. Figure 9 illustrates the improvements to overall throughput under

different decompression penalties. Note that it illustrates the importance of decompression speed, not variation in

PBPM decompression speed. We found that the performance improvements for all benchmark mixes are strongly

affected by increased decompression latency. In fact, the percentage improvement is directly linear in decompression

latency. The results clearly demonstrate the importance of efficient compression/decompression hardware design.

6. RELATED WORK

When exploring the design space for future CMPs, Huh, Burger, and Keckler [17] observed that off-chip

bandwidth will likely limit the number of cores per die because transistor count is increasing much faster than the

number of signaling pins. Li et al. [14] studied the tradeoff between number of cores and cache size under area

constraints. Their results showed the challenges of accommodating both CPU-bound and memory-bound workloads

in the same design. The proposed techniques provide the most benefit when used with such applications.

A number of cache compression [5, 6] and memory compression [11, 18] systems have been developed for

improving single-processor memory system performance. However, few researchers have studied reducing off-chip

communication cost using compression for CMPs. We are aware of only two recent articles on this topic. Ozturk

et al. [19] proposed to compress data blocks for which reuse intervals are large using compile time optimization

based on an integer-linear programming formulation. This approach was evaluated using access patterns extracted

from embedded applications. However, it has not been implemented or evaluated within a multiprocessor simulator:

the hardware complexity and performance impact are not yet well understood. Alameldeen and Wood investigated

L2 cache and link compression in CMPs [20]. Their CMP design assumed private L1 caches for each core and a

shared L2 cache for all cores. However, we believe compression is more important for private L2 caches because

they face more severe capacity issue than shared caches. Moreover, decompression adds overhead to the shared

cache access latency, which is already much higher than private caches. Therefore, their technique is more useful

for larger commercial benchmarks with huge cache requirements.

Suh et al. [7] proposed a dynamic technique to partition shared on-chip cache among processes. Their technique

collects the cache miss characteristics of processes at run-time and uses this information to partition cache among

20

cores. They defined their control metric to be the derivative of the cache miss curve. However, this definition

has shortcomings and may produce suboptimal performance. Because the same reduction in miss rate may have

different performance implications for different applications. For example, as shown in Figure 3, for application

art, doubling the L2 cache size at 512 KB would result in six fewer misses per thousand instructions, and 0.05

absolute IPC improvement. Meanwhile, for application twolf, doubling the cache size at 512 KB would result in

two fewer misses per thousand instructions, but a 0.1 absolute IPC improvement. Defining marginal performance

gain as the reduction in cache misses implies that the benefit of increasing cache size for art is larger than twolf,

which is not correct. If one’s goal is to improve performance rather than reduce miss, our definition of marginal

performance gain should be used instead.

Quresi and Patt [21] improved upon Suh’s dynamic cache partitioning scheme by separating the utility monitoring

unit from the shared cache. However, they used reduction in misses to make cache partitioning decisions, the same

metric as in Suh’s work. Chang and Sohi [22] proposed cooperative caching to manage the distributed on-chip caches

for CMPs. Their techniques include cache-to-cache transfers of clean data, replication-aware data replacement, and

global replacement of inactive data. Zhang and Asanovic proposed victim replication [23] for private L2 caches,

which attempts to keep copies of local primary cache victims within the local L2 cache. They later proposed victim

migration [24] that improves on victim replication. Beckmann et al. proposed the adaptive selective replication

(ASR) scheme [25], a more advanced replication scheme for private caches. Our migration technique is orthogonal

to these replication techniques, because they make decisions on whether to duplicate a cache line fetched from a

remote cache and we make decisions on what we should do with a useful cache line upon eviction. In fact, our

adaptive compression and migration technique can be used together with any replication techniques, and is likely

to improve their performance by replicating and transmitting compressed data.

7. CONCLUSIONS

The move to CMPs increases the importance of carefully using available cache area. We proposed a cooperative

L2 cache compression and data migration technique to permit improvement in CMP throughput without increasing

area, or to reduce area without degrading throughput. We evaluated these techniques using full-system simulation

running various multiprogrammed and multithreaded workloads. We show that for cache-sensitive applications,

the maximum CMP throughput improvement with the proposed technique range from 4.7%–160% (on average

34.3%), relative to a conventional private L2 cache architecture. No performance penalty is imposed for cache-

insensitive applications. The results indicate that proactively distributing cache resources among processors based

on their relative performance impacts permits the best overall performance on a wide range of applications. Using

a cooperative combination of compression and migration guided by marginal performance gain permitted better

performance than either migration or compression, alone. The feasibility, area, and performance overheads of the

required control, compression, and decompression hardware were evaluated via detailed design and synthesis. The

21

performance impact was explicitly modelled and the area overhead was found to be negligible compared to processor

and cache area. We therefore conclude that cooperative compression and migration appears to be a viable technique

for improving area and/or performance for workloads containing cache-limited applications.

REFERENCES

[1] “International Technology Roadmap for Semiconductors,” 2006, http://public.itrs.net.

[2] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,

“GEMS: Multifacet’s general execution-driven multiprocessor simulator,” in Proc. Int. Symp. Computer Architecture, June 2005.

[3] L. Yang, H. Lekatsas, and R. P. Dick, “High-Performance Operating System Controlled Memory Compression,” in Proc. Design

Automation Conf., July 2006, pp. 701–704.

[4] H. Du, “Analysis of memory behavior of DIS stressmark suite and optimization,” University of California, Irvine, Tech. Rep., Dec.

2000, http://www.ics.uci.edu/∼amrm/hdu/DIS Stressmark/DIS stressmark.html.

[5] E. G. Hallnor and S. K. Reinhardt, “A compressed memory hierarchy using an indirect index cache,” in Proc. 3rd workshop on Memory

performance issues, 2004.

[6] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for high-performance processors,” in Proc. Int. Symp. Computer

Architecture, June 2004.

[7] G. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of shared cache memory,” J. of Supercomputing, vol. 28, no. 1, pp. 7–26,

2004.

[8] H. Ghasemzadeh, S. S. Mazrouee, and M. R. Kakoee, “Modified pseudo LRU replacement algorithm,” in Proc. Int. Symp. Engineering

of Computer Based Systems, Mar. 2006.

[9] J. N and S. Jones, “The X-MatchPRO 100 Mbytes/second FPGA-based lossless data compressor,” in Proc. Design, Automation and

Test in Europe, Mar. 2000, pp. 139–142.

[10] A. Alameldeen and D. A. Wood, “Frequent pattern compression: A significance-based compression scheme for l2 caches,” Dept. of

Computer Sciences, University of Wisconsin-Madison, Tech. Rep., Apr. 2004.

[11] B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B. Smith, M. Wazlowski, and P. M. Bland, “IBM memory expansion

technology,” IBM J. of Research and Development, vol. 45, no. 2, pp. 271–285, Mar. 2001.

[12] “Simics,” http://www.virtutech.com.

[13] “CACTI: An integrated cache access time, cycle time, area, leakage, and dynamic power model,” http://quid.hpl.hp.com:9082/cacti/.

[14] Y. Li, B. Leez, D. Brooks, Z. Huyy, and K. Skadron, “CMP design space exploration subject to physical constraints,” in Proc. Int.

Symp. High-Performance Computer Architecture, Feb. 2006.

[15] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of NAS parallel benchmarks and its performance,” Tech. Rep., 1999,

nAS Technical Report: NAS-99-011.

[16] E. Perelman, G. Hamerly, and B. Calder, “Picking statistically valid and early simulation points,” in Proc. Int. Conf. Parallel

Architectures and Compilation Techniques, Sept. 2003.

[17] J. Huh, D. Burger, and S. W. Keckler, “Exploring the design space of future CMPs,” in Proc. Int. Conf. Parallel Architectures and

Compilation Techniques, Sept. 2001.

[18] L. Benini, D. Bruni, A. Macii, and E. Macii, “Hardware-assisted data compression for energy minimization in systems with embedded

processors,” in Proc. Design, Automation & Test in Europe Conf., Mar. 2002.

[19] O. Ozturk, M. Kandemir, and M. J. Irwin, “Increasing on-chip memory space utilization for embedded chip multiprocessors through

data compression,” in Proc. Int. Conf. Hardware/Software Codesign and System Synthesis, Sept. 2005, pp. 87–92.

[20] A. R. Alameldeen and D. A. Wood, “Interactions between compression and prefetching in chip multiprocessors,” in Proc. Int. Symp.

High-Performance Computer Architecture, Feb. 2007.

[21] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-overhead, high-performance, runtime mechanism to partition

shared caches,” in Proc. Int. Symp. Microarchitecture, Dec. 2006.

[22] J. Chang and G. S. Sohi, “Cooperative caching for chip multiprocessors,” in Proc. Int. Symp. Computer Architecture, June 2006, pp.

264–276.

[23] M. Zhang and K. Asanovic, “Victim replication: Maximizing capacity while hiding wire delay in tiled CMPs,” in Proc. Int. Symp.

Computer Architecture, June 2005.

[24] M. Zhang and K. Asanovic, “Victim migration: Dynamically adapting between private and shared CMP caches,” Massachusetts Institute

of Technology, Tech. Rep., Oct. 2006.

[25] B. M. Beckmann, M. R. Marty, and D. A. Wood, “ASR: Adaptive selective replication for cmp caches,” in Proc. Int. Symp.

Microarchitecture, Dec. 2006.

22

	techreport2.pdf
	isca-submitted.pdf
	Introduction and Motivation
	Contributions
	Cooperative Cache Compression and Migration
	Optimizing On-Chip Cache Utilization
	Overview of Proposed Solution
	Effective System-Wide Compression Ratio and Pair-Matching Compressed Cache Organization
	Marginal Performance Gain
	Adaptive Compression and Migration

	Hardware Support for Control, Compression, and Migration
	Hardware Requirement for Marginal Performance Gain
	Hardware Implementation for Compression and Decompression
	Design Trade-offs and Decisions
	Description of the Hardware Compressor and Decompressor

	Synthesis Results of Control, Compression, and Decompression Hardware
	Comparison with Literature

	Full-System Simulation Results
	Simulation Environment
	Workloads
	Performance Evaluation on Multiprogrammed Workloads
	Evaluation at Fixed Core Count
	Evaluation at Various Core-Cache Area Ratio

	Performance Evaluation on Multithreaded Workloads
	Sensitivity to Decompression Latency

	Related Work
	Conclusions

