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ABSTRACT
Memory is a scarce resource in many embedded systems. Increas-
ing memory often increases packaging and cooling costs, size, and
energy consumption. This paper presents CRAMES, an efficient
software-based RAM compression technique for embedded sys-
tems. The goal of CRAMES is to dramatically increase effective
memory capacity without hardware design changes, while main-
taining high performance and low energy consumption. To achieve
this goal, CRAMES takes advantage of an operating system’s vir-
tual memory infrastructure by storing swapped-out pages in com-
pressed format. It dynamically adjusts the size of the compressed
RAM area, protecting applications capable of running without it
from performance or energy consumption penalties. In addition
to compressing working data sets, CRAMES also enables efficient
in-RAM filesystem compression, thereby further increasing RAM
capacity. CRAMES was implemented as a loadable module for the
Linux kernel and evaluated on a battery-powered embedded system.
Experimental results indicate that CRAMES is capable of doubling
the amount of RAM available to applications. Execution time and
energy consumption for a broad range of examples increase only
slightly, by averages of 0.35% and 4.79%. In addition, this work
identifies the software-based compression algorithms that are most
appropriate for low-power embedded systems.

Categories and Subject Descriptors
D.4.2 [Storage Management]: Virtual memory; C.3 [Special Pur-
pose and Application Based Systems]: Real-time and embedded
systems

General Terms
Design, management, performance

Keywords
Embedded system, memory, compression

1. Introduction and Motivation
Modern embedded systems, e.g., personal digital assistants (PDAs)
and mobile phones, are growing increasingly complex. In order
to support applications such as 3-D games, secure Internet access,
email, music, and digital photography, the memory requirements
of embedded systems have grown at a much faster rate than was
originally anticipated by their designers. For example, the total

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05,Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

RAM and flash memory requirements for applications in the mo-
bile phone market are doubling or tripling each year [1]. Although
memory price has historically dropped with time, adding memory
frequently results in increased packaging and cooling costs, size,
and energy consumption. For example, the HP iPAQ hx2755 PDA
has a price 20% higher than its predecessor, the iPAQ hx2415. With
the exception of a slight increase in CPU frequency (520 MHz for
hx2415 and 624 MHz for hx2755), hx2755 differs from hx2415
only by making 2.2 times as much memory available to the user [2].
In addition, as embedded systems support new applications, their
working data sets often increase in size, exceeding original esti-
mates of memory requirements. Redesigning hardware is not de-
sirable as it may substantially increase time-to-market and design
costs.

We propose a new software-based RAM compression technique,
named CRAMES, that increases effective memory capacity with-
out adding physical memory. RAM compression for embedded
systems is a complex problem that raises several questions. Does
the technique allow existing applications to execute without perfor-
mance and energy consumption penalties? Can new applications
with working data sets that were originally too large for physical
memory be automatically made to execute smoothly? What com-
pression algorithm should be used, and when should compression
and decompression be performed? How should the compressed
RAM area be managed to minimize memory overhead? How should
the technique be evaluated for use in embedded systems?

This paper answers these questions and evaluates the quality of
CRAMES. To minimize the performance and energy consumption
impact, CRAMES takes advantage of the operating system (OS)
virtual memory swapping mechanism to decide which pages to com-
press and when to compress them. Multiple compression tech-
niques and memory allocation methods were experimentally eval-
uated; the most promising were selected. CRAMES dynamically
adjusts the size of the compressed area during operation based on
the amount of memory required, so that applications capable of run-
ning without memory compression do not suffer from performance
or energy consumption penalties as a result of its use. In addition
to data set compression, CRAMES may also be used for in-RAM
filesystem compression, thereby further expanding system RAM.

CRAMES has been implemented as a loadable Linux kernel mod-
ule for maximum portability and modularity. Note that the tech-
nique can easily be ported to other modern OSs. The module was
evaluated on a battery-powered PDA running an embedded version
of Linux called Embedix. This embedded system’s architecture is
similar to that of modern smart phones. CRAMES requires the
presence of an MMU. However, no other special-purpose hardware
is required. MMUs are becoming increasingly common in high-end
embedded systems. We evaluated our technique using well-known
batch applications as well as interactive applications with graphical
user interfaces (GUIs). A PDA user input monitoring and playback
system was designed to support the creation of reproducible inter-
active GUI benchmarks. Our results show that CRAMES is capable
of dramatically increasing the memory capacity with minimal per-
formance and energy consumption costs.



The rest of this paper is organized as follows. Section 2 summa-
rizes the contributions of related work. Section 3 describes the pro-
posed memory compression technique and elaborates on the trade-
offs involved in the design of CRAMES. Important design prin-
ciples are proposed for software-based RAM compression tech-
niques. Section 4 discusses the implementation of CRAMES as
a Linux kernel module. Section 5 describes the experimental set-
up, workloads, and experimental results in detail. Finally, Section 6
concludes the paper.

2. Related Work
Early techniques for reducing the RAM requirements of embedded
systems were mostly hardware-based, i.e., they were implemented
with, and relied on, special-purpose hardware.Code compression
techniques [3,4] store instructions in compressed format and de-
compress them during execution. In these techniques, compression
is usually done off-line and can be slow, while decompression is
done during execution by special hardware and must be very fast.
Main memory compressiontechniques [5,6] insert a hardware com-
pression/decompression unit between the cache and RAM. These
approaches may reduce embedded system RAM requirements and
power consumption. However, they require changes to the under-
lying hardware and thus cannot be easily incorporated into existing
embedded systems.

Most previous work on software-based memory compression falls
into two main categories: compressed caching and swap compres-
sion. Both have the main goal of improving system performance
and target general-purpose systems with hard disks.Compressed
caching[7–11] was proposed by a number of researchers to simul-
taneously handle both code memory compression and data memory
compression. It improves system performance by decreasing the
number of page faults serviced by hard disks, which have much
longer access times than RAM.Swap Compression[12–15] com-
presses swapped pages and stores them in a cache. However, nei-
ther technique has been evaluated on embedded systems for which
power consumption and performance are critically important.

In summary, despite the existence of memory compression tech-
niques, few have seen use in commercial embedded systems for one
or more of the following reasons: (1) they assume off-line com-
pression and thus cannot handle dynamic data memory, (2) they
require redesign of the target embedded system and the addition of
special-purpose hardware, or (3) their performance and energy con-
sumption impacts have not been evaluated, or are unacceptable, for
typical disk-less embedded systems.

The work described in this article makes the following main con-
tributions: (1) unlike previous work, CRAMES handles both on-
line data memory compression and in-RAM filesystem compres-
sion; (2) it requires no special hardware or system redesign; (3)
the compression algorithm and memory allocation method are care-
fully selected to minimize performance and energy consumption
overheads; and (4) CRAMES targets disk-less embedded systems.
In summary, it greatly increases the RAM available to embedded
systems with minimal performance and energy consumption costs
(refer to Section 5).

3. CRAMES Design
CRAMES divides the RAM of an embedded system into two por-
tions: one containing compressed data pages and the other contain-
ing uncompressed data pages as well as code pages. We call the
second area themain memory working area. Consider a disk-less
embedded system in which the working data set of one memory-
intensive process (or several such processes) increases until it ex-
ceeds system RAM. If no memory compression mechanism is used,
the process may not proceed; there is no hard disk to which it may
swap out pages to provide more RAM. However, with CRAMES,
pages within the main memory working area are compressed and
moved to the compressed area so that the process may continue
running. When a compressed page is later required by a process,
the kernel quickly locates that page, decompresses it, and copies
it back to the main memory working area, allowing the process to
continue executing.
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Figure 1: Swapping between uncompressed and compressed RAM

3.1. Design Principles
The goal of CRAMES is to increase available memory with mini-
mal performance and energy penalties, and without requiring addi-
tional hardware. We follow these principles to achieve this goal:
1. Carefully select and schedule pages for compression. To guar-
antee correct operation, pages must be compressed when the ad-
dress space of active processes exceeds the main memory working
area.
2. Use a performance and energy efficient compression algorithm
with low compression ratio1 and memory overhead.This is crucial
to enable CRAMES to increase the amount of usable memory with
small performance and energy consumption penalties.
3. Organize the compressed area in non-uniform-size slots.Since
sizes of compressed pages vary widely, efficiently distributing and
locating data in the compressed memory area is challenging.
4. Dynamically adjust the size of compressed area.The com-
pressed area must be large enough, when necessary, to provide
applications with additional memory. However, it should stay out
of the way when applications do not require additional memory to
avoid having a negative impact on performance and energy con-
sumption.
5. Minimize the memory overhead.CRAMES must minimize the
memory overhead of compression, fragmentation, and indexing com-
pressed pages.

3.2. Design Overview
This section provides an overview of CRAMES. Three closely re-
lated components are briefly introduced: OS virtual memory swap-
ping, block-based data compression, and kernel memory allocation.
We then describe the design of CRAMES in accordance with the
design principles described in Section 3.1.

3.2.1. CRAMES and Virtual Memory Swapping
When a system with virtual memory support is low on memory, the
least recently used data pages are swapped out from memory to,
conventionally, hard disks. Swapping allows applications, or sets
of applications, to execute even when physical memory is not suf-
ficient. CRAMES takes advantage of swapping to decide which
pages to compress and when to perform compression and decom-
pression; the compressed pages are then swapped out to a special
compressed RAM device. Figure 1 illustrates the logical structure of
the swapping mechanism on the compressed RAM device. RAM is
divided into uncompressed areas (white) and compressed swap ar-
eas (gray), each with non-uniform sizes. Pages are swapped out
from uncompressed areas to compressed areas. Note that there is
no one-to-one correspondence between a compressed area and an
uncompressed area.

The compressed RAM device varies its memory usage over time
according to memory requirements. Unlike conventional swap de-
vices, which are typically disk partitions or files, the compressed
1Compression Ratio gives a measure of the compression achieved by one compression
algorithm on a page of data. It is compressed page size divided by original page size.



Table 1: Memory overhead of evaluated compression algorithms
bzip2 zlib LZO LZRW1-A RLE

Compression 7600 kB 256 KB 64 KB 16 KB 0
Decompression 3700 kB 44 KB 0 16 KB 0

RAM device does not have a fixed size; instead, it is a linked list
of compressed RAM areas (as shown in Figure 1). Whenever the
compressed RAM device is not large enough to handle a new write
request, it requests more memory from the kernel. If successfully
allocated, the new chunk of memory is linked to the list of exist-
ing compressed swap areas; otherwise, the combined data set of
active processes is too large even after compression. Recall that a
request to swap out a page is generated when physical memory has
been nearly exhausted. If attempts to reserve a portion of system
memory for the compressed memory device were deferred until this
time, there would be no guarantee of receiving the requested mem-
ory. Therefore, the compressed swap device starts with a small,
predefined size but expands and contracts dynamically. Note that
since a copy of a program’s code is kept in its executable file, code
pages need not be copied to the swap area or written back to the exe-
cutable file because they may not be modified. Therefore, swapping
is not useful for code compression.

3.2.2. CRAMES and Block-based Data Compression
To ensure good performance for CRAMES, appropriate compres-
sion algorithms must be identified and/or designed. Fortunately,
classical data compression is a mature area; a number of algorithms
exist that can effectively compress data blocks, which tend to be
small in size, e.g., 4 KB, 8 KB, or 16 KB. We evaluated existing
data compression algorithms that span a range of compression ra-
tios and execution times: bzip2, zlib (with level 1, 9, and default),
LZRW1-A, LZO [16], and RLE (Run Length Encoding).

Figure 2 illustrate the compression ratios and execution times of
the evaluated algorithms and Table 1 gives their memory require-
ments. For these comparisons, the source file for compression is
a dump of pages swapped out from a workstation running SuSE
Linux 9.0, which was later divided into uniform-sized blocks to per-
form block-based compression. The compression ratios decrease
with the increase of block size because more similarity is available
within a larger block. Although bzip2 and zlib have the best com-
pression ratios, their execution times are significantly longer than
LZO, LZRW1-A, and RLE. In addition, the memory overheads of
bzip2 and zlib are high enough to starve applications in many em-
bedded systems. RLE offers fast compression and decompression,
requires almost no memory except for a few indexing bytes, and has
a high compression ratio. LZO appears to be the best block com-
pression algorithm for dynamic data compression in low-power em-
bedded systems due to its good all-around performance. It has a low
compression ratio, low working memory requirements for compres-
sion, no memory requirement for decompression [16], high com-
pression speed, and high decompression speed. Therefore, LZO
was chosen as the default compression algorithm in CRAMES.

3.2.3. CRAMES and Kernel Memory Allocation
In addition to scheduling compression and using an appropriate
block compression algorithm, CRAMES must efficiently organize
the compressed swap device to enable fast compressed page ac-
cess and minimal memory waste. More specifically, the following
problems must be solved: (1) efficiently allocating or locating a
compressed page in the swap device, (2) mapping between the vir-
tual locations of uncompressed pages and actual data locations in
the compressed swap device, and (3) maintaining a linked list of
free slots in the swap device that are coalesced when appropriate.
These problems are closely related to thekernel memory allocation
(KMA) problem. The memory management subsystem maintains
mappings from virtual pages to the actual location of data in physi-
cal memory, allowing it to satisfy requests for virtually contiguous
memory by allocating physically non-contiguous pages. In addi-
tion, the kernel maintains a linked list of free pages. Pages are
removed from the free list when they are allocated, and returned to
the free list when they are released.

The CRAMES memory manager builds upon methods used in

KMA. In order to identify the most appropriate memory alloca-
tion method for the RAM compression problem, the following five
memory allocators were implemented and applied to requests gen-
erated from the same swapped data file used to evaluate compres-
sion algorithms: resource map allocator (rm), power-of-two freel-
ists (p2fl), McKusick-Karels allocator (mck2), buddy system (bud),
and lazy buddy algorithm (lzbud) [17]. As observed for block-based
compression algorithms, there is a tradeoff between algorithm qual-
ity and performance, i.e., algorithms with excellent memory utiliza-
tion achieve it at the cost of speed and energy consumption.

Figure 3 illustrates the impact of chunk size on allocation/free
time and total memory usage, including fragmentation and book-
keeping overheads, for each of the five memory allocators. For
example,rm-4 KB stands for resource map allocator with a chunk
size of 4 KB. Recall that the CRAMES memory manager requests
memory from the kernel in linked chunks in order to dynamically
increase and decrease the size of the compressed memory area. Al-
though a resource map requires the most time when the chunk size
is smaller than 16 KB, its execution time is as good as, if not better
than, the other four allocators when the chunk size is larger than
16 KB. In addition, resource map always requires the least mem-
ory from the kernel. Therefore, resource map was selected as the
default allocation method for CRAMES. Note that for embedded
system memory sizes less than or equal to 16 KB, faster alloca-
tors with good memory usage ratios may be considered, e.g., the
McKusick-Karels allocator.

3.3. Using CRAMES with the Filesystem
The Sharp Zaurus SL-5600 provides an example of a widely-used
portable embedded system. It has 32 MB RAM, only 7.8 MB of
which are available for user applications and system background
processes. A significant portion (69% or 20 MB) of RAM is used
to create a battery-backed RAM disk, i.e., a common RAM device
without compression, for the filesystem.

Although the design of compressed filesystems has been studied
extensively in recent years, no solution exists for readable/writable
RAM disks with arbitrary filesystem type. Cramfs [18] is a read-
only compressed filesystem targeting embedded systems. The Linux
e2compr [19] patch provides transparent compression and decom-
pression only for the second extended (ext2) filesystem. JFFS2 [20]
is a compressed, readable and writable filesystem, but it is for use
with flash memory rather than RAM disks. Using JFFS2 on RAM
disks would require an intermediate driver and introduce unnec-
essary performance overhead resulting from flash-specific journal-
ing techniques. Therefore, it is desirable for a memory compres-
sion technique to support the compression of RAM disks used for
filesystems in addition to the compression of data in main mem-
ory. Although this is not its primary goal, CRAMES supports com-
pressed RAM disks containing any type of existing filesystem.

4. CRAMES Implementation
CRAMES has been implemented and evaluated as a loadable mod-
ule for the Linux 2.4 kernel. The module is a special block device2

using system RAM. It may serve as both a swap device and a stor-
age area for filesystems. Although the block size for a swap device
is 4 KB, i.e., the page size in Linux, the block size of filesystem
storage areas may vary. This section describes the structure of a
CRAMES device and focuses on its use as a swap device.

4.1. CRAMES Request Handling
CRAMES is a special block device. It must therefore register with
the kernel to make itself accessible. During registration, it is neces-
sary to report (1) block size and number of blocks3, i.e., capacity,
and (2) a request handling function, that the kernel calls when there
is a read/write request for this device. CRAMES reports an esti-
mated maximum capacity to the kernel, although its actual storage
is usually substantially smaller. It enables on-the-fly data compres-
sion and decompression via its request handling procedure, which
2A block device is a random access device that stores and retrieves data in blocks.
3The kernel sets the block size of a block device to page size (often 4 KB) and adjusts
the number of blocks accordingly when the device is used as a swap device.
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Figure 2: (a) Compression ratios, (b) compression times, and (c) decompression times of evaluated algorithms
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Figure 3: Memory usage of evaluated memory allocation methods

consists of four steps: (1) compressing a block that is written to the
device or decompressing a block that is read from the device, (2) al-
locating memory for a compressed block or locating a compressed
block with an index number, (3) managing the mapping table, and
(4) merging free slots when possible.

Data in a block device are always requested by their block in-
dices, regardless of whether the device is compressed. CRAMES
creates the illusion that blocks are linearly ordered in the device’s
memory area and are equal in size. To convert block indices to
addresses in virtual memory, CRAMES maintains amapping table,
which may be directly-mapped or hashed. In a direct-mapped table,
each entry is indexed by its block number. In a hash table, the key
of each entry is a block number. The memory overhead of a direct-
mapped table is higher because it may maintain block indices that
are never used. However, searching in such a table is extremely
fast. In contrast, a hash table minimizes the memory overhead by
only keeping block indices that are actually accessed. However, the
search time is longer. When evaluating CRAMES on a Sharp Za-
urus SL-5600 PDA (see Section 5) we used a direct-mapped table
because it is small enough (at most 16 KB) and fast.

Regardless of the type of mapping table, the data field of each
entry must contain the following information:
• used indicates whether it is a valid swapped-out block. This
field is especially important for CRAMES to decide whether a com-
pressed block may be freed.
• compressed indicates whether a swapped-out block is in com-
pressed format. When a block is not compressible or the com-
pressed size exceeds the original block size, CRAMES aborts com-
pression and stores the original block. This field is necessary to
guarantee correctness, even though such cases are rare.
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Figure 4: Handling request in CRAMES device

• addr records the actual address of a block.
• size keeps the compressed size of a block.

Figure 4 illustrates the flow of CRAMES request handling pro-
cedure for a compressed swap device. Unlike a RAM device, a
given page need not always be placed at the same fixed offset. For
example, when the driver receives a request toread page 7, it
checks mapping table entrytbl[7], gets the actual address from
addr field, checks thecompressed field to determine whether the
page is compressed and if it is, gets the compressed page size from
the size field. Page 7 is then decompressed and the request re-
turns successfully. Handling write requests is more complicated.
When the driver receives the request towrite to page 7, it first
checks the mapping table entrytbl[7] to determine whether the
used field is 1. If so, the old page 7 may safely be freed. After this,
the driver compresses the new page 7, request that the CRAMES
memory manager allocate a slot of the compressed size for the new
page 7, and places the compressed page 7 into the memory region
allocated. In the Linux kernel, the first page of a swap device is
used to persistently store information about the swap area. There-
fore, this page is not compressed by CRAMES and is always placed
at the beginning of the device memory space. As a result, in Fig-
ure 4, page 0 need not be decompressed or compressed first whenit
is read or written.
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4.2. CRAMES and RAM Disk Comparison
Figure 5 illustrates the logical structure and request handling of a
RAM disk4. As shown in the figure, the virtually contiguous mem-
ory space in a RAM disk is divided into fixed-size blocks. Shaded
areas in the device memory represent occupied blocks and white
areas represent free blocks. Upon initialization, a RAM disk asks
from the kernel for a virtually contiguous memory region, which is
then divided into uniform fixed-size blocks. When the RAM disk
receives a read request for a block, it first locates that block by its
index and then copies the data in that block to the request buffer.
When it receives a write request, it first locates the block, then re-
places the data in that block with the data in the request buffer.

Figure 6 illustrates the logical structure and request handling of
a CRAMES device. The memory space in a CRAMES device con-
sists of several virtually contiguous memory chunks. Each chunk
is divided into blocks with potentially different sizes. Shaded areas
represent occupied blocks and white areas represent free blocks.
Upon initialization, a CRAMES device requests a small contigu-
ous memory chunk in the kernel virtual memory space. It requests
additional memory chunks as system memory requirements grow.
These compressed memory chunks are maintained in a linked list.
Each chunk need not be divided uniformly because the sizes of
compressed blocks may differ due to the dependence of compres-
sion ratio on the specific data in each block. When all compressed
blocks in a compressed chunk are free, CRAMES frees the entire
chunk to the system. This allows the size of a CRAMES device to
dynamically increase and decrease during operation, thereby adapt-
ing to the data memory requirements of currently running applica-
tions. This dynamic adjustment allows CRAMES to support (sets
of) applications that would not run without the technique but pre-
vents performance and energy consumption penalties for applica-

4A RAM disk is an in-RAM block device that acts as if it is a hard disk.

Table 2: Timing, power, and energy for filesystem experiments
Benchmark Time (s) Power (W) Energy (J)

without / w. CRAMES without / w. CRAMES without / w. CRAMES
mke2fs 0.0451 0.0454 1.58 1.48 0.0713 0.0670

cp small file 0.0509 0.0469 1.57 1.63 0.0802 0.0763
cp large file 0.1688 0.2339 1.50 1.43 0.2536 0.3346
rm small file 0.0456 0.0500 1.49 1.48 0.0678 0.0738
rm large file 0.0447 0.0455 1.50 1.49 0.0669 0.0677

pack tree 3.8130 4.9336 1.92 1.92 7.3134 9.4965
unpack 0.2761 0.3109 1.43 1.47 0.3937 0.4571
cp tree 0.4597 0.4555 1.71 1.39 0.7844 0.6327
rm tree 0.2991 0.3071 1.46 1.48 0.4368 0.4560

find 0.2968 0.2893 1.50 1.39 0.4465 0.4025

tions that are capable of running without data compression. When a
CRAMES device receives a read request for a block, it looks up the
block index in its mapping table, locates the block, decompresses it,
and copies the original data to the request buffer. When it receives
a write request for a block, it locates the block, determines whether
the old block with the same index may be discarded, compresses
the new block, and places it at a position decided by the CRAMES
memory management system.

5. CRAMES Evaluation
This section presents energy consumption and performance mea-
surements of applications running on a Sharp Zaurus SL-5600 PDA,
with and without CRAMES. This battery-powered embedded sys-
tem runs an embedded version of Linux called Embedix. It has a
400 MHz Intel XScale PXA250 processor, 32 MB of flash memory,
and 32 MB of RAM. We replaced the SL-5600’s battery with an
Agilent E3611A direct current power supply. Measurements were
taken using a National Instruments 6034E data acquisition board
attached to the PCI bus of a host workstation running Linux. Cur-
rent was computed by measuring the voltage across a 5 W, 250 mΩ,
Ohmite Lo-Mite 15FR025 molded silicone wire element resistor in
series with the power supply. This resistor was designed for current
sensing applications.

5.1. Using CRAMES for Filesystem on Zaurus PDA
CRAMES was used to create a compressed RAM device for the
EXT2 filesystem on a Zaurus SL-5600 PDA. We compared the ex-
ecution time and energy consumption of this device with that of the
EXT2 filesystem on a common RAM disk and observed an average
compression ratio of 63% for the CRAMES device. In addition,
Table 2 illustrates that the increases in execution time and energy
consumption were small: on average 8.4% and 5.2%, respectively.

5.2. Using CRAMES for Swapping on Zaurus
The benchmarks used to evaluate CRAMES contain four applica-
tions from the Mediabench benchmark suite [21], one matrix mul-
tiplication program with different matrix sizes, ten common GUI
applications provided with Qtopia for Zaurus PDAs, and combi-
nations of the above applications running simultaneously. In or-
der to consistently evaluate the behavior of an unmodified PDA
and a PDA using CRAMES when running interactive applications,
we wrote software to monitor user input and repeat it with iden-
tical timing characteristics. This technique replaces the (software)
touchscreen device with a named FIFO controlled by a program that
reads from the raw touchscreen. It stores user input events and tim-
ing information in a file. The contents of this file are later replayed
to the touchscreen device in order to simulate identical user interac-
tion. This allows us to consistently reproduce user input, enabling
the consistent use of benchmarks containing GUIs.

Benchmarks were tested with and without CRAMES. They can
be grouped into three categories: (1) applications with small work-
ing data sets, i.e., adpcm, mpeg2, jpeg, Hancom Word, Hancom
Sheet, and calculator; (2) applications with working data sets nearly
as large as physical memory, but still (barely) able to run without
CRAMES, i.e., 500 by 500 matrix multiplication, Opera, Primtest,
and Quasar; and (3) applications with working data sets too large
to fit into physical memory, i.e., simultaneously running Opera and
Quasar as well as simultaneously running large matrix multiplica-
tion and media player. Table 3 shows that, for the first category,
there are seldom any performance, power, or energy penalties be-



Table 3: Timing, power, energy, and compression ratio for swapping experiments
Application Description Size (KB) Time (s) Power (W) Energy (J) Swap Comp

Data Code without w. CRAMES without w. CRAMES without w. CRAMES (bytes) ratio
1 Adpcm MB: Speech compression 24 4 1.25 1.31 0.38 0.49 0.54 0.79 0 n.a.
2 Mpeg2 MB: Video CODEC 416 48 71.74 71.71 1.16 1.17 82.95 84.10 0 n.a.
3 Jpeg MB: Image encoding 176 72 0.51 0.49 1.87 2.04 0.95 0.99 0 n.a.
4 Address Book GUI: Address book 32 8 30.63 30.61 1.51 1.59 46.14 48.72 0 n.a.
5 Hancom Word GUI: Office tool 32 8 32.97 32.98 1.54 1.55 50.70 51.26 0 n.a.
6 Hancom Sheet GUI: Office tool 32 8 28.85 28.75 1.69 1.72 48.77 49.55 0 n.a.
7 Calculator GUI: Calculator 32 8 33.19 33.21 1.59 1.54 52.89 51.07 0 n.a.
8 Asteroids GUI: Fighting game 1004 64 30.79 30.81 1.72 1.79 53.01 55.28 0 n.a.
9 Snake GUI: Game 692 32 31.75 31.73 1.54 1.53 48.76 48.69 0 n.a.
10 Go GUI: Chess game 508 80 31.02 31.02 1.52 1.51 47.02 46.79 0 n.a.
11 Matrix (500) Matrix Multiplication 2948 4 52.53 55.06 2.18 2.18 114.69 119.82 129461 0.33
12 Opera Browser GUI: Web browser 1728 3972 29.65 29.65 1.78 1.69 52.86 50.16 454585 0.40
13 Primtest GUI: Java Multi-thread 2848 1364 27.77 27.79 2.06 2.11 57.30 58.52 497593 0.39
14 Quasar GUI: Java Multi-thread 4192 1364 47.16 47.10 2.01 2.03 94.63 95.43 449224 0.43
15 Opera & Quasar GUI & GUI combination 6104 5336 n.a. 47.12 n.a. 2.09 n.a. 98.68 992561 0.40
16 Matrix (800) & Media Player Batch & GUI combination 11600 168 n.a. 83.77 n.a. 3.27 n.a. 273.55 832642 0.34

Run Time

Application
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e 
(s

ec
)

0

10

20

30

40

50

60

70

80

90 Without CRAMES

With CRAMES

N/A

N/A

Energy Consumption

Application
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

)

0

50

100

150

200

250

300 Without CRAMES

With CRAMES

N/A

N/A

Figure 7: Performance and energy consumption impact of using
CRAMES for swapping

cause pages need not be swapped out. For the second category,
there are only minor penalties: on average 0.35% for performance,
3.26% for power consumption, and 4.79% for energy consumption.
The penalties result from the loss of the small amount of RAM
CRAMES reserves for the initial compressed area, which was orig-
inally available to the applications. For the third category, it is not
possible to compare with the performance, power, and energy of the
original embedded system; the applications in this category simply
cannot run without using CRAMES to increase usable memory.

6. Conclusions

In this paper, we have presented a software-based RAM compres-
sion technique, named CRAMES, for use in low-power, disk-less
embedded systems. CRAMES has been implemented as a Linux
kernel module and evaluated on a typical disk-less embedded sys-
tem with a representative set of batch and GUI applications. Ex-
perimental results indicate that CRAMES is capable of doubling
the amount of memory available to applications, with negligible
performance and energy consumption penalties (on average 0.35%
and 4.79%, respectively). In addition, CRAMES supports in-RAM
compressed filesystems of any type. For experiments with the EXT2
filesystem, CRAMES increased available storage by at least 40%,
with small performance and energy consumption penalties (on av-
erage 8.4% and 5.2%, respectively). We conclude that CRAMES
is an efficient software solution to the RAM compression problem
for embedded systems; it enables the execution of applications for

which memory requirements exceed physical RAM. Moreover, it
will allow hardware design to be optimized for the typical memory
requirements of applications while also supporting (sets of) appli-
cations with larger data sets. We plan to publicly release the Linux
kernel module implementation of CRAMES for academic and per-
sonal use.
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