
Design and Implementation of a High-Performance
Microprocessor Cache Compression Algorithm

Xi Chen∗, Lei Yang∗, Haris Lekatsas†, Robert P. Dick∗, and Li Shang‡

∗EECS Dept.
Northwestern University

Evanston, IL
{xi-chen-0, l-yang, dickrp}

@northwestern.edu

†Vorras Corporation
Princeton, NJ

lekatsas@vorras.com

‡ECE Dept.
University of Colorado

Boulder, CO
li.shang@colorado.edu

Abstract

Researchers have proposed using hardware data compression units within the memory
hierarchies of microprocessors in order to improve performance, energy efficiency, and func-
tionality. However, most past work, and in particular work on cache compression, has made
unsubstantiated assumptions about the performance, power consumption, and area overheads
of the required compression hardware. We present a lossless compression algorithm that has
been designed for on-line memory hierarchy compression, and cache compression in particular.
We reduced our algorithm to a register transfer level hardware implementation, permitting
performance, power consumption, and area estimation. The results of experiments comparing
our work to previous work are presented.

I. INTRODUCTION

Microprocessor speeds have been increasing faster than off-chip memory latency,
raising a “wall” between processor and memory. The ongoing move to chip-level multi-
processors (CMPs) is further fortifying this wall; more processors require more accesses
to memory, but the performance of the processor–memory bus is not keeping pace.
Techniques that reduce off-chip communication without degrading performance have the
potential to solve this problem. Cache compression is one such technique; data in last-
level on-chip caches, e.g., L2 caches, are compressed, resulting in larger usable caches. In
the past, researchers have reported that cache compression can improve the performance
of uniprocessors by up to 17% for memory-intensive commercial workloads [1] and up
to 225% for memory-intensive scientific workloads [2]. Researchers have also found
that cache compression and prefetching techniques can improve CMP throughput by
10–51% [3]. However, such benefits come at the cost of area and power consumption
overheads of the compression/decompression hardware.

Cache compression presents several challenges. First, decompression and compression
must be extremely fast: a significant increase in cache hit latency will overwhelm the
advantages of reduced cache miss rate. This requires an efficient on-chip decompression
hardware implementation. Second, the hardware should occupy little area compared to
the corresponding decrease in the physical size of the cache, and should not substan-
tially increase the total chip power consumption. Third, the algorithm should losslessly
compress small blocks, e.g., 64-byte cache lines, while maintaining a good compression
ratio (throughout this paper we use the term compression ratio to denote the ratio of the
compressed data size over the original data size). Conventional compression algorithm
quality metrics, such as block compression ratio, are not appropriate for judging quality

This work was supported in part by AFOSR award FA9550-06-1-0152 and in part by NSF awards ITR-CCR-0325207
and CNS-0347941. We would like to thank Alok Choudhary for supporting this project.



in this domain. Instead, one must consider the effective system-wide compression ratio
(defined precisely in Section III-C). This paper will point out a number of other relevant
quality metrics for cache compression algorithms, some of which are new.

II. RELATED WORK AND CONTRIBUTIONS

Assumptions about cache compression algorithms and hardware made in prior work
can be divided into two main categories. A number of researchers have assumed the
use of general-purpose main memory compression hardware, e.g., MXT [4], for on-chip
cache compression. Although appropriate for compressing main memory, such hardware
has performance, area, or power consumption costs that contradict its use in cache
compression. For example, if the MXT hardware were scaled to a 65 nm fabrication
process and integrated within a 1 GHz processor, the decompression latency would be
16 processor cycles, about twice the normal L2 cache hit latency. Other work proposes
special-purpose cache compression hardware and evaluates only the compression ratio,
disregarding other important criteria such as area and power consumption costs. For
example, although the area cost for FPC [5] is not discussed, our analysis shows that FPC
would have an area overhead of at least 290 K gates, almost eight times the area of the
approach proposed in this paper, to achieve the claimed 5-cycle decompression latency.
In short, assuming desirable cache compression hardware with adequate performance
and low area and power overheads is common in cache compression research [2, 6–10].
However, without a cache compression algorithm and hardware implementation designed
and evaluated under careful considerations of effective system-wide compression ratio,
hardware overheads, and interaction with other portions of the cache compression system,
it is difficult to determine whether the proposed architectural schemes are beneficial.

In this work, we propose and develop a lossless compression algorithm, named C-Pack,
for on-chip cache compression. The main contributions of our work follow: 1) In contrast
to other schemes such as X-match which contain complicated hardware to achieve an
equivalent effective system-wide compression ratio, C-Pack has much lower performance,
area, and power overheads for practical use; 2) C-Pack is twice as fast as the best existing
hardware implementations potentially suitable for cache compression. It would require
at least 8× the area of C-Pack for FPC to match this performance; 3) We are the first to
fully design, optimize, and evaluate the performance and power consumption of a cache
compression algorithm using a design flow appropriate for on-chip integration; and 4)
We demonstrate when line compression ratio reaches 50%, further improving the line
compression ratio has little impact on effective system-wide compression ratio.

III. C-PACK COMPRESSION ALGORITHM

In this section, we briefly describe the C-pack algorithm and several important features
that permit its efficient hardware implementation, and validate the effectiveness of C-pack
in a compressed cache architecture.

III.A. Design Constraints and Challenges
We first point out several design constraints and challenges peculiar to the cache

compression problem: 1) Cache compression requires hardware that can de/compress
a word in only a few CPU clock cycles, thus ruling out software implementations; 2)
Cache compression algorithms must be lossless to maintain correctness; 3) The block size
for cache compression is small, e.g., 64 bytes; and 4) The complexity of managing the



locations of cache lines after compression influences feasibility. Allowing arbitrary, i.e.,
bit-aligned, locations would increase complexity to the point of infeasibility. A scheme
that permits pairs of compressed lines to fit within an uncompressed line is advantageous.

III.B. C-Pack Algorithm Overview
C-Pack (for Cache Packer) is a lossless compression algorithm designed specifically

to permit a high performance hardware implementation. It achieves a good compression
ratio when used to compress data commonly found in on-chip microprocessor caches,
e.g., L2 caches. Its design was strongly influenced by prior work on pattern-based partial
dictionary match compression [11]. However, this prior work was designed for main
memory compression and did not consider hardware implementation.

TABLE I
PATTERN ENCODING FOR C-PACK

Code Pattern Output Length Freq. (%)
00 zzzz (00) 2 39.7
01 xxxx (01)BBBB 34 32.1
10 mmmm (10)bbbb 6 7.6

1100 mmxx (1100)bbbbBB 24 6.1
1101 zzzx (1100)B 12 7.3
1110 mmmx (1110)bbbbB 16 7.2

C-Pack achieves compression by encoding frequently-
appearing words through pattern matching and dictio-
nary matching. The dynamically-updated dictionary
supports full/partial word matching. The patterns and
coding schemes used by C-Pack are summarized in
Table I, which also reports the actual frequency of
each pattern observed in the cache trace data described
in Section III-D. In the ‘Pattern’ column, ‘z’ represents a zero byte, ‘m’ represents a byte
matched against a dictionary entry, and ‘x’ represents an unmatched byte. In the ‘Output’
column, ‘B’ represents a byte and ‘b’ represents a bit.

The C-Pack compressor and decompressor process two words per iteration. During
compression, each word is first compared with pattern “zzzz” and “zzzx”. If there is a
match, the compression output is produced by combining the corresponding code and
unmatched bytes as indicated in Table I. Otherwise, the compressor compares the word
with all dictionary entries and finds the one with the most bytes matched. The compression
result is then obtained by combining code, dictionary entry index, and unmatched bytes
(if present). Words that fail pattern matching are pushed into the dictionary.

During decompression, the decompressor first reads compressed words and extracts the
codes for analyzing the patterns of each word, which are then compared against the codes
defined in Table I. If the code indicates a pattern match, the original word is recovered by
combining zeroes and unmatched bytes (if present). Otherwise, the decompression output
is given by combining bytes from the input word with bytes from dictionary entries, if
the code indicates a dictionary match.

For the above implementation of C-Pack, two words are processed in parallel per
cycle. Achieving this, while still permitting an accurate dictionary match for the second
word, is challenging. Let us consider compressing two similar words that have not been
encountered by the compression algorithm recently, assuming a first-in first-out (FIFO)
dictionary. The appropriate dictionary content when processing the second word depends
on whether the first word matches a static pattern. If so, the first word will not appear
in the dictionary. Otherwise, it will be in the dictionary, and its presence can be used to
encode the second word. Therefore, the second word should be compared with the first
word and all but the first dictionary entry in parallel.

III.C. Pair Matching Cache and Effective System-Wide Compression Ratio
Compressed cache organization is a difficult task because different compressed cache

lines may have different lengths. Some researchers have proposed line segmentation



techniques [1, 2] to handle this problem. The main idea is to divide compressed cache
lines into fixed-size segments and use indirect indexing to locate all the segments for
a compressed line. However, the segmentation approach has significant overhead due to
latency and complicated hardware to address all segments. As a result, the number of
segments per line is tightly constrained, resulting in wasted space.

We propose a new scheme, called pair-matching, to organize compressed cache lines. In
a pair-matching based cache, the compressed line locator first tries to locate a partner line
with sufficient unused space without replacing any existing compressed lines. If no such
line exists, one or two compressed lines are evicted to store the new line. A compressed
line can be placed in the same line with a partner only if the sum of their compression
ratios is less than 100%. To reduce hardware complexity, the candidate partner lines
are only selected from the same set of the cache. Compared to segmentation techniques
which allow arbitrary positions, pair-matching simplifies designing hardware to manage
the locations of the compressed lines.

In a pair-matching compressed cache, a newly-compressed line has an effective com-
pression ratio of 100% when it takes up a whole cache line, and an effective compression
ratio of 50% when it is placed with a partner in the same cache line. The effective system-
wide compression ratio is defined as the average effective compression ratio of all cache
lines in a compressed cache. It indicates how well a compression algorithm performs
for pair-matching based cache compression. This effective compression ratio metric can
also be adapted to a segmentation-based approach. For example, for a cache line with 4
fixed-length segments, a line has an effective compression ratio of 25% when it takes up
one segment, 50% for two segments, etc. Varying raw compression ratio between 25%
and 50% has little impact on the effective cache capacity. For real cache trace data, pair-
matching generally achieves a better effective system-wide compression ratio (58%) than
line segmentation with four segments per line (62%), and achieves the same compression
ratio as line segmentation with eight segments, which would impose substantial hardware
overhead. In the following sections, we use the pair-matching effective system-wide
compression ratio as a metric for comparing compression algorithms.

III.D. Design Tradeoffs and Validation
In this section, we present several design tradeoffs encountered during the design and

implementation of the C-Pack. We also validate C-Pack’s effectiveness in pair-matching.
Dictionary design and pattern coding: To decide the optimal dictionary replacement

policy, dictionary size, and pattern coding scheme, we evaluated the effective system-wide
compression ratio achieved by several configurations. Our test data are real cache data
traces collected from full microprocessor, operating system, and application simulation
using the Simics simulator [12], running various workloads such as multimedia appli-
cations and SPEC CPU2000 benchmarks on a simulated 1 GHz processor. The on-chip
L2 cache is set to 8-way associative with a 64 B line size. The candidates for different
dictionary parameters and the final selected values are shown in Table II. Note that
two/three level coding scheme in Table II refers to one in which the code length is fixed
within the same level, but differs from level to level. For example, a two-level code only
contains 2-bit and 4-bit codes. With the selected parameters, the effective system-wide
compression ratio for a 64 byte cache line is 58.47% on our test data.

Validating C-Pack’s Effectiveness In Pair Matching: In order to determine whether
the mean and variance of the compression ratio achieved by C-Pack is sufficient for most



TABLE II
DESIGN CHOICES FOR DIFFERENT PARAMETERS

Parameters Candidates Selected Candidate

Dictionary (1) First-in first out (FIFO)

replacement (2) Least recently used (LRU) FIFO - least HW complexity

policy (3) Using two FIFO queues to simulate LRU with only 1.32% higher CR than best case
(4) FIFO combined with run-length encoding (RLE)

Coding scheme (1) Huffman coding Two-level coding due to only up to 0.95%
(2) Two/Three-level coding increase in CR with best HW complexity

Dictionary size Ranging from 16 B to 512 B 64 B - optimal CR for FIFO and low HW cost

Backup 

buffer

Data_in

64

Comparator

array 1

Comparator

array 2

First 

word

32

32

32

Priority

encoder 2

2 2

Control 

signal
generator

FIFO
Dictionary 2

16*32

32

Second 

word

32

Comparator

array 3

Comparator

array 4
32

Priority

encoder 3

2

2

32

Word length 

generator 1

Word length 

generator 2

Priority

encoder 1

16*2

Priority

encoder 4

16*2

4 2

dict_

idx1

bytes_

matched1

4 2

dict_

idx2

bytes_

matched2

Total length

generator6

6

Length 

accumulator

7

Code
concatenator 1

32

Code
concatenator 2

Barrel shifter 1

34

66

34

Register array 
1

136

Barrel shifter 3

136

7

Register array 2

136

Multiplexer

array 1

64

1

128

128

128 Multiplexer

array 2

1

128 Data_out

Pipeline stage 1->2 Pipeline stage 2->3

Matching Length Genaration Packing and Shifting

Dictionary matching

Dictionary matching

Pattern matching

Pattern matching

16*32

Total_
length

Store_

flag

Out_
shift

Output_
flag

1

OR gate Barrel shifter 2
136

Latch

^

128

1

M
u
lti-

p
le

x
e

r 
a

rra
y
 

3

Barrel shifter 4
fill_ctrl

128

fill_

flag

fill_
shift

128

6

128

Combine

128

Figure 1. Compressor Architecture.

lines to find partners, we simulated a pair-matching based cache using the cache trace
data described above to compute the probability of two cache lines fitting within one
uncompressed cache line. The simulated cache size ranges from 64 KB to 2 MB and set
associativities of 4 and 8 are considered. A “best fit + best fit” policy is used: for a given
compressed cache line, we first try to find the cache line with minimal but sufficient
unused space. If the attempt fails, the compressed line replaces one or two compressed
lines. With this scheme, we are penalized only when two lines are evicted to store the new
line. Experimental results indicate the worst-case probability of requiring the eviction of
two lines is 0.55%, i.e., the probability of fitting a compressed line into the cache without
additional penalty is at least 99.45%.

IV. C-PACK HARDWARE IMPLEMENTATION

In this section, we provide a detailed description of the proposed hardware imple-
mentation of C-Pack. We assume the bus between L1 cache and L2 cache is 128 bits
wide [13] and use this as the input data width of both the compressor and decompressor.

IV.A. Compression Hardware
Figure 1 illustrates the hardware compression process. In our descriptions and in the

figure, a bold font indicates devices and an italic font indicates signals. The compressor
is decomposed into three pipeline stages. This design supports incremental transmission,



i.e., compressed data can be transmitted before the whole data block is compressed, and
thereby reduces compression latency.

1) Pipeline Stage 1: The first pipeline stage performs pattern matching and dictionary
matching on two uncompressed words in parallel. As illustrated in Figure 1, comparator
array 1 matches the first word against patterns “zzzz” and “zzzx” and comparator array
2 matches it with all dictionary entries, both in parallel. The same is true for the second
word. However, during dictionary matching, in addition to the dictionary entries, the
second word is also compared with the first word. The pattern matching results are then
encoded using priority encoders 2 and 3, which are used to determine whether to push
these two words into the FIFO dictionary. Note that the first word and the second word
are processed simultaneously to increase throughput.

2) Pipeline Stage 2: This stage computes the total length of the two compressed
words and generates control signals based on this length. Depending on the dictionary
matching results from Stage 1, priority encoder 1 and 4 find the dictionary entries
with the most matched bytes and their corresponding indices, which are then sent to
word length generator 1 and 2 to calculate the length of each compressed word. The
total length calculator adds up the two lengths, represented by signal total length. The
length accumulator then adds the value of total length to two internal signals, namely
sum partial and sum total. Sum partial records the number of compressed bits stored in
register array 1 that have not been transmitted. Whenever the updated sum partial value
is larger than 64 bits, sum partial is decreased by 64 and signal store flag is generated
indicating that the 64 compressed bits in register array 1 should be transferred to either
the left half or the right half of the 128-bit register array 2, depending on the previous
state of register array 2. It also generates signal out shift specifying the number of
bits register array 1 should shift to align with register array 2. Sum total represents
the total number of compressed bits produced since the start of compression. Whenever
sum total exceeds the original cache line size, the compressor stops compressing and
sends back the original cache line stored in the backup buffer.

3) Pipeline Stage 3: This stage generates the compression output by combining codes,
bytes from input word, and bytes from dictionary entries, depending on the pattern and
dictionary matching results from previous stages. The compressed pair of words are
placed into the right location within register array 1, denoted by Reg1[135:0], which
is then shifted by out shift using barrel shifter 3 to align with register array 2,
denoted by Reg2[135:0]. Multiplexer array 1 selects the shifting result as the input
to Reg2[135:0] when store flag is 1, i.e., the number of accumulated compressed bits
have exceeded 64 bits, and the original content of Reg2[135:0] otherwise. Whether latch
is enabled depends on the number of compressed bits accumulated in Reg2[135:0] that
have not been transmitted. When output flag is 1, indicating that 128 compressed bits
have been accumulated in Reg2[135:0], Reg2[135:0] is passed to multiplexer array 1.
Multiplexer array 3 selects between fill shift and the output of latch using fill flag.
Fill shift represents the 128-bit signal that pads the remaining compressed bits that
have not been transmitted with zeros and fill flag determines whether to select the
padded signal. Multiplexer array 2 then decides the output data based on the total
number of compressed bits. When the total number of compressed bits has exceeded
the uncompressed line size, the contents of backup buffer are selected as the output.
Otherwise, the output from multiplexer array 3 is selected.



Data_in

128
Unpacker

2

2

2

2

first_code

first_bak

second_code

second_bak

Length 
Generator

first_len6

second_len6

12-bit carry
lookahead adder total_length

7

Three-input 
carry-save 

adder

Contrpl

signal
generator

Decoder 2

Decoder 1

Register array 1

196

FIFO 
dictionary

32

16*32

32

8-bit register 

array

8

chunk_len

Subtracter
1

shift_ctrl_0

14-bit input carry-
lookahead adder

7

“68”

Mutiplexer 
1

“0000000
”

7

shift_flag

M
u

tip
le

x
e

r 

2
Barrel shifter 1

196 Barrel 

shifter 2

7

196

OR gate

reg_shift

196

data_

shift

196

7

Subtracter

“128”

input_len

9
Register array 2

9
Comparator

9

“128”

1

line_flag

196

Register 
array 3

1-bit

register

1

left_flag

Latch

>

output_flag

Mutiplexer 
1

128

128

1

comp_flag

first_word

second_word

ctrl_signal

2

128

reg_out

len_r

reg_or

shift_flag

Figure 2. Decompressor Architecture.

IV.B. Decompression Hardware
This section describes the design and optimization of the decompression hardware.

Figure 2 illustrates the decompressor architecture. When decompression starts, the codes
for the first and the second words are first compared with the static codes described in
Table I. If the code indicates a pattern match, the original word is recovered by combining
zeroes and unmatched bytes. Otherwise, the original word is recovered by combining
bytes from the compressed word and the corresponding dictionary entry (if there is a
dictionary match), and inserted into the FIFO dictionary. Note that the dictionary index
is determined from successive bits in the compressed word. The decompressed words are
then pushed into the output buffer. Meanwhile, the total length of the two compressed
words are subtracted from the input length. The decompression results are emitted as
soon as 128 decompressed bits have accumulated.

Recall that compressed lines, which may be as long as 512 bits (original line length,
i.e., 64 bytes), are processed in 128-bit blocks, the width of the bus used for L2 cache
access. The use of a fixed-width bus and variable-width compressed words implies
that one compressed word may sometimes span two 128-bit blocks. This complicates
decompression. In our design, two words are decompressed per cycle until fewer than
68 bits remain in the input buffer (68 bits is the maximum length of two compressed
words). The decompressor then shifts in more compressed data using a barrel shifter and
concatenates them with the remaining compressed bits. In this way, the decompressor
can always fetch two whole compressed words per cycle.

V. EVALUATION

In this section, we present the evaluation of the C-Pack hardware. We first present the
performance, power consumption, and area overheads of the compression/decompression
hardware when synthesized for integration within a microprocessor. Then, we compare
the compression ratio and performance of C-Pack to other algorithms considered for cache
compression: MXT [4], Xmatch [14], and FPC [5]. Finally, we describe the implications



of our findings on the feasibility of using C-Pack based cache compression within a
microprocessor.

V.A. C-Pack Synthesis Results TABLE III
SYNOPSYS DESIGN COMPILER SYNTHESIS RESULTS

Parameters 180 nm 90 nm 65 nm
Comp. Decomp. Loc. Comp. Decomp. Loc. Comp. Decomp. Loc.

Worst case delay (cycles) 13 8 2 13 8 2 13 8 2
Max. frequency (GHz) 0.38 0.31 0.60 1.09 0.91 1.79 1.25 1.20 2.00
Area (mm2) 0.34 0.25 0.063 0.076 0.076 0.013 0.043 0.043 0.007
Power consumption at 111.78 75.18 110.03 73.88 51.50 15.96 32.63 24.14 5.20max. internal freq. (mW)

We synthesized our
design using Syn-
opsys Design Com-
piler with 180 nm,
90 nm, and 65 nm
libraries. Table III
presents the resulting performance, area, and power consumption at maximum internal
frequency. “Loc” refers to the compressed line locator/arbitrator in a pair-matching
compressed cache and “worst case delay” refers to the number of cycles required to
compress, decompress, or locate a 64 B line in the worst case. As indicated in Table III,
the proposed hardware design achieved a throughput of 80 Gb/s (64 B × 1.25 GHz) for
compression and 76.8 Gb/s (64 B × 1.20 GHz) for decompression in 65 nm technology.
Its area and power consumption overheads are low enough for practical use. The total
power consumption of the compressor, decompressor, and compressed line arbitrator at
1 GHz is 48.82 mW (32.63 mW/1.25 GHz + 24.14 mW/1.20 GHz + 5.20 mW/2.00 GHz)
in 65 nm technology.

V.B. Comparison of Compression Ratio
We compare C-Pack to several other hardware compression designs, namely X-Match,

FPC, and MXT, that may be considered for cache compression. We tested the compression
ratios of different algorithms on four distinct test benches: 1) Cache data gathered
from full-system simulation (Section III-D); 2) Memory data by taking a snapshot of
the memory contents of a Linux workstation during operation; 3) Disk data randomly
gathered from the disk of a Linux workstation; and 4) Swap data gathered from the
swap partition of a Linux workstation. TABLE IV

COMPRESSION RATIO COMPARISON

Compression Algorithm MXT X-Match FPC C-Pack
Raw compression ratio (%)

Cache data 70.88 49.50 63.39 52.10
Memory data 71.66 51.80 62.91 55.40

Disk data 93.36 80.0 90.17 81.96
Swap data 69.52 48.40 63.26 51.26

System-wide compression ratio (%)
Cache data 75.55 57.97 64.28 58.47

We tested X-Match, MXT, and FPC on
the same set of test benches to determine
their compression ratios. We used 64 B
block size and dictionary sizes in all test
cases. Since we are unable to determine the
exact compression algorithm used in MXT,
we used the LZSS Lempel-Ziv compression
algorithm to approximate compression re-
sults of MXT [15]. The raw compression ratios and effective system-wide compression
ratios in a pair-matching scheme are summarized in Table IV. The last row refers to
the effective system-wide compression ratios for different algorithms based on the cache
trace data set. As indicated in Table IV, raw compression ratio varies from algorithm to
algorithm, with X-Match being the best and MXT being the worst on average. The poor
raw compression ratios of MXT are mainly due to the limited dictionary size. The same
trend is seen in effective system-wide compression ratios, where X-Match has the lowest
(best) effective system-wide compression ratio and MXT has the highest. Since the raw
compression ratios of X-Match and C-Pack are close to 50%, they achieve almost the
same effective system-wide compression ratio.



V.C. Comparison of Hardware Performance
This subsection compares the decompression latency, peak frequency, and area of C-

Pack hardware to that of to MXT, X-Match, and FPC. Power consumption comparisons
are excluded because they are not reported for the alternative compression algorithms.
Decompression latency is defined as the time to decompress a 64 B cache line.

V.C.1) Comparing C-Pack with MXT : MXT has been implemented in a memory
controller chip operating at 133 MHz using 0.25 µm CMOS ASIC technology [16]. The
decompression rate is 8 B/cycle with 4 decompression engines. We scale the frequency up
to 511 MHz by a factor of (250/65), i.e., using constant electrical field scaling, to reflect
the move to 65 nm technology. 511 MHz is far below a modern processor frequency. We
assume an on-chip counter/divider is available to clock the MXT decompressor. However,
decompressing a 64 B cache line will take 16 processor cycles in a 1 GHz processor, twice
the time for C-Pack. The area cost of MXT is not reported.

V.C.2) Comparing C-Pack with X-Match: X-Match has been implemented using
0.25 µm field programmable gate array (FPGA) technology. The compression hardware
achieved a maximum frequency of 50 MHz with a throughput of 200 MB/s. To the best of
our knowledge, the design was not synthesized using a flow suitable for microprocessors.
Therefore, it is difficult to directly compare the performance of C-Pack and X-Match.

V.C.3) Comparing C-Pack with FPC: FPC has not been implemented on a hardware
platform; no area or peak frequency numbers are reported. To estimate the area cost
of FPC, we observe that the FPC compressor and decompressor are decomposed into
multiple pipeline stages (as described in its tentative hardware design [5]). Each of these
stages imposes area overhead. For example, assuming each 2-to-1 multiplexer takes 5
gates, the fourth stage of the FPC decompression pipeline takes approximately 290 K
gates or 0.31 mm2 in 65 nm technology, more than the total area of our compressor and
decompressor. Although this work claims that time-multiplexing two sets of barrel shifters
could help reduce area cost, doing so increases the overall latency of decompressing
a cache line to 12 cycles, instead of the claimed 5 cycles. In contrast, our hardware
implementation achieves much better compression ratio and a comparable worst case
delay in terms of cycles at a high clock frequency, at an area cost of 0.043 mm2 and
0.043 mm2 in 65 nm technology for the compressor and decompressor.

V.D. Implications on Claims in Prior Cache Compression Work
Many prior publications on cache compression assume the existence of lossless algo-

rithms supporting a consistent good compression ratio on small (e.g., 64-byte) blocks
and allowing decompression within a few microprocessor clock cycles (e.g., 8 ns) with
low area and power consumption overheads [6, 8, 9]. Some publications assume that
Ziv–Lempel compression algorithm based hardware would be sufficient to meet the
requirements [2]. As shown in Section V-C1, these assumptions are incorrect. Past work
also placed too much weight on cache line compression ratio instead of effective system-
wide compression ratio. As a result, compression algorithms producing lower compressed
line sizes were favored. However, the hardware overhead of permitting arbitrary loca-
tions of these compressed lines prevents arbitrary placement, resulting in system-wide
compression ratios much poorer than predicted by line compression ratio. In fact, the
compression ratio metric of merit for cache compression algorithms should be effective
system-wide compression ratio, not average line compression ratio. C-Pack was designed



to optimize performance, area, and power consumption under a constraint on effective
system-wide compression ratio.

C-Pack meets or exceeds the requirements assumed in former microarchitectural re-
search on cache compression. It therefore provides a proof of concept supporting the
system-level conclusions drawn in much previous microarchitectural work on cache
compression. Many prior system-wide cache compression results hold, provided that they
use a compression algorithm with characteristics similar to C-Pack.

VI. CONCLUSIONS

This paper has proposed and evaluated an algorithm for cache compression that hon-
ors the special constraints this application imposes. The algorithm is based on pattern
matching and partial dictionary matching. Its hardware implementation permits parallel
compression of multiple words without degradation of dictionary match probability.
The proposed algorithm yields an effective system-wide compression ratio of 58%, and
permits a hardware implementation that holds decompression latency to 6.67 ns in 65 nm
process technology. These results are superior to those yielded by compression algorithms
considered for this application in the past. Although the proposed hardware imple-
mentation mainly targets online cache compression, it can also be used in other high-
performance lossless data compression applications with few or no modifications.

REFERENCES
[1] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for high-performance processors,” in Proc.

Int. Symp. Computer Architecture, June 2004.
[2] E. G. Hallnor and S. K. Reinhardt, “A compressed memory hierarchy using an indirect index cache,” in Proc.

3rd workshop on Memory performance issues, 2004.
[3] A. R. Alameldeen and D. A. Wood, “Interactions between compression and prefetching in chip multiprocessors,”

in Proc. Int. Symp. High-Performance Computer Architecture, Feb. 2007.
[4] B. Tremaine, et al., “IBM memory expansion technology,” IBM J. of Research and Development, vol. 45, no. 2,

pp. 271–285, Mar. 2001.
[5] A. Alameldeen and D. A. Wood, “Frequent pattern compression: A significance-based compression scheme for

l2 caches,” Dept. of Computer Sciences, University of Wisconsin-Madison, Tech. Rep., Apr. 2004.
[6] J.-S. Lee, et al., “Design and evaluation of a selective compressed memory system,” in Proc. Int. Conf. Computer

Design, Oct. 1999.
[7] N. S. Kim, T. Austin, and T. Mudge, “Low-energy data cache using sign compression and cache line bisection,”

in Proc. Wkshp. on Memory Performance Issues, May 2002.
[8] K. S. Yim, J. Kim, and K. Koh, “Performance analysis of on-chip cache and main memory compression

systems for high-end parallel computers,” in Proc. Int. Conf. Parallel and Distributed Processing Techniques
and Applications, June 2004, pp. 469–475.

[9] N. R. Mahapatra, et al., “A limit study on the potential of compression for improving memory system performance,
power consumption, and cost,” J. Instruction-Level Parallelism, July 2005.

[10] M. Ekman and P. Stenstrom, “A robust main-memory compression scheme,” SIGARCH Comput. Archit. News,
pp. 74–85, May 2005.

[11] L. Yang, H. Lekatsas, and R. P. Dick, “High-Performance Operating System Controlled Memory Compression,”
in Proc. Design Automation Conf., July 2006, pp. 701–704.

[12] “Simics,” http://www.virtutech.com.
[13] T. Lyon, et al., “Data cache design considerations for the Itanium 2 processor,” in Proc. Int. Conf. Computer

Design, Sept. 2002.
[14] J. Nunez and S. Jones, “Gbit/s lossless data compression hardware,” IEEE Trans. VLSI Systems, vol. 11, no. 3,

pp. 499–510, June 2003.
[15] P. Franaszek, J. Robinson, and J. Thomas, “Parallel compression with cooperative dictionary construction,” in

Proc. Data Compression Conf., Apr. 1996.
[16] R. B. Tremaine, et al., “Pinnacle: IBM MXT in a memory controller chip,” in Proc. Int. Symp. Microarchitecture,

Apr. 2001.


