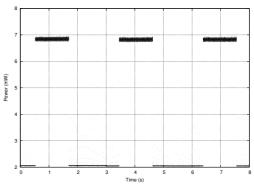


Wireless sensor networks Metandaction Multi-did dreaming: low-power sensing of unpredict Experimental setup FelosB wireless sensor node TI MSP430, 10 KB RAM Power measurement National Instrument 6034E data acquisition card Metrics • Memory expansion proportion • Power consumption • Execution time

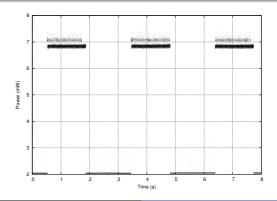
<page-header><page-header><section-header><section-header><section-header>

Wireless sensor networks MEMMU: Memory expansion for MMU-less embedded system Lucid dreaming: low-power sensing of unpredictable events Experimental results


- $\bullet\,$ Increases usable memory by 40% on average with less than 10% overhead for all but one application
 - Pointer dereferencing optimization couldn't be used for image convolution
 Performance overhead therefore high for that application
 - Performance overhead therefore high for that application
- Memory expansion will increase with increasing physical RAM
 Will approach 100% given current compression ratio

Wireless sensor networks Introduction MEMMU: Memory expansion for MMU-less embedded syste Lucid dreaming: low-power sensing of unpredictable events Application: Structural integrity monitoring

Robert Dick


- Buildings and bridges have cracks
- Most not dangerous, but could become dangerous
- Widths change in response to vibration
- 300 μ m common, 3× width of human hair

Power measurements for convolution application

Robert Dick Wireless Sensor Networks and RFII

After compiler optimizations

Wireless sensor networks MEMMU: Memory expansion for

Low-power event-driven applications

- Conventional sensor network operation: poll and sleep
- Many real applications must detect unpredictable events
- How?

Periodically awaken?

Misses events

Always remain awake?

Two days of battery life

Goal

Always awake but with ultra-low power consumption

bert Dick Wireless Sensor Networks and RFIDs

Detecting dangerous conditions

Inspectors monitor cracks to determine when dangerous

- Expensive
- Infrequent

Could use wireless sensor networks

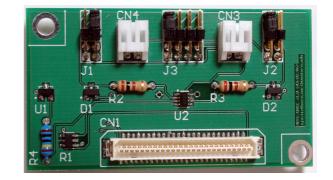
- Inexpensive
- Constant

Problem: Event-driven application. Only a few days of battery life.

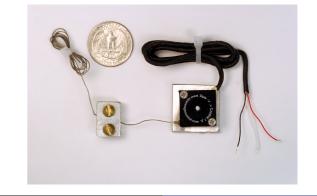
Past structural integrity work

- N. Kurata, et al., "A study on building risk monitoring using wireless sensor network MICA mote," in *Proc. Int. Conf. on Structural Health Monitoring and Intelligent Infrastructure*, Nov. 2003, pp. 353–357
- J. P. Lynch, et al., "The design of a wireless sensing unit for structural health monitoring," in *Proc. Int. Wkshp. on Structural Health Monitoring*, Sept. 2001
- N. Xu, et al., "A wireless sensor network for structural monitoring," in *Proc. Conf. on Embedded and Networked Sensor Systems*, Nov. 2004

Short battery life. Two-day deployments and explosives.



Power reduction


- Always on: 24 mW
- Lucid dreaming hardware: $16.5\,\mu\mathrm{W}$
- Best existing work: 2.64 mW
- $\bullet\,$ Lucid dreaming in system: 121.8 μW

Robert Dick Wireless Sensor Networks and RFID

Circuit board

Primary sensor

Wireless se

Robert Dick Wireless Sensor Networks and RFIDs

Implications and status

Wir

Original situation

Missed events or battery replacement after a few days

Current status

- Battery life of months
- Many boards fabricated
- Deployed in multiple buildings already
- Public real-time web interface for data
 - $\bullet \ http://iti.birl.northwestern.edu/acm/$

hert Dick