
Wireless Sensor Networks and RFIDs

Robert Dick

 ${\tt http://robertdick.org/sensor-nets/}$ Department of Electrical Engineering and Computer Science Northwestern University L477 Tech.

Wireless sensor network and RFID examples

Structural integrity monitor

Cattle (credit North Dakota State University)

Saltwater intrusion detector (Stephen Brosnan, CSIRO ICT Center)

What they sense

Temperature)
Pressure	
Light	
Acceleration)
Sound	
Humidity	
Images	
Etc.	

Wireless sensor network challenges

Wireless: Effects of the communication medium important

Price constrained: Must deploy many nodes

Reliability: Cheap components, harsh environments

Low power: Battery life, scavenging

Self organization: Unattended and fault-tolerant operation

Data management, compression, aggregation, and analysis

Wireless network management

Definitions

Distributed wireless network of sensing and computation nodes.

Radio Frequency Identification (RFID)

Generally-passive device from which data may be read via radio frequency communication.

Sensor network goals and conditions

Distributed information gathering

Frequently no infrastructure

Battery-powered, wireless common

Battery lifespan of central concern

Scavenging also possible

Communication and data aggregation important

Wireless sensor network status

Lots of hype

One of the top 21 technologies for 21st century (Business Week)

E.g. Crossbow, Dust networks, Ember, Sensoria Intel, IBM, TI, Oracle, HP

SenSys, IPSN, ES Week, journals

Sensor network hardware power consumption

Power consumption central concern in design

RISC μ -controllers common

Wireless protocol?

Low data-rate, simple: Proprietary, Zigbee

Static, eliminate context switches, compile-time analysis

Definition and examples Recent work

Class organization and sources of information

Sensor network software power consumption

Power consumption central concern in design

Runtime environment?

Avoid unnecessary dynamism

Language?

- Some propose compile-time analysis of everything practical
- Others offer low-overhead run-time solutions

11 Robert Dick Wireless Sensor Networks and RFIDs

Introduction Homework Recent work Class organization and sources of information

Prototype networks

Detect source of gunshot

• Senses: sound, shock wave, location

• Developer: DARPA, Vanderbilt

• Size: 45 nodes

Structural integrity monitoring

- Senses: vibration, precise displacement
- Developer: Northwestern University
- Size: Deployed in six buildings, constantly growing
 - Approximately 30 nodes

14 Robert Dick

Introduction
Homework

Wireless Sensor Networks and RFIDs

Definition and examples
Recent work
Class organization and sources of information

Virtual machines for sensor networks

P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. In *Proc. Int. Conf. Architectural Support for Programming*

- Languages and Operating Systems, October 2002How to support rapid in-network programming?
 - Virtual machine
 - Great idea if reprogramming frequent compared to normal duty cycle
 - Generally not the case

16 Robert Dick Wireless Sensor Networks and RFIDs

Introduction
Homework
Recent work
Class organization and sources of information

Routing and media access

Too many routing and media access articles to count. Key problems:

- Reliability on unreliable components with varying network structure
- Tight power constraints
- Limited communication rates
- Self-organization

Introduc Homev efinition and examples ecent work

Prototype networks

Biology: monitor seabirds

- Senses: temperature, humidity, infrared
- Developers: Intel, Berkeley
- Size: 150 nodes

Monitor activity of elderly

- Senses: motion, pressure, infrared
- Developer: IntelSize: 130 nodes

13 Robert Dick Wireless Sensor Networks and RFIDs

Introduction Homework
Habitat monitoring

Recent work
Class organization and sources of information

Joseph Polastre, Robert Szewczyk, Alan Mainwaring, David Culler, and John Anderson. Analysis of wireless sensor networks for habitat monitoring. *Wireless sensor networks*, pages 399–423, 2004

- Application: Monitor petrels on Great Duck Island
- Mica motes used
- High failure rate
- 50% packet loss, with spatial and temporal variation

15 Robert Dick Wireless Sensor Networks and RFIDs

Introduction Homework Recent work
Wireless demand paging

Wireless Sensor Networks and RFIDs

Definition and examples Recent work
Class organization and sources of information

Yuvraj Agarwal, Curt Schurgers, and Rajesh Gupta. Dynamic power management using on demand paging for networked embedded systems. In *Proc. Asia & South Pacific Design Automation Conf.*,

pages 755–759, January 2005

• Use two wireless interfaces

- One fast but high-power, one slow but low-power
- Awaken node using low-power interface
- Report 20–50% power savings
- Cannot beat 50% because processor consumes half of power
- Are there better alternatives?

- Blind calibration
- Localization
- Operating system design: TinyOS, MANTIS OS, etc.
- Simulation environments
- Efficient implementation of media encoding algorithms
- Security: encryption power implications
- Applications: structure monitoring, security, biology, geology
- Small-scale robotics
- Biomotion capture

Wireless Sensor Networks and RFIDs

Robert Dick

Wireless Sensor Networks and RFIDs

Today's goals

Mow how to get access to course resources

- Website
- References
- Understand work and grading policies
- One of topics we'll cover in course

Homework Reading assignments and literature summaries

- Indicate most important point
- Don't just copy abstract
- Keep short one page
- You will use this to study from later

Other exercises

- Simple design exercises
- Technical questions
- Etc.

Reading assignment

- Chee-Yee Chong and Srikanta Kumar. Sensor networks: Evolution, opportunity, and challenges. Proc. IEEE, 91(8), August 2003
- Joseph Polastre, Robert Szewczyk, Alan Mainwaring, David Culler, and John Anderson. Analysis of wireless sensor networks for habitat monitoring. Wireless sensor networks, pages 399-423, 2004

For each, write a one-page summary.

Grading policies

20% Homework: Exams: 30% 50% Report:

Active class participation by students is strongly encouraged

Exam Short Reading material Lectures

Report

Design plan for using wireless sensor network or radio-frequency identification in an application of interest to you