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ABSTRACT

Existing image-based fire segmentation techniques use con-
volutional neural networks to handle complicated scenes.
Such approaches perform poorly when flame sizes vary
greatly and when backgrounds are complex. In this paper,
we describe a novel Context-Oriented Multi-Scale Network
for fire segmentation. We construct a multi-scale aggregation
module that combines semantic information at different levels
in the neural network in order to recognize fires with differ-
ent shapes and sizes. We also describe a Context-Oriented
Module, which increases the receptive field of the network by
utilizing relationships of all pixels in the feature map in order
to obtain features that more effectively discriminate between
fire and non-fire pixels. Experimental results demonstrate that
our proposed model has a 2.7% higher mean Intersection over
Union (mIoU) accuracy than previous fire detection methods.

Index Terms— Fire segmentation, multi-scale, context

1. INTRODUCTION

Since wildfires spread quickly and can be difficult to control,
detection and suppression speeds are crucial. Wildfires cause
millions of dollars of damage and kill thousands of people
per year. While traditional fire detection technologies such as
smoke sensors are inexpensive, they only detect nearby fire
sources. Hence, there is an increasing interest in long-range,
image-based fire detection.

The earliest image-based fire detection techniques use
hand-crafted features from color, shape, and texture to detect
fire regions [1, 2]. With deep learning algorithms achieving
remarkable progress in many fields [3, 4], they were also
applied to fire detection recently [5, 6].

In image segmentation, deep learning methods have better
performance than earlier methods using predetermined fea-
tures, such as U-Net [7] and PSP-Net [8]. Hossain et al. de-
tect forest fires with a neural network using color space local
binary patterns of both flame and smoke signatures [6]. Choi
et al. assign pixel-level labels of fire in images via a CNN
residual network [9]. A recent study performed fire segmen-
tation using a squeezed fire binary segmentation network with
depthwise separable convolutions [10].

Fig. 1. Images contain fire with different kinds of shapes,
sizes, and illumination. The left column contains the original
image and the right column contains the ground truth segmen-
tation map. It is important to recognize flames that are present
and also minimize false alarms.

Despite the progress of fire detection methods, the accu-
racy of existing models decreases for many difficult scenarios.
For example, small or occluded flames are difficult to identify.
Also, complex backgrounds make it difficult to distinguish the
fire from its surroundings and objects with similar color. Fi-
nally, the highly variable sizes, shapes, and colors of flames
exacerbate the problem of fire segmentation.

Determining scene context, which refers to relationships
among distant pixels, reduces false positives and false nega-
tives. To handle small flame sizes (e.g., less than 5% of the
image) as well as differentiate between the flame and back-
ground, it is necessary to enlarge the receptive field in order
to effectively determine relationships among distant pixels.
Also, to handle multiple scales of flames, multi-scale aggre-
gation selectively combines useful information from different
network layers. However, existing fire detection methods do
not take into account these two important factors.

In this paper, we propose a Context-Oriented Multi-Scale
CNN. It does multi-scale aggregation (MSA), which outputs
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the segmentation map from multi-scale features and adap-
tively refines the features. We also introduce a novel Context-
Oriented Module (COM) for our fire detection network. It
extracts discriminant feature representations by building as-
sociations among features with global context, which uses re-
lationships of all pixels in the feature map. In the COM, the
input is fed into multiple branches with convolutions, average
pooling, and global pooling. Then, the COM integrates the
features from all branches.

High-resolution CNNs well model high-resolution re-
lationships among nearby locations in the image, but their
inductive biases make modeling long-range relationships
difficult. Low-resolution, downsampled CNNs model long-
distance relationships effectively, but disallow consideration
of short-distance relationships due to downsampling. Our
approach considers relationships at multiple length scales,
and the additional cost of doing this is low because the down-
sampled analysis paths need only consider a small fraction of
the data in the high-resolution path.

The contributions are (1) a novel fire segmentation model,
utilizing global information and multi-scale aggregation, (2) a
context-oriented module, which obtains local and global con-
text information to expand the receptive field, and (3) a multi-
scale aggregation module, which uses features from low-level
and high-level features to capture spatial details better.

2. RELATED WORK

This section discusses related work in semantic segmentation
and fire detection.

2.1. Semantic Segmentation

CNNs have achieved state-of-the-art performance in many
computer vision fields. For instance, fully convolutional net-
works are used in image semantic segmentation and perform
end-to-end classification of all pixels [11]. However, the re-
ceptive field is not large enough for feature representation of
all the pixels in the image.

In order to differentiate between objects of different scales
and illumination, it is necessary to enhance the discrimina-
tive ability of feature representations. One way to improve
the performance of FCNs is multi-scale feature aggregation.
PSPNet [8] uses spatial pyramid pooling to combine multi-
scale information. The Deeplab model uses atrous spatial
pyramid pooling (ASPP) with different dilation rates to cap-
ture contextual information [12].

In addition, attention mechanisms are applied for pixel-
level recognition in order to enhance discriminative features.
Zhao et al. introduce a pointwise spatial attention network
that encodes relative position information in pixel space [13].
EncNet proposes an encoding layer on top of the network to
capture global context [14]. Fu et al. include a self-attention
module to model long-range dependencies [15].

Some methods incorporated attention mechanisms to
learn feature weights and emphasize important features. OC-
Net learns feature weights according to object context [16].
Also, CCNet obtains contextual information based on all
pixels in the criss-cross path [17]. Furthermore, the Dual
Relation-aware Attention Network [18] uses a self-attention
mechanism that utilizes different pooling kernels to empha-
size certain spatial areas. It also represents associations
between channel dimensions to generate channel weights.

AttaNet [19] highlights certain pixels through a strip oper-
ation and a cross-level aggregation strategy. BiSeNetV2 [20]
incorporates a detail path to preserve the spatial information
and a semantic path to process feature maps with a large re-
ceptive field. Finally, ConvNeXt [21] constructs a revolu-
tionary convolutional architecture containing inverted bottle-
necks, larger kernel sizes, and other architectural differences.

2.2. Fire Detection

Prior image-based fire detection algorithms use the color and
features of the fire [22, 23]. The most straight-forward fire
detection methods are color-based [24, 25]. They analyze im-
ages in the RGB, HSI, or YCbCr color spaces to obtain pos-
sible fire regions based on color thresholds [2, 1]. Other past
work improves the accuracy of detection by considering ad-
ditional features as shapes and optical flow [26, 27].

Deep learning algorithms perform automatic extraction of
features and can greatly outperform conventional fire detec-
tion methods in detection accuracy. For example, Muhammad
et al. [5] compared their CNN-based method with other hand-
crafted fire detection methods and outperforms them in terms
of accuracy by 0.88% and false positives by 11.6%. Yin et
al. constructed a deep normalization and convolutional neural
network attaining smoke detection rates at least 96.4% [28].
Another CNN-based method called the DCNN incorporates
a deep dual-channel neural network for smoke detection and
has a detection rate of 99.5% on average [29].

Hossain et al. detect forest fires with a neural network
using color and multi-color space local binary patterns of both
flame and smoke signatures [6]. Saponara et al. implemented
a fully real-time CNN for fire detection using the YOLOv2
framework on a NVIDIA Jetson Nano [30]. Muhammad et
al. described a framework based on the AlexNet architecture
for fire detection and obtain an accuracy of 94.39% and a false
positive rate of 9.07% [5, 31].

3. METHODOLOGY

This section provides an overview of the proposed model and
describes each of its key components in detail.
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Fig. 2. Our Context-Oriented Multi-Scale Network for fire
segmentation uses a Multi-Scale Aggregation (MSA) layer
and Context-Oriented Module (COM). MSA considers rela-
tionships at multiple layers in the network and performs adap-
tive feature refinement. COM is explained in the next figure.

3.1. Overview

Figure 2 shows the architecture of the proposed model. Ini-
tially, we use a five-layer ResNet-50 backbone to extract its
features, denoted as fi(i = 1, 2, ..., 5). The backbone maps
the input scene to feature representations, but it cannot cap-
ture both the local and global information of the scene well.

In order to exploit the multi-scale structure of the flames
and deal with different flame sizes, we incorporate a multi-
scale aggregation module. We perform adaptive feature re-
finement at multiple network levels in order to consider rela-
tionships at multiple length scales. The implications of this
involve enhancing the intra-class and inter-class recognition.

Since contextual information can be used to improve the
performance of CNNs, we expand the size of the receptive
field by incorporating global contextual information via our
Context-Oriented Module (COM). In scenes with diverse
backgrounds and varied shapes, the COM can adaptively
aggregate global contextual information, which refers to the
relationships of all pixels in the feature map, improving fea-
ture representation for fire segmentation.

3.2. Multi-Scale Aggregation

We incorporate multi-scale aggregation (MSA) to capture dif-
ferent scales of flames more accurately. Low-level and high-
level features are complementary, where low-level features
are rich in spatial details but lack semantic information, and
vice-versa for high-level features. To bridge the gap between
high-level and low-level features, MSA adaptively combines
both features with a novel design.

We incorporate a gating mechanism to adjust the level of

Fig. 3. We propose a Context-Oriented Module (COM) that
extracts discriminant feature representations by building as-
sociations among features with average and global pooling.

information from different layers. It adaptively passes im-
portant spatial and semantic information at multiple layers in
order to improve accuracy. MSA improves accuracy by better
capturing spatial details from low-level features. This has not
been done before in fire segmentation.

The structure of this module is shown in Figure 2. From
the backbone layer, each of f1, f3, and f5 form separate
branches, go through a conv layer, and are each upsampled
to the dimension of f1. The outputs are f ′

1, f ′
3, and f ′

5,
respectively, containing features at different scales.

We select multiple layers where each layer is downsam-
pled by a different amount. Earlier layers have more spatial
information and later layers have more semantic information.
Next, we combine all outputs using an element-wise sum as
F = f ′

1 + f ′
3 + f ′

5. Afterward, we apply global average pool-
ing (GAP) across the spatial dimension of F ∈ RW×H×C to
compute channel-wise statistics s ∈ R1×1×C .

Later, we feed s into three independent fully connected
layers, FC1, FC3, and FC5, and apply softmax to the outputs
to obtain w3, w4, and w5. We then perform channel-wise
multiplication for f ′

1·w1, f ′
3·w3, and f ′

5·w5 and then fuse them
via element-wise summation. This is described as follows:

s = GlobalPooling(F ),

w1, w3, w5 = softmax([FC1(s), FC3(s), FC5(s)]), and
V = C(F1 · w1 + F3 · w3 + F5 · w5).

3.3. Context-Oriented Module

We adopt the Context-Oriented Module (COM) to expand the
receptive field to capture richer features. The network initially
obtains feature representations by stacking conv layers, but it
cannot capture both local and global information simultane-
ously. COM further improves the network’s ability to extract
semantic information by using additional length scales. Past
work did not consider further expanding the receptive field to
additional length scales until ours via COM.
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Past work has shown that global context information im-
proves various computer vision tasks [8, 32]. We obtain more
discriminative feature representations for better scene under-
standing by building associations with features through global
context. Feature aggregation allows the network to focus on
more informative contextual features.

The detailed structure of the Context-Oriented Module is
shown in Figure 3. The output of the MSA layer V is fed
into an input conv layer to output V ′. Next, V ′ is fed to three
branches: one branch contains a conv layer, another branch
contains an average pooling layer, followed by a conv layer
and upsampling block, and the other branch contains a global
pooling layer, followed by a conv layer and upsampling block.

The outputs are Fc, Fl, and Fg , representing local and
global features, respectively. All three branches contain fea-
tures with different receptive fields. Then, we combine both
local and global features using an element-wise sum as: F =
Fc + Fl + Fg . This is described as follows:

V ′ = C(V ),

Fc = C(V ′),

Fl = U(C(P (V ′))),

Fg = U(C(G(V ′))), and
F = Fc + Fl + Fg,

where C, P , G, and U represent convolution, average pool-
ing, global pooling, and upsampling layers, respectively. We
then apply global average pooling (GAP) across the spatial
dimension of F ∈ RW×H×C to compute channel-wise statis-
tics s ∈ R1×1×C .

Later, we feed s into three independent fully connected
layers, FCc, FCl, and FCg , and apply softmax to the out-
puts to obtain wc, wl, and wg . We then perform channel-wise
multiplication for Fc · wc, Fl · wl, and Fg · wg and fuse them
via element-wise summation. The output F ′ selectively in-
corporates local and global attention based on their content
and characteristics. These operations are described as fol-
lows, which is similar to those of the MSA:

s = GlobalPooling(F ),

wc, wl, wg = softmax([FCc(s), FCl(s), FCg(s)]),

F ′ = C(Fc · wc + Fl · wl + Fg · wg), and
F ′ = C(F ′ + V ).

The two modules serve different purposes. COM further
expands the receptive field from the output of the backbone
network to additional length scales. MSA uses features from
low-level and high-level features to capture spatial details bet-
ter. Low-level features contain information from a lower re-
ceptive field, so MSA does not expand the receptive field but
improves the spatial reasoning through local details.

Table 1. Results of fire segmentation with other methods.
Methods IoU Dice
U-Net (2015) 0.705 0.792
PSP-Net (2017) 0.653 0.757
DeepLabv3 (2017) 0.755 0.834
CPD (2019) 0.681 0.779
RAS (2020) 0.686 0.780
DRAN (2020) 0.751 0.829
AttaNet (2021) 0.747 0.827
BiSeNetV2 (2021) 0.781 0.852
ConvNeXt (2022) 0.632 0.741
Ours w/o MSR 0.675 0.771
Ours w/o COM 0.789 0.858
Ours 0.808 0.873

4. EXPERIMENTAL RESULTS

We first introduce the dataset and the experimental protocol.
Next, we evaluate our proposed method on images containing
wildfires and compare it with other methods.

4.1. Dataset and Implementation Details

We use a benchmark dataset of wildfires, consisting of 595
images of varying size [33]. The dataset includes annotation
of all fire pixels and each is resized from a larger size down to
512× 512. We then augment the dataset by applying random
cropping five times for each image to size 224 × 224 to end
up with 2,975 images in total.

The training dataset contains 2,000 images, while the test-
ing dataset contains 975 images. During the training phase,
we set the learning rate to 2e-4, the batch size to 2, and the
number of epochs to 40 for model training. Also, we set the
momentum parameter to 0.9 and use Adam to optimize the
parameters during training. The binary cross-entropy loss
(LBCE) is used to calculate the loss of each pixel in the
predicted segmentation map compared to the ground-truth
map. All experiments are run on a machine with an NVIDIA
GeForce 940MX GPU.

4.2. Model Comparison

We compare our model with past fire segmentation methods,
shown in Table 1. For a fair comparison, we calculate each
method’s accuracy with the same parameters.

Experiments on the benchmark dataset show that our
model improves accuracy by 2.7% compared to BiSeNetV2.
We report all segmentation results in terms of mean Inter-
section over Union (mIoU) and Dice error, which are widely
used to evaluate the overall performance of semantic seg-
mentation algorithms. The mIoU metric reflects the degree
of the overlap between the predicted segmentation and the

1346

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 20,2024 at 16:35:13 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Visual results of our method and four previous segmentation methods. Our model is effective at segmenting flames of
various sizes and distinguishing flames from complex backgrounds. a) Input image, b) Ground-truth image, c) DeepLabv3, d)
DRAN, e) AttaNet, f) BiSeNetV2, g) Proposed method.

corresponding ground truth versus their union. In particular,
we tested the performance of the Vision Transformer and the
performance was lower than the state-of-the-art methods in
Table 1.

4.2.1. Ablation Analysis

We also evaluate the effectiveness of each module. First, we
remove the COM and only keep the MSA module in order
to examine the effectiveness of the COM. From Table 1, we
observe that our model with the COM outperforms our model
by 1.9% without the COM. Hence, the COM improves ac-
curacy by expanding the receptive field in order to consider
relationships of longer length scales in the feature map.

We then remove the MSA module and retain the COM.
From Table 1, we observe that our model with the MSA mod-
ule outperforms our model by 13.3% without it.

4.2.2. Visualization of Results

Figure 4 shows the qualitative comparison of our proposed
method and past fire segmentation methods. We select some
representative examples from the dataset. It can be seen that
our method can accurately segmenting flames in challenging
scenes and performs significantly better than other models.

In the first row, previous methods were not able to discern
the small flame in the image. Some methods in the second row
confused the background with the fire. Furthermore, some ex-
isting models confused the flames with the background which

has similar appearance with the fire. On the other hand, our
method can accurately infer the flame region in each case.

This is mainly because Multi-Scale Aggregation (MSA)
can handle flames with different scales via adaptive feature
refinement at multiple levels of the CNN. Also, the Context-
Oriented Module can help discriminate the flames from the
background in complex scenes.

5. CONCLUSION

In this paper, we have presented a Context-Oriented Multi-
Scale Network for fire segmentation. This network adaptively
integrates local and global context and uses multi-scale aggre-
gation in order to give more precise segmentation results. Our
proposed method improves IoU accuracy by 2.7% compared
to past work. For future work, we plan to decrease the compu-
tational complexity and enhance the robustness of the model.
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