
On-Line Memory Compression for Embedded

Systems

LEI YANG, ROBERT P. DICK

Northwestern University, Evanston

{l-yang,dickrp}@northwestern.edu

HARIS LEKATSAS, SRIMAT CHAKRADHAR

NEC Laboratories America, Princeton

{lekatsas, chak}@nec-labs.com

Memory is a scarce resource during embedded system design. Increasing memory often increases
packaging costs, cooling costs, size, and power consumption. This paper presents CRAMES, a
novel and efficient software-based RAM compression technique for embedded systems. The goal of
CRAMES is to dramatically increase effective memory capacity without hardware or application

design changes, while maintaining high performance and low energy consumption. To achieve
this goal, CRAMES takes advantage of an operating system’s virtual memory infrastructure by
storing swapped-out pages in compressed format. It dynamically adjusts the size of the compressed
RAM area, protecting applications capable of running without it from performance or energy

consumption penalties. In addition to compressing working data sets, CRAMES also enables
efficient in-RAM filesystem compression, thereby further increasing RAM capacity.

CRAMES was implemented as a loadable module for the Linux kernel and evaluated on a
battery-powered embedded system. Experimental results indicate that CRAMES is capable of

doubling the amount of RAM available to applications running on the original system hardware.
Execution time and energy consumption for a broad range of examples are rarely affected. When
physical RAM is reduced to 62.5% of its original quantity, CRAMES enables the target embedded
system to support the same applications with reasonable performance and energy consumption

penalties (on average 9.5% and 10.5%), while without CRAMES those applications either may not
execute or suffer from extreme performance degradation or instability. In addition to presenting
a novel framework for dynamic data memory compression and in-RAM filesystem compression in
embedded systems, this work identifies the software-based compression algorithms that are most

appropriate for use in low-power embedded systems.

Categories and Subject Descriptors: D.4.2 [Storage Management]: Virtual memory; C.3 [Spe-

cial Purpose and Application Based Systems]: Real-time and embedded systems

General Terms: Design, management, performance

Additional Key Words and Phrases: Embedded system, memory, compression

This is an extended version of an article that appeared in the International Conference on Hard-
ware/Software Codesign and System Synthesis in September 2005 [Yang et al. 2005].

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20 ACM 0000-0000/20/0000-0001 $5.00

ACM Journal Name, Vol. , No. , 20, Pages 1–29.

2 · Lei Yang et al.

1. INTRODUCTION

The complexities and resource demands of modern embedded systems such as per-

sonal digital assistants (PDAs) and smart phones are constantly increasing. In
order to support applications such as 3-D games, secure Internet access, email, mu-
sic, and digital photography, the memory requirements of embedded systems have
grown at a much faster rate than was originally anticipated by their designers. For
example, the total RAM and flash memory requirements for applications in the mo-
bile phone market are doubling or tripling each year [Yokotsuka 2004]. Although
memory price drops with time, adding memory frequently results in increased em-
bedded system packaging cost, cooling cost, size, and power consumption. For ex-
ample, the HP iPAQ hx2755 PDA has a price 20% higher than its predecessor, the
iPAQ hx2415. With the exception of a slight increase in CPU frequency (520 MHz
for hx2415 and 624 MHz for hx2755), the hx2755 differs from the hx2415 only by
making 2.2 times as much memory available to the user [hpi]. In addition, as em-
bedded systems support new applications, their working data sets often increase in
size, exceeding original estimates of memory requirements. Redesigning hardware
and applications is not desirable as it may dramatically increase time-to-market
and design costs.

The work described in this paper was originally motivated by a specific engi-
neering problem faced by a corporation during the design of an embedded system
for secure network transactions. After hardware design, the memory requirements
of the embedded system’s applications overran the initial estimate. There were
two ways to solve this problem: redesign the embedded system hardware, thereby
dramatically increasing time-to-market and cost, or make the hardware function
as if it had been redesigned without actually changing it. The second approach
was chosen, resulting in the technique described in this paper. Note that, even for
embedded systems capable of functioning on their current hardware platforms, it
is often desirable to increase the number of supported applications if the cost of
doing so is small. In addition, the proposed technique has the potential to allow the
hardware complexity and cost of some embedded systems to be reduced, without
sacrificing the ability to run the desired applications.

1.1 Problem Background

The desire to minimize embedded system memory requirements has led to the
design of various memory compression techniques. Memory compression for em-
bedded systems is a complex problem that differs from the typical file compression
problem. It can be divided into two categories: executable code compression and
data compression, each of which is described below.

Embedded systems that support code compression decompress code during ex-
ecution. Since code does not change during application execution1, compression
may be done off-line and can be slow. Decompression is done during application
execution and therefore must be very fast. This means that, in code compression
techniques, the performance of compression and decompression algorithms may dif-
fer. Another important characteristic of runtime code decompression is the need for

1The exception to this is self-modifying code, which is rarely used today.

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 3

random access during decompression: code does not execute in a sequential manner.
Most code compression techniques are hardware-based, i.e., they are implemented
with, and rely on, special-purpose hardware.

Although code compression was shown to be useful in reducing embedded system
memory requirements, in many embedded systems it is more important to compress
working data sets. The code segment is often small and can be stored in flash
memory. Therefore code can execute in place (XIP), i.e., execute directly from
flash memory without being copied to RAM. As a result, in many modern embedded
systems, e.g., PDAs and smart phones, the majority of RAM is used for storing
data, not code.

While code compression techniques are mostly hardware-based solutions, data set
compression techniques are usually operating system (OS) based. Data compression
presents more design challenges than code compression. In addition to the random
access requirement of code compression, data must be written back to memory.
Some algorithms that are suitable for code compression, i.e., those that allow slow
compression but provide fast decompression, are inappropriate for data compres-
sion. In addition, allocation of compressed pages must be carefully managed to
minimize memory, time, and energy use. Furthermore, locating a compressed page
of data in memory must be fast to ensure good performance.

There are also techniques that compress main memory with a mix of both data
and code. For example, a hardware compression/decompression unit can be inserted
between the cache and main memory. Data in main memory are all stored in
compressed format, while data in the cache are not compressed.

In summary, despite the existence of data set compression techniques in the lit-
erature, few, if any, have seen use in commercial products; practical memory com-
pression still faces a number of problems, e.g., smart selection of pages to compress,
careful scheduling of compression and decompression to minimize performance and
power impact, elegantly dealing with the memory fragmentation problem intro-
duced by compression, and avoiding the addition of special-purpose hardware, etc.

1.2 Technique Overview

We propose a software-based RAM compression technique, named CRAMES (Com-
pressed RAM for Embedded Systems), that increases effective memory capacity
without requiring designers to add physical memory. RAM compression for em-
bedded systems is a complex problem that raises several questions. Can a RAM
compression technique allow existing applications to execute without performance
and energy consumption penalties? Can new applications with working data sets
that were originally too large for physical memory be automatically made to ex-
ecute smoothly? What compression algorithm should be used, and when should
compression and decompression be performed? How should the compressed RAM
area be managed to minimize memory overhead? How should one evaluate RAM
compression techniques for use in embedded systems?

This paper answers these questions and evaluates the soundness of CRAMES. To
minimize performance and energy consumption impact, CRAMES takes advantage
of the OS virtual memory swapping mechanism to decide which data pages to com-
press and when to compress them. Multiple compression techniques and memory
allocation methods were experimentally evaluated; the most promising ones were

ACM Journal Name, Vol. , No. , 20.

4 · Lei Yang et al.

selected. CRAMES dynamically adjusts the size of the compressed area during
operation based on the amount of memory required, so that applications capa-
ble of running without memory compression do not suffer performance or energy
consumption penalties as a result of its use. In addition to data set compression,
CRAMES is also effective for in-RAM filesystem compression, thereby further ex-
panding system RAM.

CRAMES has been implemented as a loadable Linux kernel module for maximum
portability and modularity. Note that the technique can easily be ported to other
modern OSs. The module was evaluated on a battery-powered PDA running an
embedded version of Linux called Embedix [emb]. This embedded system’s archi-
tecture is similar to that of modern mobile phones. CRAMES requires the presence
of an MMU. However, no other special-purpose hardware is required. MMUs are
becoming increasingly common in high-end embedded systems. We evaluate our
technique using well-known batch benchmarks as well as interactive applications
with graphical user interfaces (GUIs). A PDA user input monitoring and play-
back system was designed to support the creation of reproducible interactive GUI
benchmarks. Our results show that CRAMES is capable of dramatically increasing
memory capacity with small performance and power consumption costs.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2 summarizes related tech-
niques and their contributions. Section 3 describes the proposed memory compres-
sion technique and elaborates on the tradeoffs involved in the design of CRAMES.
This section also proposes important design principles for software-based RAM
compression techniques. Section 4 discusses the implementation of CRAMES as
a Linux kernel module. Section 5 presents the experimental set-up, describes the
workloads, and presents the experimental results in detail. Finally, Section 6 con-
cludes the paper.

2. RELATED WORK

This section discusses related work in the memory and filesystem compression do-
main. Recent memory compression research has focused on two topics: code com-
pression and data compression. Code compression techniques are often hardware-
based, with the goal of reducing system memory requirements. In contrast, data
compression techniques are often software-based, targeting at improving system
performance by reducing disk I/O. There are also hardware-based techniques that
compress both code and data to reduce RAM requirements. In addition, filesystem
compression is another area of interest that exhibits similar problems to the ones
addressed in this paper. The primary goal of filesystem compression is to save disk
space and furthermore, to reduce disk I/O by transferring compressed data.

2.1 Compress Both Code and Data

IBM MXT [Tremaine et al. 2001] is a technique for hardware-based main memory
compression. In this technique, a large, low-latency, shared cache sits between the
processor bus and a content-compressed main memory. A hardware compression
unit is inserted between the cache and main memory. The authors reported a
typical main memory compression ratio between 16.7% and 50%, as measured in

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 5

real-world system applications. Compression ratio is defined as compressed memory
size divided by original memory size. This compression ratio is consistent with that
achieved by CRAMES.

Benini and Bruni [Benini et al. 2002] also proposed to insert a hardware com-
pression/decompression unit between the cache and RAM, so that data in RAM
are all stored in compressed format, while data in the cache are not compressed.
Kjelso, Gooch, and Jones [Kjelso et al. 1996] proposed a hardware-based compres-
sion scheme designed for in-memory data. Their X-match algorithm, which uses a
small dictionary of recently-used words, is designed for hardware implementation.
The above approaches may reduce embedded system RAM requirements and power
consumption. However, they require changes to the underlying hardware and thus
cannot be easily incorporated into existing processors and embedded systems.

2.2 Compress Only Code

Early techniques for reducing the memory requirements of embedded systems were
mostly hardware-based, i.e., they were implemented with, and relied on, special-
purpose hardware. Code compression techniques [Lekatsas et al. 2000; Xu et al.
2004; Bell et al. 1990; Shaw et al. 2003] store instructions in compressed format
and decompress them during execution. In these techniques, compression is usually
done off-line and can be slow, while decompression is done during execution by
special hardware and must be very fast. Other techniques focus on modifying the
instruction set, which led to the design of denser instruction sets geared for the
embedded market, e.g., the Thumb architecture [thu 1995].

2.3 Compress Only Data

Most previous work on software-based on-line data compression falls into two cat-
egories: compressed caching and swap compression. The main goal of compressed
caching and swap compression is to improve system performance. These techniques
target general-purpose systems with hard disks.

2.3.1 Compressed Caching. Compressed caching [Douglis 1993; Russinovich and
Cogswell 1996; Wilson et al. 1999; com] was proposed by a number of researchers
to solve the data memory compression problem. The objective is to improve sys-
tem performance by reducing the number of page faults that must be serviced
by hard disks, which have much longer access times than RAM. Early work by
Douglis [Douglis 1993] proposed a software-based compressed cache, which uses
part of the memory to store data in LZRW1 compressed format. A study on com-
pressed caching by Kjelso, Gooch, and Jones [Kjelso et al. 1999] used simulations
to demonstrate the efficacy of compressed caching. They addressed the problem of
memory management for variable-size compressed pages. Their experiments also
used the LZRW1 compression algorithm. Furthermore, Russinovich and Cogswell
[Russinovich and Cogswell 1996] presented a thorough analysis of the compression
algorithms used in compressed caching. Wilson, Kaplan, and Smaragdakis [Wilson
et al. 1999] also used simulations to prove a consistent benefit from the use of com-
pressed virtual memory. In addition, they proposed a new compression algorithm
suited to compressing in-memory data representations.

ACM Journal Name, Vol. , No. , 20.

6 · Lei Yang et al.

2.3.2 Swap Compression. Swap Compression [Rizzo 1997; Cortes et al. 2000;
Roy et al. 2001; Tuduce and Gross 2005] compresses swapped out pages and stores
them in a software cache in RAM. Cortes, Eles, and Peng [Cortes et al. 2000]
explored the introduction of a compressed swap cache in Linux for improving swap
performance and reducing memory requirements. Their work targeted general-
purpose machines with large hard drives, for which saving space in memory was
not a design goal.

Roy and Prvulovic [Roy et al. 2001] proposed a memory compression mechanism
for Linux with the goal of improving performance. Again, their approach targets
systems with hard disks. They reported speed-ups from 5% to 250% depending on
the application. They did not consider the use of this technique in systems that do
not contain disks, i.e., most embedded systems.

Rizzo et. al. [Rizzo 1997] proposed a RAM compression algorithm based on Huff-
man coding. Their approach is useful for disk-less systems; a swap area is introduced
in RAM to hold compressed pages. They compared the compression ratio of their
algorithm with several well-known algorithms and demonstrated desirable results.
However, the compressed Swap-on-RAM architecture was not implemented in any
OS. The impact on memory reduction and power consumption were not evaluated
on embedded systems.

2.4 Compressed Filesystems

Compressed filesystems are typically used for reducing disk or RAM disk (i.e., an
in-RAM block device that acts as if it were a hard disk) space requirements, and
hence are usually off-line and read-only. There has been some work by researchers
and the Linux community on introducing compressed filesystems into the Linux
kernel.

Cramfs [Cramfs] is a read-only compressed Linux filesystem. It uses Zlib to
compress a file one page at a time and allows random page access. The meta-
data is not compressed, but is expressed in a condensed form to minimize space
requirements. Since Cramfs is read-only, one must first create a compressed disk
image with the mkcramfs utility off-line before the filesystem is mounted. Cramfs
is currently being used on a variety of embedded systems.

Cloop [Cloop] is a Linux kernel module that enables compressed loopback [Bovet
and Cesati 2002] filesystem support. The module provides a filesystem-independent,
transparently decompressed, and read-only block device, i.e., a device that stores
and accesses data in fixed-size blocks. A user can mount a compressed filesystem
image like a block device. Data is automatically decompressed when the device is
addressed. Like Cramfs, users must first create a compressed image and mount it
in read-only mode. Cloop uses the Zlib compression algorithm.

CBD [CBD] is a Linux kernel patch that adds a compressed block device designed
to reduce the size of filesystems. CBD is a disk-based read-only compressed block
device that is very similar to Cloop. A compressed filesystem image needs to be
created off-line. Writes to CBD are locked in the buffer cache of memory and are
never sent to the physical device. CBD also uses the Zlib compression algorithm.

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 7

2.5 Other Related Work

There exist other software-based memory compression techniques that cannot easily
be included in any of the main categories listed above. RAM Doubler [ram] is a
technique that expands the memory available to Mac OS via three methods. First,
it attempts to locate small chunks of RAM that applications are not actively using
and makes that memory available to other applications. Second, RAM Doubler
attempts to locate and compress pages that are not likely to be accessed in the near
future. Finally, if the first two attempts fail, the system swaps rarely-accessed data
to disk. Although RAM Doubler allows more applications to run simultaneously,
applications with memory footprints that exceed physical memory still cannot run.
In contrast, CRAMES uses compression to increase available memory, allowing
applications to run to completion when their memory requirements exceed the
physical memory.

Heap compression for memory-constrained Java environments [Chen et al. 2003]
enables the execution of Java applications using a smaller heap footprint on embed-
ded Java virtual machines (JVMs). This work introduced a new garbage collector,
the Mark-Compact-Compress collector (MCC), that compresses objects when heap
compaction is not sufficient for creating space for the current allocation request.
This technique is useful for reducing the size of the heap segment of an embedded
Java application. However, the stack segment is not compressed. CRAMES is able
to compress the application stack segment as well as the heap segment, allowing
it to further increase available RAM. More importantly, CRAMES works with ap-
plications implemented in any programming language. For example, if activated
on a system running a Java interpreter, the interpreter and application data will
automatically be compressed.

2.6 Summary and CRAMES Contributions

In summary, despite the existence of memory compression schemes, few have seen
use in commercial embedded systems for one or more of the following reasons: (1)
they assume off-line compression and thus can not handle dynamic data memory,
(2) they require redesign of the target embedded system and the addition of special-
purpose hardware, or (3) their performance and energy consumption impacts have
not been considered, or are unacceptable, for typical disk-less embedded systems.

CRAMES makes the following main contributions: (1) unlike previous work, it
handles both on-line data memory compression and in-RAM filesystem compres-
sion; (2) it requires no special hardware and thereby requires no system redesign;
(3) it requires no change to applications; (4) the compression algorithm and mem-
ory allocation method are carefully selected to minimize performance and energy
consumption overheads; and (5) CRAMES targets disk-less embedded systems.
CRAMES is portable and can be used on a variety of platforms. Moreover, the
technique is general enough to permit its use with any modern OS supporting vir-
tual memory. CRAMES dramatically increases the available RAM to embedded
systems at small performance and power consumption costs (please refer to Sec-
tion 5).

ACM Journal Name, Vol. , No. , 20.

8 · Lei Yang et al.

3. CRAMES DESIGN

This section describes the CRAMES architecture. CRAMES divides the RAM
of an embedded system into two portions: one containing compressed data pages
and the other containing uncompressed data pages as well as code pages. We call
the second area the main memory working area. Consider a disk-less embedded
system in which the memory usage of one memory-intensive process (or several
such processes) increases dramatically and exceeds system RAM. If no memory
compression mechanism is used, the process may not proceed; there is no hard disk
to which it may swap out pages to provide more RAM. However, with CRAMES, the
kernel may compress and move some of the pages within the main memory working
area to the compressed area so that the process may continue running. When
data in a compressed page is later required by a process, the kernel will quickly
locate that page, decompress it, and copy it back to the main memory working
area, allowing the process to continue executing. With CRAMES, applications that
would normally be unable to run to completion correctly operate on an embedded
system with limited RAM.

3.1 Design Principles

The goal of CRAMES is to significantly increase available memory with minimal
performance and energy penalties, and without requiring additional hardware. We
follow these principles to achieve this goal:
1. Carefully select and schedule pages for compression. This is essential
to guarantee correct operation. The selected pages must be compressed when the
memory usage of active processes exceeds the main memory working area. One
may view the uncompressed memory area as a cache for the compressed memory
area. Therefore, frequently accessed pages should be placed in the uncompressed
area rather than the compressed area to minimize access time. Compression and
decompression must be carefully scheduled to avoid application termination due
to memory exhaustion, which may happen when the amount of free memory falls
below a predefined threshold or when a memory request cannot be satisfied.

2. Use a performance and energy efficient compression algorithm with

low compression ratio and memory overhead. Compression ratio gives a
measure of the compression achieved by a compression algorithm on a page of
data. It is defined as compressed page size divided by original page size. Therefore,
a low compression ratio indicates better performance than a high one. Using a
high-quality compression algorithm is crucial to ensure that CRAMES can dramat-
ically increase the amount of perceived memory with small performance and en-
ergy consumption penalties. Compressing/decompressing pages and moving them
between the uncompressed memory and compressed memory consumes time and
energy. The compression algorithm used in an embedded system must have ex-
cellent performance and low energy consumption. The algorithm must provide a
low compression ratio, with small working memory requirements, to substantially
increase the amount of usable memory, thereby enabling new applications to run
or allowing the amount of physical memory in the embedded system to be reduced
while preserving functionality. However, trade-offs exist between compression speed
and compression ratio. As shown in Section 3.2.2, slower compression algorithms

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 9

usually have better compression ratios, while faster compression algorithms have
poorer compression ratios. In addition, algorithms with lower compression ratio
have shorter latencies to move pages to the compressed area due to their smaller
sizes.

3. Organize the compressed area in non-uniform-size slots. Since sizes
of compressed pages vary widely, efficiently distributing and locating data in the
compressed memory area is challenging. Even if memory is generally organized into
identically-sized pages, the compressed area may not be organized into uniform-
size slots because the sizes of compressed pages vary widely. Thus, compression
transforms the easy problem of finding a free page in an array of uniform-size
pages into the hard problem of finding an arbitrary-size range of free bytes in an
array of bytes. This problem is closely related, but not identical, to the classical
memory allocation problem. The compressed memory manager must be fast and
high quality, i.e., it must minimize waste resulting from fragmentation.

4. Dynamically adjust the size of the compressed area. The compressed
area must be large enough to provide applications with additional memory, when
necessary. However, it should stay out of the way when the applications do not
require additional memory to avoid performance and energy consumption penalties.
This can be achieved by using a compressed memory area just barely large enough
to execute the currently running applications. In other words, the compressed area
should dynamically change its size based on the amount of memory required by the
currently executing applications.

5. Minimize the memory overhead. Additional space in memory is required
to index and tag the compressed pages, allowing them to be located in the future.
Moreover, compressed data pages may vary in size and cut memory into chunks
with different sizes. The classic memory allocation internal fragmentation problem
is potentially relevant. CRAMES must try to minimize the memory overhead of
compression, fragmentation, and indexing compressed pages to ensure an improve-
ment in physical memory capacity.

3.2 Design Overview

This section provides an overview of CRAMES. Three components are closely re-
lated: OS virtual memory swapping, block-based data compression, and kernel
memory allocation. After giving a brief overview of these components, we describe
the design of CRAMES in accordance with the design principles described in Sec-
tion 3.1.

3.2.1 CRAMES and Virtual Memory Swapping . When a system with virtual
memory support is low on memory (either when the amount of free memory falls
below a predefined threshold or when a memory request cannot be satisfied), the
least recently used data pages are swapped out from memory to, conventionally, a
hard disk. Swapping allows applications, or sets of applications, to execute even
when the size of RAM is not sufficient. CRAMES takes advantage of swapping
to decide which pages to compress and when to perform compression and decom-
pression; the compressed pages are then swapped out to a special compressed RAM

device. Figure 1 illustrates the logical structure of the swapping mechanism on the
compressed RAM device. RAM is divided into two parts: the uncompressed area

ACM Journal Name, Vol. , No. , 20.

10 · Lei Yang et al.

(white) and the compressed swap area (grey). Neither part is contiguous, i.e., each
consists of a set of non-uniform size chunks. The uncompressed areas swap out
compressed pages to the compressed swap areas, which are linked together.

The compressed RAM device should vary its memory usage over time according
to memory requirements. Unlike conventional swap devices, which are typically
implemented as disk partitions or files within a filesystem on a hard disk, the
compressed RAM device is not a contiguous region with fixed size; instead, it is
a linked list of compressed RAM areas (as shown in Figure 1). Whenever the
compressed RAM device is not large enough to handle a new write request, it
requests more memory from the kernel. If successful, the newly allocated chunk
of memory is linked to the list of existing compressed swap areas; otherwise, the
combined data set of active processes is too large even after compression, making it
necessary for the kernel to kill one or more of the processes. Recall that a request to
swap out a page is generated when physical memory has been nearly exhausted. If
attempts to reserve a portion of system memory for the compressed memory device
were deferred until this time, there would be no guarantee of receiving the requested
memory. Therefore, the compressed swap device starts with a small, predefined size
but expands and contracts dynamically.

Swap Out

Swap In

Uncompressed Memory

Compressed Area 1

Compressed Area 2

Compressed Area 3

Compressed Area 4

Compressed Memory

Uncompressed Area

Uncompressed

Kernel Reserved

Uncompressed Area

Uncompressed Area

Uncompressed Area

Page

Page

Page

Page

Page

Fig. 1. Logical structure of the swapping mechanism on compressed RAM device. The two big
boxes represent the same physical memory region.

Since a copy of a program’s text segment is kept in its executable file, a text
page need not be copied to the swap area or written back to the executable file
because it may not be modified. Therefore, swapping is not useful for compressing
code pages. It would potentially be beneficial to compress executable files that
are stored in flash memory or electrically programmable read-only memory (ROM)
filesystem by (partially) copying them to RAM on execution. However, this can

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 11

Application Algorithm Characteristics

bzip2 Burrows-Wheeler Transform

Compression ratios within 10% of

the state-of-the-art algorithms;

relatively slow compression;

decompression is faster than compression.

zlib LZ-family
Fast compression/decompression;

good compression ratio.

LZRW1-A LZ-family

Very fast compression/decompression;

good compression ratio;

very low working memory requirement.

LZO LZ-family

Very fast compression;

extremely fast decompression;

favors speed over compressibility;

low working memory requirement.

RLE Run-Length Encoding

Very simple, and extremely fast,

poorer compression ratio for most data;

no working memory requirement.

Table I. Evaluated compression algorithms

bzip2 zlib LZO LZRW1-A RLE

Compression 7600 kB 256KB 64KB 16KB 0

Decompression 3700 kB 44KB 0 16KB 0

Table II. Memory overhead of compression algorithms

be accomplished with existing techniques and tools, e.g., JFFS2 [Woodhouse 2001]
with demand paging. These techniques may be used in combination with CRAMES.

3.2.2 CRAMES and Block-based Data Compression . To ensure good perfor-
mance for CRAMES, appropriate compression algorithms must be identified and/or
designed. Fortunately, classical data compression is a mature area; a number of al-
gorithms exist that can effectively compress data blocks, which tend to be small in
size, e.g., 4 KB, 8 KB, or 16 KB. This is important for CRAMES because it performs
compression at the page level. We evaluated existing data compression algorithms
that span a range of compression ratios and execution times: bzip2, zlib (with level
1, 9, and default), LZRW1-A, LZO [lzo], and RLE (Run Length Encoding).

Figure 2 illustrates the compression ratios and execution times of the evaluated
algorithms and Table II gives their memory requirements. For these comparisons,
the source file for compression is a 64 MB swap data file from a workstation running
SuSE Linux 9.0, which is later divided into uniform-sized blocks to perform block-
based compression. Although bzip2 and zlib have the best compression ratios, their
execution times are significantly longer than LZO, LZRW1-A, and RLE. In addition,
the memory overheads of bzip2 and zlib are sufficient to starve applications in
many embedded systems. Among these candidates, LZO appears to be the best
block compression algorithm for dynamic data compression in low-power embedded
systems due to its good all-around performance. It has a low compression ratio and
low working memory requirements as well as allowing fast compression and fast
decompression. Therefore, LZO was chosen as the default compression algorithm
in CRAMES.

ACM Journal Name, Vol. , No. , 20.

12 · Lei Yang et al.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1024 2048 3072 4096 5120 6144 7168 8192

C
om

pr
es

si
on

 R
at

io

Block Size (bytes)

bzip2
zlib default
zlib level 1
zlib level 9

lzo
LZRW1-A

RLE

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 1024 2048 3072 4096 5120 6144 7168 8192

C
om

pr
es

si
on

 T
im

e
(s

)

Block Size (bytes)

bzip2
zlib default
zlib level 1
zlib level 9

lzo
LZRW1-A

RLE

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 1024 2048 3072 4096 5120 6144 7168 8192

D
ec

om
pr

es
si

on
 T

im
e

(s
)

Block Size (bytes)

bzip2
zlib default
zlib level 1
zlib level 9

lzo
LZRW1-A

RLE

Fig. 2. Comparison of evaluated compression algorithms

3.2.3 CRAMES and Kernel Memory Allocation . In addition to scheduling com-
pression and using an appropriate block compression algorithm, CRAMES must
efficiently organize the compressed swap device to enable fast compressed page ac-
cess and minimal memory waste. More specifically, the following problems must be
solved: (1) efficiently allocating or locating a compressed page in the swap device,
(2) mapping between the virtual locations of uncompressed pages and actual data
locations in the compressed swap device, and (3) maintaining a linked list of free
slots in the swap device that are merged when appropriate.

The compressed RAM device memory management problem is related to the ker-

nel memory allocation (KMA) problem. The virtual memory management system
must maintain a map from virtual pages to the locations of pages in physical mem-
ory, allowing it to satisfy requests for virtually contiguous memory by allocating
several physically non-contiguous pages. In addition, the kernel maintains a linked

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 13

Allocation/Free Time (sec)

0 0.0001 0.0002 0.0003 0.0004

rm−4KB
bud−4KB

lzbud−4KB
mck2−4KB

p2fl−4KB

rm−8KB
bud−8KB

lzbud−8KB
mck2−8KB

p2fl−8KB

rm−16KB
bud−16KB

lzbud−16KB
mck2−16KB

p2fl−16KB

rm−64KB
bud−64KB

lzbud−64KB
mck2−64KB

p2fl−64KB

Memory Usage (TotalBytes/rm−64KB)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Allocation Time

Free Time

Memory Usage

Fig. 3. Memory usage of evaluated memory allocation methods

list of free pages. When a process requires additional pages, the kernel removes
them from the free list; when the pages are released, the kernel returns them to the
free list.

The CRAMES memory manager builds upon methods used in KMA. In order
to identify the most appropriate memory allocation method for the RAM compres-
sion problem, the following five memory allocators were implemented and applied
to requests generated from the 64 MB swap data file that was used to evaluate
compression algorithms: Resource Map Allocator (rm), Simple Power-of-Two Freel-
ists (p2fl), McKusick-Karels Allocator [McKusick and Karels 1988] (mck2), Buddy
System [Peterson and Norman 1977] (bud), and Lazy Buddy Algorithm [Lee and
Barkley 1989; Barkley and Lee 1989] (lzbud). As observed for block-based com-
pression algorithms, there is a tradeoff between algorithm quality and performance,
i.e., techniques with excellent memory utilization achieve it at the cost of allocation
speed and energy consumption.

Figure 3 illustrates the impact of chunk size on allocation/free time and total
memory usage, including fragmentation and bookkeeping overheads, for each of the
five memory allocators. For example, rm-4 KB stands for Resource Map allocator
with a chunk size of 4 KB. Recall that the CRAMES memory manager requests
memory from the kernel in linked chunks in order to dynamically increase and
decrease the size of the compressed memory area. Although Resource Map requires
the most time when the chunk size is smaller than 16 KB, its execution time is
as good as, if not better than, the other four allocators when the chunk size is

ACM Journal Name, Vol. , No. , 20.

14 · Lei Yang et al.

larger than 16 KB. In addition, Resource Map always requires the least memory
from the kernel. Therefore, Resource Map is a good choice for CRAMES when the
chunk size is larger than 16 KB; it is the default memory allocation method. In our
experiments described in Section 5, the chunk size is set to be 64 KB. Note that for
embedded system memory sizes less than or equal to 16 KB, faster allocators with
good memory usage ratios may be considered, e.g., the McKusick-Karels allocator.

During the implementation of CRAMES, we designed a user-space simulator to
assist code debugging and performance profiling. Profiling results indicated that
compression and decompression are responsible for the main performance penalty
in CRAMES. The overhead resulting from Resource Map memory management was
no more than 1/10 of that from compression and decompression. In addition, to
determine the impact of fragmentation during the evaluation of the Resource Map
allocator, we tested CRAMES on a workstation running various applications to
trigger swapping. We observed that the fragmented memory in CRAMES is con-
stantly under 5%. We believe that fragmentation is not a problem for CRAMES
with the Resource Map allocator. To summarize, although there are many recent
advances of modern memory allocators, the performance of Resource Map is ad-
equate for this application and using faster allocators would not improve overall
performance of CRAMES.

3.3 Using CRAMES with the Filesystem

Total RAM size: 32 MB

Battery−backed
RAM disk:
16 MBMain memory

working area:
14 MB

OS reserved:
2 MB

Fig. 4. RAM regions in a Sharp Zaurus SL5600

As illustrated in Figure 4, in a typical embedded system (Sharp Zaurus SL-5600
PDA) with 32 MB RAM, only 14 MB of memory are available for user applications
and system background processes. A significant portion (50% or 16 MB) of RAM
is used to create a battery-backed RAM disk for the filesystem. A RAM disk is a
common RAM device without compression. In this paper, the RAM disk is usually

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 15

referred to as a filesystem holder, while the RAM device is used to indicate a swap
device.

Although the design of compressed filesystems has been studied extensively in
recent years, no solution exists for readable/writable RAM disks. For example,
Cramfs [Cramfs] is a compressed filesystem targeting embedded systems, but it
is read-only. JFFS2 [Woodhouse 2001] is a compressed, readable, and writable
filesystem, but it is for use with flash memory rather than RAM disks. Therefore,
it is desirable for a memory compression technique to support the compression of
RAM disks with filesystems in addition to the compression of data in main memory.
Although not designed with filesystem compression as its primary goal, CRAMES
supports compressed RAM disks containing arbitrary filesystem types.

RAM disk
EXT2/EXT3/etc, FS

12MB

Compressed Swap Device

8MB

Memory Working Space

10MB

Swap Out

Swap Out

Swap In

Swap In

Write

Read

Read

Write

SYSTEM RAM 32MB

(excluding 2MB OS reserved)

Compress Decompress

Block

1 KB

Block

0.5 KB
Decompress

Compress

Page

2 KB

Page

4 KB

Fig. 5. A possible system RAM partition

Figure 5 illustrates a possible new RAM partitioning scheme, using CRAMES on
an embedded system with its 32 MB of RAM originally partitioned in approximately
the same way as previously described for the Sharp Zaurus SL-5600. The gray areas
in the figure correspond to compressed memory and the white areas correspond to
uncompressed memory. Darker colored areas have lower compression ratios, i.e.,
better compression. Without compression, 30 MB of memory are available (2 MB
are reserved for the OS kernel). These 30 MB of RAM are divided into two parts:
14 MB of main memory working area and a 16 MB RAM disk for filesystem storage.
When CRAMES is used, the 30 MB of RAM is divided into three parts: a 10 MB
main memory working area, a 12 MB compressed RAM device for filesystem storage,
and an 8 MB compressed RAM device for swapping. Suppose the average memory
compression ratio for the swap device is 50%. The maximum capacity this device
can provide is 8÷0.5 = 16MB. The maximum total memory addressable is therefore
10 + 16 = 26MB. If the average compression ratio for the RAM disk is 60%, the
total filesystem storage available for the system is 12 ÷ 0.6 = 20MB. Thus, the

ACM Journal Name, Vol. , No. , 20.

16 · Lei Yang et al.

CRAMES Device
Driver

Compression/
Decompression

Memory Manager Mapping Table

Request

"Black Box" Request Handling

Fig. 6. CRAMES device request handling

maximum RAM capacity of the system is expanded to 26+20+2 = 48MB with little
degradation in performance or power consumption (as shown in Section 5). This
example assumes fixed-size compressed RAM devices to simplify the explanation;
however, CRAMES supports dynamic, automatic compressed RAM resizing.

4. CRAMES IMPLEMENTATION

This section describes implementation details. CRAMES has been implemented
and evaluated as a loadable module for the Linux 2.4 kernel. The module is a
special block device (i.e., a random access device that stores and retrieves data in
blocks) using system RAM. It may serve as both a swap device and a storage area
for filesystems. Although the block size for a swap device is 4 KB (the page size in
Linux), the block size may vary (e.g., 4 KB, 16 KB, or 64 KB) when it is used as a
filesystem storage area. This section describes the structure of a CRAMES device.
It focuses on the use of CRAMES as a swap device.

4.1 CRAMES Request Handling

CRAMES is a special block device. A block device must register itself with the
kernel to become accessible. During registration, it is necessary to report (1) block
size and number of blocks2, i.e., capacity, and (2) a request handling function that
the kernel will call when there is a read/write request for this device. CRAMES
reports an estimated maximum capacity to the kernel, although its actual memory
requirement is usually substantially smaller. It enables on-the-fly data compression
and decompression via its request handling procedure, which consists of four steps.
For a write request, these steps are (1) compressing a block that is written to the
device, (2) allocating memory for a compressed block and placing the compressed
block in allocated memory, (3) managing the mapping table, and (4) attempting
to merge free slots. For a read request, these steps are (1) locating a compressed
block with an index number, (2) decompressing a block that is read from the device,
(3) releasing the memory occupied by this compressed block if it contains obsolete
data, (4) managing the mapping table if memory is released, and (5) attempting to
merge free slots if memory is released. Figure 6 depicts the logical structure of the

2The kernel sets the block size of a block device to page size (often 4KB) and adjusts the number
of blocks accordingly when the device is used as a swap device.

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 17

index used compressed addr size

0 1 0 0xa3081a3d 52

1 1 1 0xa3081a71 1090

· · · · · · · · · · · · · · ·

4 1 1 0xa3081396 63

5 0 1 0xa3081004 910

6 0 1 0xa30813d9 1684

· · · · · · · · · · · · · · ·

128 1 1 0xa30a3faa 80

Table III. Mapping table in CRAMES

CRAMES request handling procedure. A CRAMES device is like a black box to
the system: compression, decompression, and memory management are all handled
within the device.

4.1.1 Mapping Table. Data in a block device are always requested by block
indices, regardless of whether the device is compressed. CRAMES creates the
illusion that blocks are linearly ordered in the device’s memory area and are equal
in size. To convert requests for block numbers to their actual addresses, CRAMES
maintains a mapping table, which may be direct-mapped or hashed. In a direct-
mapped table, each entry is indexed by its block number. In a hash table, the key
of each entry is a block number. The memory overhead of a direct-mapped table
is higher because it may maintain block indices that are never used. However,
searching in such a table is extremely fast. In contrast, a hash table minimizes
the memory overhead by only keeping block indices that are actually accessed.
However, the search time is longer. When evaluating CRAMES on a Sharp Zaurus
SL-5600 PDA (see Section 5) we used a direct-mapped table because it is small (at
most 16 KB) and fast.

Regardless of mapping table implementation style, the data field of each entry
must contain the following information.
• Used indicates whether it is a valid swapped-out block. This field is especially
important for CRAMES to decide whether a compressed block may be freed.

• Compressed indicates whether a swapped-out block is in compressed format.
When compression fails due to internal errors in the compression algorithm or the
compressed size exceeds the original block size, CRAMES aborts compression and
stores the original block. This field is necessary to guarantee correctness, even
though such cases are rare. Another option would be to add additional information
at the beginning of a compressed block to indicate whether it is compressed or
not. However, doing this would require modification of compression algorithms,
and therefore should be avoided.

• Addr records the actual address of that block.

• Size keeps the compressed size of a block.
Table III is a mapping table trace collected from experiments. In the Linux

kernel, swapping is performed at the page level. Therefore, once a block device is
used as a swap device with the command mkswap, the kernel swap daemon first
sets the block size of the device to page size, i.e., 4 KB. From the swap daemon’s
perspective, each swap area consists of a sequence of pages. The first page of a

ACM Journal Name, Vol. , No. , 20.

18 · Lei Yang et al.

swap area is used to persistently store information about the swap area and is also
compressed in CRAMES. Starting from page 1, pages are used by the kernel swap
daemon to store swapped-out pages that are compressed by CRAMES.

4.1.2 Memory Manager . Section 3.2.3 reveals that the KMA techniques can
help in building an efficient memory allocator for CRAMES. Recall that the CRAMES
memory allocator must efficiently handle three problems: (1) locating compressed
blocks during reads, (2) finding free locations to store newly compressed blocks
during writes, and (3) merging free slots to enable memory reuse.

The CRAMES memory manager must optimize the conflicting objectives of per-
formance and allocation efficiency. Based on the experimental evaluation described
in Section 3.2.3, CRAMES uses Resource Map as its default allocator to provide
the best performance. Regardless of the KMA technique used in the CRAMES
memory allocator, it is necessary to determine when a compressed block may safely
be discarded from the device. For a compressed swap device, a compressed page
may be freed under two circumstances: (1) the current request is a read and the
requested page only belongs to one running process or (2) the current request is a
write and the requested page has been written in previous requests.

It is straightforward for CRAMES to free a page if that page belongs to only one
process and that process has just read the page back to main memory. However,
complications arise when a page is shared by multiple processes. In this case, a
page can be swapped in by one process and still reside in the swap area for other
processes that share it. After a read request, CRAMES must first check the usage
count of the page just read, to see whether after this read no other process will
expect the page to reside in the swap area. If the page has no additional references,
the CRAMES memory manager can proceed to free it. Likewise, a write request
to a previously-written page indicates that the kernel swapper knows this page
contains data from a terminated process and therefore can be overwritten by a
new swapped-out page. Consequently, CRAMES can safely free the old page and
allocate memory for the new compressed page.

4.1.3 Request Handling Flow. Figure 7 graphs the flow of the CRAMES request
handling procedure for a compressed swap device. Unlike a RAM device, a given
page need not always be placed at the same fixed offset. For example, when the
driver receives a request to read page 7, it checks mapping table entry tbl[7],
gets the actual address from addr field, checks the compressed field to determine
whether the page is compressed and, if it is, gets the compressed page size from the
size field. Page 7 is then decompressed. Subsequently CRAMES checks the usage
counter for page 7 to decide whether to free this page after this read. Finally, the
request returns successfully.

Handling write requests is more complicated. When the driver receives the re-
quest to write to page 7, it first checks the mapping table entry tbl[7] to de-
termine whether the used field is 1. If so, the old page 7 may safely be freed.
After this, the driver compresses the new page 7, requires the CRAMES memory
manager to allocate a slot of the compressed size for the new page 7, and places
the compressed page 7 into the slot.

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 19

Initialize device
Initialize mapping

table

Handle requests

Request
page N

Retrieve compressed
page N

Decompress
page N

Copy decompressed
page N to return buffer

Read

used = 1

Free old page N

Compress new
page N

Allocate memory for
compressed page N

Succeed

Place compressed
page N in

allocated memory

Report to kernel
Request fail

Report to kernel
Request succeed

Yes No

Get page addr
and size

 from mapping table

Write

Yes No

Update mapping table

Request more
memory from kernel

Succeed
Yes

No

Could free?

Free page N

YesNo

Fig. 7. Handling request in CRAMES device

4.2 CRAMES and RAM Disk Comparison

Figure 8 illustrates the logical structure and request handling of a RAM disk. As
shown in the figure, the virtually contiguous memory space in a RAM disk is divided
into fixed-size blocks. Shaded areas in the device memory represent occupied blocks
and white areas represent free blocks. Upon initialization, a RAM disk requests a
virtually contiguous memory region from the kernel. This memory region is then
divided into uniform fixed-size blocks. When the RAM disk receives a read request
for a block, it first locates the block by its index and then copies the data in that
block to the request buffer. When it receives a write request, it first locates that
block in the same way, then replaces the data in that block with the data in the
request buffer.

ACM Journal Name, Vol. , No. , 20.

20 · Lei Yang et al.

Request: Write block 7

New Block 7 is given with request buffer

Old

Block 7

Block 1023

Block 2

Block 1

Block 0

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

Block 7

Block 1023

Block 2

Block 1

Block 0

New
1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

1024 byte

Request Handling

Replace old block 7 with new block 7

Fig. 8. Linear, fixed-size blocks in RAM disk

Compressed
Chunk 1

Tbl

Request: Write block 7

New Block 7 is given with the
request buffer

Request Handling

1. Free old block 7
2. Compress new block 7 to 286 bytes
3. Look for a fit slot
4. Place the compressed new block 7

Request Handling

5. Merge the 206 byte and 302
byte free slots into one 508 byte
free slot

Block 7

Block 0

Block 9

Block 1

Free Pool

508 byte

206 byte

254 byte

60 byte

643 byte

286 byte

Block 0

Block 9

Block 1

Block 7

Chunk 2 Chunk 3 Chunk4

206 byte

Free Pool

254 byte

60 byte

492 byte

302 byte

643 byte

Block 7

Block 0

Block 9

Block 1

Free Pool

206 byte

206 byte

254 byte

302 byte

60 byte

286 byte

643 byte

Old

New

Fig. 9. Compressed blocks in CRAMES device

Figure 9 illustrates the logical structure and request handling of a CRAMES
device. The memory space in a CRAMES device consists of several virtually con-
tiguous memory chunks. Each chunk is divided into blocks with potentially different
sizes. Shaded areas represent occupied areas and white areas represent free areas.
Upon initialization, a CRAMES device requests a small contiguous memory chunk
in the kernel virtual memory space. It requests additional memory chunks as sys-
tem memory requirements grow. These compressed memory chunks are maintained
in a linked list. Each chunk cannot be divided uniformly because the sizes of com-
pressed blocks may differ due to the dependence of compression ratio on the specific
data in each block. When all compressed blocks in a compressed chunk are free,

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 21

Benchmark
Time (s) Power (W) Energy (J)

without / w. CRAMES without / w. CRAMES without / w. CRAMES

mke2fs 0.0451 0.0454 1.58 1.48 0.0713 0.0670

cp small file 0.0509 0.0469 1.57 1.63 0.0802 0.0763

cp large file 0.1688 0.2339 1.50 1.43 0.2536 0.3346

rm small file 0.0456 0.0500 1.49 1.48 0.0678 0.0738

rm large file 0.0447 0.0455 1.50 1.49 0.0669 0.0677

pack tree 3.8130 4.9336 1.92 1.92 7.3134 9.4965

unpack 0.2761 0.3109 1.43 1.47 0.3937 0.4571

cp tree 0.4597 0.4555 1.71 1.39 0.7844 0.6327

rm tree 0.2991 0.3071 1.46 1.48 0.4368 0.4560

find 0.2968 0.2893 1.50 1.39 0.4465 0.4025

Table IV. Performance, power consumption, and energy consumption for filesystem experiments

CRAMES frees the entire chunk to the system. Therefore, the size of a CRAMES
device dynamically increases and decreases during operation, adapting to the data
memory requirements of the currently running applications. This dynamic adjust-
ment allows CRAMES to support applications that would not be capable of running
without the technique but avoids performance and power consumption penalties for
(sets of) applications that are capable of running without data compression. When
a CRAMES device receives a read request for a block, it locates the block using its
mapping table, decompresses it, and copies the original data to the request buffer.
When it receives a write request for a block, it locates the block, determines whether
the old block with the same index may be discarded, compresses the new block,
and places it at a position decided by the CRAMES memory management system.

5. CRAMES EVALUATION

This section presents performance and power consumption measurements of appli-
cations running on a Sharp Zaurus SL-5600 PDA, with and without CRAMES.
This battery-powered embedded system runs an embedded version of Linux called
Embedix [emb]. It has a 400 MHz Intel XScale PXA250 processor [xsc 2002], 32 MB
of flash memory, and 32 MB of RAM. We replaced the SL-5600’s battery with an
Agilent E3611A direct current power supply. Current was computed by measuring
the voltage across a 5 W, 250 mΩ, Ohmite Lo-Mite 15FR025 molded silicone wire
element resistor in series with the power supply. Note that this resistor was de-
signed for current sensing applications. Voltage measurements were taken using a
National Instruments 6034E data acquisition board attached to the PCI bus of a
host workstation running Linux.

5.1 Using CRAMES for Filesystem on Zaurus

CRAMES was used to create a compressed RAM device for the EXT2 filesystem
on a Zaurus SL-5600. We compared the execution time and energy consumption of
this device with that of the EXT2 filesystem on a common RAM disk. For these
comparisons we used common file operations such as mke2fs, cp, rm, and etc. as
shown in Table IV. Note that each benchmark was executed five times; the average
results are reported. We observed an average compression ratio of 63% for the
CRAMES device. In addition, Table IV illustrates that the increases in execution

ACM Journal Name, Vol. , No. , 20.

22 · Lei Yang et al.

time and energy consumption were small: on average 8.4% and 5.2%, respectively.
These results indicate that CRAMES is capable of reducing the RAM requirement
for embedded system filesystem storage with only small performance and energy
penalties.

5.2 Using CRAMES for Swapping on Zaurus

In order to evaluate the effectiveness of CRAMES when it is used for swapping, we
used two experimental setups. For the first set of experiments, we did not change
the RAM size on Zaurus. We found that sets of applications that required too much
RAM to execute on the unmodified Zaurus could execute smoothly when CRAMES
was used. In these experiments, we also identified the performance, power consump-
tion, and energy consumption impacts of CRAMES on existing applications that
were able to run without compression. Our results show that the penalties for such
applications were negligible.

For the second set of experiments, we did not introduce new applications to the
system; instead, we artificially reduced the system RAM to different sizes to prove
that with CRAMES the system could still support existing applications with small
performance, power consumption, and energy consumption penalties, while without
CRAMES these applications were either unable to execute or ran only with extreme
performance degradation and instability, i.e., no response or system crash.

5.2.1 Evaluating CRAMES with the original RAM size. The benchmarks used
to evaluate CRAMES contain three applications from the Mediabench benchmark
suite [Lee et al.], one matrix multiplication program with different matrix sizes,
ten common GUI applications provided with Qtopia [qto] for Zaurus PDAs, and
combinations of these applications running simultaneously. In order to consistently
evaluate the behavior of an unmodified PDA and a PDA using CRAMES when
running interactive applications, we wrote software to monitor user input and repeat
it with identical timing characteristics. This technique replaces the OS touchscreen
device with a named pipe or FIFO (first in first out) controlled by a program that
reads from the raw touchscreen. It stores user input events and timing information
in a file. The contents of this file are later replayed to the touchscreen device in
order to simulate identical user interaction. This allows us to consistently reproduce
user input, enabling the consistent use of benchmarks containing GUIs.

Benchmarks applications were tested with and without CRAMES. Each applica-
tion was executed five times; the average results are reported. Applications can be
grouped into three categories: (1) applications with small working data sets, i.e., ad-
pcm, mpeg2, jpeg, Hancom Word, Hancom Sheet, and calculator; (2) applications
with working data sets nearly as large as physical memory, but still (barely) able to
run without CRAMES, i.e., 500 by 500 matrix multiplication, Opera, Primtest, and
Quasar; and (3) applications with working data sets too large to fit into physical
memory, i.e., simultaneously running Qpera and Quasar as well as simultaneously
running large matrix multiplication and Media Player. Table V and Figure 10 show
that, for the first and second category, using CRAMES seldom results in any per-
formance, power, or energy penalties because no or few pages are swapped out. For
the third category, it is not possible to compare with the performance, power, and
energy of the original embedded system. The applications in this category simply

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 23

cannot run without using CRAMES.

Run Time

Application
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(s

ec
)

0

10

20

30

40

50

60

70

80

90 Without CRAMES

With CRAMES

N/A

N/A

Energy Consumption

Application
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

0

50

100

150

200

250

300 Without CRAMES

With CRAMES

N/A

N/A

Fig. 10. Performance and energy consumption impact of using CRAMES for swapping

These results indicate that CRAMES has the ability to increase available memory,
thereby allowing an embedded system to support applications that would otherwise
be unable to run. Moreover, its impact on the performance and energy consumption
of applications capable of running on the original system is negligible.

5.2.2 Evaluating CRAMES by constraining the memory size. One of the biggest
contribution of CRAMES is that it allows applications to run on a system with less
RAM. In order to evaluate the impact of using CRAMES to reduce physical RAM,
we artificially constrained the memory size of Zaurus. With reduced physical RAM,
we measured and compared the run times, power consumptions, and energy con-
sumptions of the four batch benchmarks, i.e., three applications from MediaBench
and one matrix multiplication application. For these experiments we didn’t use the
GUI applications and the user interface playback system described in Section 5.2.1.

ACM Journal Name, Vol. , No. , 20.

2
4

·
L
ei

Y
a
n
g

et
a
l.

Num. Application Description
Size (KB) Time (s) Power (W) Energy (J) Swap Comp

Data Code w.o. CRAMES w.o. CRAMES w.o. CRAMES (bytes) ratio

1 Adpcm MB: Speech compression 24 4 1.31 1.30 2.11 2.09 2.75 2.72 0 n.a.

2 Mpeg2 MB: Video CODEC 416 48 76.60 76.76 2.42 2.43 185.72 186.55 0 n.a.

3 Jpeg MB: Image encoding 176 72 0.22 0.21 2.14 2.02 0.48 0.42 0 n.a.

4 Address Book GUI: Address book 32 8 30.63 30.61 1.51 1.59 46.14 48.72 0 n.a.

5 Hancom Word GUI: Office tool 32 8 32.97 32.98 1.54 1.55 50.70 51.26 0 n.a.

6 Hancom Sheet GUI: Office tool 32 8 28.85 28.75 1.69 1.72 48.77 49.55 0 n.a.

7 Calculator GUI: Calculator 32 8 33.19 33.21 1.59 1.54 52.89 51.07 0 n.a.

8 Asteroids GUI: Fighting game 1,004 64 30.79 30.81 1.72 1.79 53.01 55.28 0 n.a.

9 Snake GUI: Game 692 32 31.75 31.73 1.54 1.53 48.76 48.69 0 n.a.

10 Go GUI: Chess game 508 80 31.02 31.02 1.52 1.51 47.02 46.79 0 n.a.

11 Matrix (500) Matrix Multiplication 2,948 4 43.02 41.41 2.28 2.27 98.27 94.07 129,461 0.33

12 Opera Browser GUI: Web browser 1,728 3,972 29.65 29.65 1.78 1.69 52.86 50.16 454,585 0.40

13 Primtest GUI: Java Multi-thread 2,848 1,364 27.77 27.79 2.06 2.11 57.30 58.52 497,593 0.39

14 Quasar GUI: Java Multi-thread 4,192 1,364 47.16 47.10 2.01 2.03 94.63 95.43 449,224 0.43

15 Opera & Quasar GUI & GUI combination 6,104 5,336 n.a. 47.12 n.a. 2.09 n.a. 98.68 992,561 0.40

16
Matrix (800) &

Batch & GUI combination 11,600 168 n.a. 83.77 n.a. 3.27 n.a. 273.55 832,642 0.34
Media Player

Table V. Performance, power consumption, energy consumption, and compression ratio for swapping experiments

A
C

M
J
o
u
rn

a
l
N

a
m

e
,
V
o
l.

,
N

o
.
,

2
0
.

On-Line Memory Compression for Embedded Systems · 25

When physical RAM is reduced to a very low value, e.g., 20 MB, the applications
suffer severe performance degradation due to kernel page reclamation. Therefore,
the timing information is no longer accurate and the recorded user actions can no
longer correctly control the applications. Moreover, Zaurus is designed to pop up
warning windows indicating that the system is dangerously low on memory, inter-
fering with the playback of GUI interaction traces. As a result, GUI applications
do not allow fair performance comparisons and thus cannot be used as benchmarks
for the experiments described in this section.

To constrain the size of system RAM on Zaurus, we used a simple kernel module
that permanently reserved a certain amount of physical memory. The memory taken
by a kernel module cannot be swapped out [Bovet and Cesati 2002] and therefore
is not compressed by CRAMES. This guarantees the fairness of our comparison.

 0

 1

 2

 3

 4

 5

 6

 7

 8

R
un

 T
im

e
(s

)

Memory size (MB)

Adpcm - Run Time

20 21 22 23 24 32

Without CRAMES
With CRAMES

 2.04

 2.06

 2.08

 2.1

 2.12

 2.14

 2.16

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Memory size (MB)

Adpcm - Power Consumption

20 21 22 23 24 32

Without CRAMES
With CRAMES

 2

 4

 6

 8

 10

 12

 14

 16

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Memory size (MB)

Adpcm - Energy Consumption

20 21 22 23 24 32

Without CRAMES
With CRAMES

Fig. 11. Performance and energy Consumption of adpcm

Figure 11, 12, 13, and 14 show the performance and energy consumptions of
benchmarks adpcm, jpeg, mpeg2, and matrix multiplication. In our experiments,
each benchmark was executed five times; the average results are reported. The
vertical bars in these figures are the range of run times, power consumptions, and
energy consumptions for each benchmark, while the dotted curves represent the
median values. For example, when system RAM is 20 MB and no compression is
used, the shortest, longest, and median run time of benchmark adpcm are 3.12
seconds, 7.15 seconds, and 4.03 seconds, respectively. The dotted curves illustrates
the trend of execution time, power consumption, and energy consumption of each
benchmark under different system settings.

Figure 11, 12, and 13 show that when the system RAM is set to 20 MB or 21 MB,
CRAMES dramatically improves the performance of benchmarks adpcm, jpeg, and
mpeg2. More specifically, compared to the base case in which system RAM is 32 MB
and no compression is used, when system RAM is reduced to 20 MB and CRAMES
is not present, these three benchmarks exhibit an average performance penalty
of 160.3% and a worst-case performance penalty of 268.7%. In contrast, when

ACM Journal Name, Vol. , No. , 20.

26 · Lei Yang et al.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1
R

un
 T

im
e

(s
)

Memory size (MB)

Jpeg - Run Time

20 21 22 23 24 32

Without CRAMES
With CRAMES

 1.9

 1.95

 2

 2.05

 2.1

 2.15

 2.2

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Memory size (MB)

Jpeg - Power Consumption

20 21 22 23 24 32

Without CRAMES
With CRAMES

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Memory size (MB)

Jpeg - Energy Consumption

20 21 22 23 24 32

Without CRAMES
With CRAMES

Fig. 12. Performance and energy consumption of jpeg

 76

 77

 78

 79

 80

 81

 82

 83

 84

R
un

 T
im

e
(s

)

Memory size (MB)

Mpeg2 - Run Time

20 21 22 23 24 32

Without CRAMES
With CRAMES

 2.36

 2.37

 2.38

 2.39

 2.4

 2.41

 2.42

 2.43

 2.44

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Memory size (MB)

Mpeg2 - Power Consumption

20 21 22 23 24 32

Without CRAMES
With CRAMES

 182

 184

 186

 188

 190

 192

 194

 196

 198

 200

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Memory size (MB)

Mpeg2 - Energy Consumption

20 21 22 23 24 32

Without CRAMES
With CRAMES

Fig. 13. Performance and energy Consumption of mpeg2

CRAMES is present, the average and worst-case performance penalties of these
benchmarks are 9.5% and 29%, respectively. As explained in Section 3.3, a signifi-
cant portion of RAM on Zaurus is used as a battery-backed RAM disk. Therefore
only 14 MB of memory are available to the applications and system background
processes. When the memory size is reduced by 12 MB or 11 MB, the system is
dangerously low on memory. Without compression, the kernel must rely on page
reclamation from buffer caches to get enough memory to run the applications.
This process may take a very long time and therefore introduces large performance
and energy consumption penalties. However, when CRAMES is present, the kernel
may provide more memory for applications via compression and therefore maintains
good performance and low energy consumption. When the system RAM is higher
than 24 MB, the performance of the applications with or without compression is
very close. i.e., no latency is observed.

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 27

 20

 40

 60

 80

 100

 120

 140
R

un
 T

im
e

(s
)

Memory size (MB)

Matrix Multiplication - Run Time

20 21 22 23 24 32

N.A. N.A.

Without CRAMES
With CRAMES

 2.16

 2.18

 2.2

 2.22

 2.24

 2.26

 2.28

 2.3

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Memory size (MB)

Matrix Multiplication - Power Consumption

20 21 22 23 24 32

N.A. N.A.

Without CRAMES
With CRAMES

 50

 100

 150

 200

 250

 300

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Memory size (MB)

Matrix Multiplication - Energy Consumption

20 21 22 23 24 32

N.A. N.A.

Without CRAMES
With CRAMES

Fig. 14. Performance and energy consumption of matrix multiplication

Figure 14 shows that, without CRAMES, 512 by 512 matrix multiplication sim-
ply would not execute when the system RAM is set to 20 MB or 21 MB. However,
when CRAMES is present, it was able to execute. More interestingly, we observe
that when CRAMES is present the performance actually improves by 8% on av-
erage compared to the base case for which the system has 32MB of memory and
CRAMES is not present. This phenomenon can be explained as follows. Unlike the
other three applications, the memory requirement of 512 by 512 matrix multipli-
cation exceeds the available memory when the system has 32 MB of RAM and no
compression. Without compression, the kernel must reclaim memory from buffer
caches by either using clean pages or evicting dirty pages. However, CRAMES starts
compressing data as soon as the free memory available in the system becomes dan-
gerously low. Therefore, before the matrix multiplication program starts, the free
memory in the system has already increased due to pre-compression. When the
application starts running, the kernel needs to do little reclamation, resulting in
improved performance. CRAMES does not improve the performance of the other
three applications, i.e., Adpcm, Jpeg, and Mpeg2. Although CRAMES responds to
reduced RAM by pre-compressing pages, the performance of these applications is
not affected much because their memory requirements are smaller, i.e., little RAM
reclamation is needed even without CRAMES.

We also ruled out another possible cause of the performance improvement: cache
effects. It is conceivable that, on a system with a physically-tagged cache, CRAMES
might shuffle the matrix pages within physical RAM, reducing conflict misses on
some architectures. However, the XScale PXA250 processor used in the Zaurus has
a data cache that is virtually addressed and virtually tagged [xsc 2002].

6. CONCLUSIONS

In this paper, we have presented a software-based RAM compression technique,
named CRAMES, for use in low-power, disk-less embedded systems. CRAMES has
been implemented as a Linux kernel module and evaluated on a typical disk-less

ACM Journal Name, Vol. , No. , 20.

28 · Lei Yang et al.

embedded system with a representative set of batch as well as GUI applications.
Experimental results indicate that CRAMES is capable of doubling the amount
of memory available to applications, with negligible performance and energy con-
sumption penalties for existing applications, without adding RAM or hardware to
the target system. When system RAM is reduced from 32 MB to as low as 20 MB,
CRAMES allows all batch benchmarks to execute with on average 9.5% increase in
execution time. However, without CRAMES these benchmarks either cannot exe-
cute, become unstable, or suffer from extreme performance and energy consump-
tion penalties. In addition to on-line working data sets compression, CRAMES
supports in-RAM compression of arbitrary filesystems type. For experiments with
the EXT2 filesystem, CRAMES increased available storage by at least 40%, with
small performance and energy consumption penalties (on average 8.4% and 5.2%,
respectively). We conclude that CRAMES is an efficient software solution to the
RAM compression problem for embedded systems in which application memory
requirements exceed physical RAM. Moreover, it allows hardware designs to be op-
timized for the typical memory requirements of applications while also supporting
(sets of) applications with larger data sets.

REFERENCES

Compressed caching in Linux virtual memory. http://linuxcompressed.sourceforge.net.

HP online shopping. http://www.shopping.hp.com.

LZO real-time data compression library. http://www.oberhumer.com/opensource/lzo.

Metrowerks Embedix. http://www.metrowerks.com/MW/Develop/Embedded.

RAM doubler. http://www.lowtek.com/maxram/rd.html.

Trolltech Qtopia Overview. http://www.trolltech.com/products/qtopia.

1995. An introduction to Thumb.

2002. Intel XScale Microarchitecture for the PXA250 and PXA210 Applications Processors User’s
Manual. http://www.intel.com.

Barkley, R. E. and Lee, T. P. 1989. A lazy buddy system bounded by two coalescing delays
per class. In Proc. ACM Symp. Operating Systems Principles. 167–176.

Bell, T. C., Cleary, J. G., and Witten, I. H. 1990. Text Compression. Prentice Hall, New
Jersey.

Benini, L., Bruni, D., Macii, A., and Macii, E. 2002. Hardware-assisted data compression for
energy minimization in systems with embedded processors. In Proc. Design, Automation &
Test in Europe Conf.

Bovet, D. P. and Cesati, M. 2002. Understanding the Linux Kernel , Second ed. O’Reilly &
Associates, Inc.

CBD. CBD compressed block device. http://lwn.net/Articles/168725/.

Chen, G., Kandemir, M., Vijaykrishnan, N., Irwin, M. J., Mathiske, B., and Wolczko, M.

2003. Heap compression for memory-constrained Java environments. In Proc. OOPSLA Conf.
282–301.

Cloop. Cloop: Compressed loopback device. http://www.knoppix.net/docs/index.php/cloop.

Cortes, T., Becerra, Y., and Cervera, R. 2000. Swap compression: Resurrecting old ideas.
Software-Practice and Experience Journal 30 (June), 567–587.

Cramfs. Cramfs: Cram a filesystem onto a small ROM. http://sourceforge.net/projects/cramfs.

Douglis, F. 1993. The compression cache: Using on-line compression to extend physical memory.
In Proc. USENIX Conf.

Kjelso, M., Gooch, M., and Jones, S. 1996. Design and performance of a main memory
hardware data compressor. In Proc. Euromicro Conf. 423–430.

ACM Journal Name, Vol. , No. , 20.

On-Line Memory Compression for Embedded Systems · 29

Kjelso, M., Gooch, M., and Jones, S. 1999. Performance evaluation of computer architectures
with main memory data compression. In J. Systems Architecture. Vol. 45. 571–590.

Lee, C., Potkonjak, M., and Smith, W. H. M. Mediabench: A tool for evaluating and synthe-

sizing multimedia and communications systems. http://cares.icsl.ucla.edu/MediaBench.

Lee, T. P. and Barkley, R. E. 1989. A watermark-based lazy buddy system for kernel memory
allocation. In Proc. USENIX Conf. 1–13.

Lekatsas, H., Henkel, J., and Wolf, W. 2000. Code compression for low power embedded

system design. In Proc. Design Automation Conf. 294–299.

McKusick, M. K. and Karels, M. J. 1988. Design of a general-purpose memory allocator for

the 4.3BSD UNIX kernel. In Proc. USENIX Conf. 295–303.

Peterson, J. L. and Norman, T. A. 1977. Buddy systems. Communications of the ACM 20, 6
(June), 421–431.

Rizzo, L. 1997. A very fast algorithm for RAM compression. Operating Systems Review 31, 2
(Apr.), 36–45.

Roy, S., Kumar, R., and Prvulovic, M. 2001. Improving system performance with compressed
memory. In Proc. Parallel & Distributed Processing Symp.

Russinovich, M. and Cogswell, B. 1996. RAM compression analysis. http://ftp.uni-
mannheim.de/info/OReilly/windows/win95.update/model.html.

Shaw, C., Chatterji, D., Sen, P. M. S., Roy, B. N., and Chauduri, P. P. 2003. A pipeline
architecture for encompression (encryption + compression) technology. In Proc. International
Conf. on VLSI Design.

Tremaine, B., Franaszek, P. A., Robinson, J. T., Schulz, C. O., Smith, T. B., Wazlowski,

M., and Bland, P. M. 2001. IBM memory expansion technology. IBM Journal of Research
and Development 45, 2 (Mar.).

Tuduce, I. C. and Gross, T. 2005. Adaptive main memory compression. In Proc. USENIX
Conf.

Wilson, P. R., Kaplan, S. F., and Smaragdakis, Y. 1999. The case for compressed caching in
virtual memory systems. In Proc. USENIX Conf. 101–116.

Woodhouse, D. 2001. JFFS: The journalling flash file system. In Ottawa Linux Symp. RedHat
Inc.

Xu, X. H., Clarke, C. T., and Jones, S. R. 2004. High performance code compression ar-
chitecture for the embedded ARM/Thumb processor. In Proc. Conf. Computing Frontiers.

451–456.

Yang, L., Dick, R. P., Lekatsas, H., and Chakradhar, S. 2005. CRAMES: Compressed RAM
for embedded systems. In Proc. Int. Conf. Hardware/Software Codesign and System Synthesis.

Yokotsuka, M. 2004. Memory motivates cell-phone growth. Wireless Systems Design.

Received November 2005; revised May 2006; accepted August 2006

ACM Journal Name, Vol. , No. , 20.

