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Abstract—Indoor air quality is important. It influences human
productivity and health. Personal pollution exposure can be
measured using stationary or mobile sensor networks, but each
of these approaches has drawbacks. Stationary sensor network
accuracy suffers because it is difficult to place a sensor in
every location people might visit. In mobile sensor networks,
accuracy and drift resistance are generally sacrificed for the sake
of mobility and economy. We propose a hybrid sensor network
architecture, which contains both stationary sensors (for accurate
readings and calibration) and mobile sensors (for coverage).

Our technique uses indoor pollutant concentration prediction
models to determine the structure of the hybrid sensor network.
In this work, we have (1) developed a predictive model for
pollutant concentration that minimizes prediction error; (2)
developed algorithms for hybrid sensor network construction;
and (3) deployed a sensor network to gather data on the airflow in
a building, which are later used to evaluate the prediction model
and hybrid sensor network synthesis algorithm. Our modeling
technique reduces sensor network error by 40.4% on average
relative to a technique that does not explicitly consider the
inaccuracies of individual sensors. Our hybrid sensor network
synthesis technique improves personal exposure measurement
accuracy by 35.8% on average compared with a stationary sensor
network architecture.

I. INTRODUCTION

Indoor air quality strongly influences the well-being of individuals.

People spend more that 90% of their time indoors. Moreover,

pollutant concentrations for some pollutants are usually much higher

indoors than outdoors. Many indoor pollutants, such as volatile or-

ganic compound (VOC), carbon monoxide, and particulate matter, are

closely related to chronic diseases, cancers, and human mortality [13],

[27]. Other indoor pollutants, such as carbon dioxide (CO2), can have

significant impacts on the productivity, performance, and health [28],

[31] of office workers and students. Therefore, accurate estimation

of personal pollutant exposure is important.

Currently, stationary and accurate air quality monitoring sen-

sors [30] are the primary tools for personal pollution exposure

measurement. However, such sensors are usually too expensive for

large-scale and fine-grained deployment. Moreover, stationary sen-

sors generally require periodic calibration, which can significantly

increase maintenance cost. Thus, they are usually scarce. In many

cases, researchers and building managers have to rely upon data

reported from sensors far away from the occupants to estimate

personal exposure.

The problem with this approach is that indoor pollutant distribu-

tion can be spatially non-uniform. Indoor pollutant concentrations

may vary significantly even within the same building, e.g., indoor

VOC concentrations can differ by more than 7 times for different

rooms in a same building [22]. Therefore, accurately estimating the

indoor personal pollution exposure would require a sensor network

composed of many stationary sensors, which would be prohibitively

expensive and thus impractical.

To address this problem, recent research has focused on inex-

pensive and mobile personal air quality sensor networks [17], [34].

Mobile sensor networks are composed of many low-cost, power-

efficient, and miniature sensors carried by individuals. As sensor

technologies and markets mature, the prices of such sensors are

dropping. For example, a Figaro TGS2602 VOC sensor costs only

about $11. Mobile sensor networks can measure the environments

immediately surrounding their users, thus eliminating the problems

caused for stationary sensor networks by non-uniform spatial pollu-

tant distributions.

A main drawback of mobile sensors is their susceptibility to drift

error [29]. Drift is the gradual deviation of a sensor’s readings from

the correct value. It is affected by many factors that change the

sensing surface, including material degradation, exposure to sulfur

compounds or acids, aging, or condensate on the sensor surface [2],

[14]. Mobile sensors are generally more susceptible to drift than

stationary sensors due to tradeoffs made for compactness and econ-

omy. This problem is amplified because it is difficult to frequently

calibrate mobile sensors, especially when they are carried by non-

specialists. Given a fixed budget, one must trade off the (spatial

variation) inaccuracies of stationary sensor networks with the (drift)

inaccuracies of mobile sensor networks.

We propose a hybrid sensor network architecture composed of both

accurate stationary sensors and inaccurate mobile sensors. Stationary

sensors can provide accurate readings and more importantly, calibra-

tion opportunities for the mobile sensors. Mobile sensors carried by

individuals can measure more relevant personal exposure data. Note

that although our technique focuses on the hybrid sensor network

architecture, it can also be used to design mobile-only or stationary-

only sensor networks.

The purpose of this paper is to provide a comprehensive solution

for hybrid air quality sensor network architecture analysis and design.

Network performance analysis is challenging because it is difficult to

predict actual concentrations given only readings from other locations

and drift-influenced readings. The challenge for network synthesis is

to maximize accuracy via sensor selection and allocation given a fixed

budget. Our work addresses both analysis and synthesis problems.

This work makes the following contributions:

1) we formulate the problem of indoor pollutant concentration

estimation and propose a Bayesian analysis based optimal

solution taking sensor inaccuracies into account;

2) we describe algorithms for automatically designing hybrid

sensor networks; and

3) we demonstrate how to use real-world CO2 measurement data

to estimate the airflow inside a building, and use these estimates

to evaluate our analysis and synthesis techniques.

To the best of our knowledge, this is the first work addressing the

problem of optimal concentration prediction with inaccurate sensors



and automated design for hybrid (mobile/stationary) air quality sensor

networks.

The rest of the paper is organized as follows. Section II discusses

previous related work. Section III provides a motivating example.

Section IV describes models to predict the indoor pollutant con-

centration optimally and estimate the prediction error. Section V

presents algorithms to select and allocate different types of sensors

to minimize average sensor network error. Section VI describes our

deployment and evaluation results.

II. RELATED WORK

This section summarizes the prior works on sensor network archi-

tecture, indoor environment modeling, and sensor noise reduction.

Sensor network architecture. Postolache et al. [26] described an

ad hoc sensor network for indoor and outdoor air quality monitoring.

Jiang et al. [17] described MAQS, a mobile environmental sensing

network utilizing portable, indoor location tracking sensors. Common

Sense [34], designed by Willett et al., tried to establish an environ-

mental sensing network based on the response from communities. The

placement problem of stationary sensors has also been well studied

[3], [7]. Krause et al. [20] proposed a sensor placement algorithm

based on sensing quality and communication cost prediction. In their

approach, the sensor nodes are all stationary, while we consider both

stationary and mobile nodes. Recently, Xiang et al. [29] proposed

a mixed-integer linear programming based placement algorithm for

stationary sensors in a hybrid sensor network. Our technique differs

from previous work in that we consider both stationary and mobile

sensors in our network design and exploit the cost and accuracy trade-

off between them. Moreover, in contrast with prior work, we assume

no prior knowledge of the types and quantities of sensors or the

carriers of the mobile sensors. Instead of relying upon an established

sensor network architecture, we describe how to construct hybrid

sensor networks from scratch.

Indoor environment modeling. The single compartment mass

balance-based model, developed by Hayes [15], [16], is widely used

in modeling indoor pollutant distributions [11], [12], [23] and was

validated using real-world measured data [8]. Liu et al. [21] gave a de-

tailed description of the model and used it together with a probability-

based adjoint inverse method to back-track indoor pollution sources.

In this work, we build an extended model based on the mass balance-

based model. In most prior work, it is assumed that the readings

reported by the sensors are always accurate, and the mass balance

model is mainly used to interpolate the pollutant concentrations at

the locations without sensors. However, this assumption is not true in

real-world applications using low-cost sensors. We extend the current

model by considering and optimally compensating for the drift error.

Sensor noise reduction. One major problem for the low-cost

sensors is their unreliable readings caused by long-term drift. To

reduce the sensor noise, Tsujita et al. [32], [33] proposed using

accurate stationary sensors to calibrate mobile sensors. Bychkovskiy

et al. [6] proposed a two-phase post-deployment calibration tech-

nique. Miluzzo et al. [24] proposed an auto-calibration algorithm

for mobile sensor networks. Elnahrawy et al. [10] described a

sensor noise cleaning framework based on Bayes’ theorem. In this

work, we evaluate the impact of sensor noise to the synthesis and

construction process of sensor networks. In contrast with prior work,

our model incorporates indirect observations, i.e., concentration levels

of adjacent locations, and thus improves accuracy of the network.

III. MOTIVATING EXAMPLE

This example describes the previously unanswered indoor pollutant

concentration estimation and sensor network construction questions

Fig. 1. Motivating example.

that motivate our work. The rest of this paper will provide answers

to the questions appearing in this section.

Assume that a research team wants to deploy a small sensor

network in the building shown in Figure 1. The building contains

3 rooms: A, B, and C. The rooms are connected and some have

airflow between them. However, the air quality in each room differs.

Assume that the budget is limited and the team can only afford one

accurate sensor, which is placed in room A. The first question is,

“How should the pollutant concentrations in rooms B and C be

predicted based on the reading in room A?”

Then a somewhat inaccurate sensor is placed in room B. Suppose

that one day the sensor reports a reading of 0.8 parts per million

(PPM) pollutant concentration, while the estimates based on A’s

measurement suggests that the concentration in room B should be

0.5 PPM. The second question is, “How can these two estimates be

reconciled to minimize the error of the expected concentration?”

Given a method of estimating pollutant concentrations, the problem

of determining the numbers and types of mobile and stationary

sensors remains. Subject to budget constraints, there are multiple

options. In this case, one might deploy one stationary sensor and four

mobile sensors, or two stationary sensors and two mobile sensors.

The third question is, “How should the numbers, types, and

positions/carriers of sensors be determined to minimize the error

of the measured personal pollutant exposure?”

In this work, we aim to answer the three questions considered

above. The first two questions led us to develop an optimal pollutant

concentration prediction model based on analysis of indoor airflow

and knowledge of pollutant source generation rate and sensor drift

distributions. The third question led us to develop a hybrid sensor

network synthesis algorithm that considers human mobility patterns

and sensor costs.

IV. POLLUTANT CONCENTRATION PREDICTION

MODELS

In this section, we describe the details of our optimal pollutant con-

centration prediction model. Section IV-A gives a problem definition.

Section IV-B and Section IV-C introduce various concentration and

error estimation models. Section IV-D describes the optimal model.

IV.A. Problem and Term Definitions

The deployment field, which is typically a building, is divided

into multiple zones with inhabitants moving inside. Within the same



zone, the pollutant distribution is well-mixed and uniform. This can

be achieved by subdividing zones when necessary. Depending on the

pollutant type and ventilation conditions, a zone can be part of a

room, an entire room, or multiple closely connected rooms.

A sensor network is deployed in a building so that a subset of

the zones are covered, i.e., contain sensors. There are two potential

causes of inaccurate concentration predictions. First, it is necessary

to (imperfectly) estimate the pollutant concentrations of zones that

are not covered. Second, sensor readings for covered zones may

be inaccurate due to drift. We describe a model that takes into

consideration both error sources and minimizes the expected value

of prediction error.

We now define error. The error of the estimated concentration

for zone i, denoted as ei, is the difference between the predicted

concentration and the ground truth. Since the estimation error is

a random number, it can not be used to directly evaluate models.

Therefore, we use expected error, which is the standard deviation

of the distribution that ei follows, as the evaluation criteria. The

expected error is denoted as δi, and its relationship with estimation

error ei is

δi = std(ei). (1)

Thus, an optimal pollutant concentration prediction is the concentra-

tion estimation with the minimal expected error.

The multi-zone pollutant concentration modeling problem can be

defined as follows. Assume knowledge of the following deployment

field information: inter- and intra-zone airflow, ventilation conditions,

corresponding human motion patterns, pollutant source generation

rates, and sensor drift information. A sensor network architecture, i.e.,

the types and quantities of the sensors, the locations of the stationary

sensors, and the carriers of the mobile sensors, is deployed. Find a

model to estimate the pollutant concentrations of all zones so that

the average expected error is minimized.

IV.B. Concentration Prediction without Sensors

Assume that we want to evaluate the pollutant concentrations of

all the zones in a building where no sensor is deployed. In general,

the dynamic concentration change rate can be modeled using the

following multi-zone pollutant transport equation [21], which is based

on the single compartment mass balance-based model.
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=
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The coefficients in Equation 2 are
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(k 6= i)

and (3)

Bi =
si

Qi

+
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Qi

, (4)

where Ci is the concentration for zone i, C0 is the outdoor con-

centration, n is the total number of zones, Fi,j is the airflow rate

from zone i to j, Fi,0 is the net airflow rate between zone i and

outdoor environment, ηi,j is the efficiency of the pollutant filters

in the heating, ventilation, and air conditioning (HVAC) system, Qi

is the air volume in zone i, and si is the local pollutant source

generation rate. Note that the airflow rate Fi,j is directional and

Fi,j is not necessarily equal to Fj,i. In our problem formulation,

we neglect the kinetics among various pollutants and local removal

rate. Those parameters can be easily incorporated into the model if

the information is known.

Now consider a building with n zones. The estimated concentra-

tions for all the zones in the building can be represented by a vector

C = [C1, C2, ..., Cn]T . Thus, the pollutant transport function can be

re-written as

dC

dt
= A · C + B and (5)

A =

2

6

4

a11 · · · a1n

...
. . .

...

an1 · · · ann

3

7

5
, B = [B1, B2, ..., Bn]T . (6)

In the rest of the paper, matrix A is referred to as the airflow matrix.

This model is widely used and has been found to be accurate in

real-world experiments [8].

For most of the pollutants, the health and/or performance impact

is evaluated on a time scale varying from days to years. Moreover,

if some pollutant is released and causes a sudden change in local

source generation rates, the indoor environment can return to a well-

mixed state quickly. For example, it takes about 80 minutes for a

238 m3 smoking lounge to become well-mixed [19]. Therefore, in

personal exposure measurement applications, the dynamic variation

in Equation 2 can be neglected [5], [11], leaving dCi

dt
= 0.

The equilibrium state equation for zone i can be described using

the following equation.

n
X

j=1

aijCj + bisi + kiC0 = 0, (7)

where bi equals 1
Qi

and ui equals
Fi,0

Qi
. In matrix form, we have

A · C + B = 0. (8)

If all the zones are in the well-mixed state, the pollutant concentration

in any zone is a linear combination of the concentrations of other

zones (including outdoor environment) and its own local source

generation rate.

The airflow matrix A can be estimated using multiple methods.

For example, Liu et al. [21] suggest that we can derive the airflow

matrix by solving the corresponding computational fluid dynamics

equations using tools such as CONTAM [25]. Another approach is

to use the existing sensors, with the help of regression analysis, to

estimate the airflow matrix. We will show in Section VI-A2 how

to use a CO2 sensor network to derive the average airflow matrix.

The first approach does not require any existing sensor infrastructure.

However, it is less accurate since it relies on the empirical estimation

for parameters such as building leakages.

The inter-zone airflow may vary in time as the human behavior and

ventilation conditions change, e.g., doors and windows opening and

closing or changes in the state of the heating system. However, it is

not necessary to derive multiple airflow matrices for all the scenarios.

Since the concentration relationship between zones is linear, we

can use a single averaged matrix as long as the equilibrium state

assumption in Equation 7 holds.

To estimate the pollutant concentrations of uncovered zones, we

need to estimate the source generation rates si. We assume that the

source generation rates follow certain distributions with known mean

values and standard deviations. The knowledge of the distributions

can be obtained by analyzing the historical data or existing literature



for buildings with similar characteristics [4], [9], [22]. The error of the

estimation can be captured and compensated for by sensors located

in or near the zone.

Assume that the source generation rate distribution for zone i is

Si = N(µi, σi), (9)

where N is the type of source generation rate distribution, which is

assumed to be Gaussian, µi is its expected mean value, and σi is

its standard deviation. For each zone, its actual generation rate is a

random number si that follows distribution Si.

The optimal generation rate prediction, for any uncovered zone i,

is the mean value µi of its distribution. Thus, when there is no sensor

deployed in the building, by solving Equation 7, the concentration of

zone i can be estimated as

Ci = −

n
X

j=1

a
′
ij(bjµj + kjC0), (10)

where a′
ij is the element of the inverse matrix A−1 of the airflow

matrix A.

Given that there are no sensors deployed, Equation 10 predicts

pollutant concentration with minimal expected error. The ground truth

concentration, denoted as ξi, can be calculated as

ξi = −

n
X

j=1

a
′
ij(bjsj + kjC0), (11)

where sj is the ground truth source generation rate of zone j.

By its definition, the estimation error of zone i is the difference

between the predicted concentration and ground truth and can be

expressed as

ei = Ci − ξi. (12)

Note that ei is a random number and its standard deviation is the

expected error, δi.

By replacing Ci and ti in Equation 12 with Equation 10 and

Equation 11, the estimation error becomes

ei = −
n

X

j=1

a
′
ij · bj(µj − sj). (13)

Note that the outdoor concentration C0 can be measured by accurate

stationary monitoring stations. Thus, it is accurate and does not cause

any errors in Equation 13.

Since the term µj − sj in Equation 13 is a random number that

follows distribution N(0, σi), we define the local generation rate

vector H as

H = [b1h1, b2h2, ..., bnhn]T , (14)

where hi equals µi − si. Assume that the estimation errors of all the

zones are e = [e1, e2, ..., en]T . In the matrix form, the estimation

errors can be calculated as

e = A
−1 · (−H). (15)

Equation 10 gives the optimal pollutant concentration prediction

with no sensors deployed. Equation 15 calculates the estimation errors

for the prediction for all zones. As indicated in Equation 13, the

estimation error is a random number which is the linear combination

of the generation rates of all the zones.

Instead of predicting the pollutant concentration using the empiri-

cal concentration distribution of each zone directly, we estimate the

distributions of source generation rates and use them to calculate

the concentrations. We do this because unlike the source generation

rates, the concentrations are highly correlated. For example, assume

we have two zones i and j, with estimation errors ei and ej

respectively. The airflow between i and j is high. If there is an

accurate sensor located in zone i, the prediction error in zone j, based

on the observation on zone i, should decrease significantly. However,

if we model their empirical pollutant concentration distributions

independently, the estimation error in zone j remains the same,

which greatly overestimates the error. By modeling the distributions

of the independent source generation rates, one can avoid error

overestimation resulting from ignoring correlations.

IV.C. Concentration Estimation with Sensors

In the previous discussion, we have derived the optimal concentra-

tion prediction model for a non-monitored building in Equation 10.

Now we consider a scenario in which sensors are deployed. Specifi-

cally, we will evaluate how the deployment of sensors, both accurate

and inaccurate, affects the concentration estimation accuracies for

uncovered zones.

Assume that in zone i, a sensor is deployed. Thus, the predicted

concentrations are
(

Ci = ri i ∈ R
Pn

j=1,j 6∈R aijCj +
P

j∈R rj + bisi + kiC0 = 0 i 6∈ R,
(16)

where ri is the reading of the sensor in zone i and R is a subset

of the set of all zones Z and contains the zones that are covered by

sensors. The relationship between the ground truth and the sensor

reading is

di = ri − ξi, (17)

where di is the sensor reading error and is a random number

following Gaussian distribution N(0, σs), in which σs is the standard

deviation. Note that this error, caused by sensor drift, is independent

of source generation rates, and hence independent of the concentra-

tion prediction errors.

Thus, the airflow matrix A is

A =

2

6

6

6

6

6

6

4

a11 · · · a1i · · · a1n

...
. . .

...
...
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...

...
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3

7

7

7

7

7

7

5

. (18)

In general, if a sensor is placed in zone i, all the elements aij,j 6=i

should be 0. The prediction error of zone i, instead of Equation 13,

is calculated as

ei =

(

di i ∈ R

−
“

Pn

j=1,j 6∈R a′
ij · bjhj +

P

k∈R a′
ikdk

”

i 6∈ R,
(19)

where each a′
ij is an element of the inverse, A−1, of the modified

airflow matrix. The source generation rate vector H is

H = [b1h1, ..., bihi = di, ..., bnhn]T . (20)

With the modified coefficients shown in Equations 18 and 20,

Equation 15 is still valid. The equations described above can be

applied to both stationary sensors and mobile sensors. The stationary

sensors are typically more accurate. Thus, the standard deviation σs

of sensor error should be much smaller for stationary sensors than

mobile ones.



IV.D. Optimal Concentration Prediction Model

So far, we have derived concentration prediction and error estima-

tion models with and without sensors. However, when the deployed

sensor in a zone is inaccurate, the current solution is sub-optimal. In

this section, we will discuss how to optimally predict concentrations

with inaccurate sensors.
IV.D.1) Bayesian Analysis: For many types of low-cost mobile

sensors, drift error eventually dominates the error of the predicted

concentration based on empirical data. For example, the 4-month

uncompensated drift error of Figaro TGS2602 VOC sensor is about

0.8 PPM on average [29], while the expected error of VOC in many

environments is only around 0.3 PPM [9], [22]. Therefore, there

is significant noise in the sensor readings, which greatly limits the

overall accuracy of the sensor network.

To improve the concentration prediction accuracy, the sensor noise

needs to be minimized. It is achieved by combining the known

estimates, i.e., sensor readings and empirical source generation rate

estimates, of the measured zone and its connected zones. Specifically,

assume that for a certain zone, r is the observed reading from the

noisy sensor and ξ is the ground truth concentration. According to

Bayes’ theorem, the following equation holds [10].

f(ξ|r) =
f(r|ξ)g(ξ)

R

v∈Θ
f(r|v)g(v)dv

, (21)

where f is the sampling distribution of r, g is the prior distribution,

and Θ is the domain of g. To minimize the sensor error, we should

pick the truth estimator ξ so that the probability that ξ is observed

given sensor reading r is maximized. In other words, f(ξ|r) should

be maximized.

Therefore, the optimal concentration prediction Coptimal can be

derived using the following equation.

Coptimal = arg max
ξ

f(r|ξ)g(ξ). (22)

According to the problem definition, the sampling distribution f is

the distribution of the sensor drift, while the prior distribution g is

equal to the distribution of concentration prediction as described in

Equation 16. It is shown in Section VI-A1 that both sensor drift

and the prior distribution, which is the spatial pollutant distributions

among zones, can be modeled using Gaussian distribution. In that

case, Equation 22 have a closed form solution.

Coptimal =
σ2

s

σ2
s + σ2

e

µe +
σ2

e

σ2
s + σ2

e

r, (23)

where σe and µe is standard deviation and mean of the estimated

concentration assuming no sensor is present, σs is the standard

deviation of sensor drift, and r is the sensor reading. Note that if

either the sensor drift or the prior pollutant distribution does not

follow Gaussian, Equation 23 may not be valid. We should refer to

Equation 22 to find the optimal combination of the readings, and the

results differ according to the detailed distributions.
IV.D.2) Optimal Prediction Model: We derive our predictive

model based on Equation 23, which optimally balances the weight-

ings of the inaccurate sensor readings and the similarly inaccurate

source generation rate estimates to improve the overall prediction

accuracy. Assuming that w =
σ2

s

σ2
s+σ2

e
, the estimation of the concen-

tration for zone i can be described as

Ci = wi · Cestimate + (1 − wi) · Csensor

= −
wi

aii

0

@

n
X

j=1,j 6=i

aijCj + biµi + kiC0

1

A + (1 − wi)ri, (24)

where Cestimate is the estimated concentration for zone i assuming

no sensor is located in that zone, Csensor is the sensor reading for

zone i, and wi can be considered as assigned weight, which ranges

from 0 to 1. If wi equals 0, the sensor reading is considered accurate

and hence determines the concentration for the zone. If wi equals 1,

it means there is no sensor located in the zone.

The ground truth concentration for zone i can be re-written as

ξi = −
wi

aii

0

@

n
X

j=1,j 6=i

aij · tj + bisi + kiC0

1

A + (1 − wi)ti. (25)

Thus, the estimation error, defined as Ci − ξi, is

ei = −
wi

aii

0

@

n
X

j=1,j 6=i

aij · ej + bihi

1

A + (1 − wi)di, (26)

Therefore, the airflow matrix is

A =

2

6

6

6

4

a11 a12w1 · · · a1nw1

a21w2 a22 · · · a2nw2

...
...
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...

an1wn a22wn · · · ann

3

7

7

7

5

, (27)

in which except for aii, each element in the ith row is multiplied by

wi.

By solving Equation 26, we have

ei = −
n

X

j=1

a
′
ij · (wj · bjhj − (1 − wj) · ajjdj). (28)

Thus, the local generation rate vector H is

H =

2

6

6

6

4

w1 · b1h1 − (1 − w1) · a11d1

w2 · b2h2 − (1 − w2) · a22d2

...

wn · bnhn − (1 − wn) · anndn

3

7

7

7

5

. (29)

Equation 15 can be used to calculate the estimation errors of all the

zones.

In general, Equation 24 gives the optimal concentration predictions.

Equation 28 allows us to calculate the estimation error of the optimal

predictor. Note that although we have presented equations for zones

containing a single sensor, it is easy to extend the current solutions

to cases where multiple sensors are co-located in a same zone.

V. HYBRID SENSOR NETWORK SYNTHESIS

In this section, we describe algorithms to solve the hybrid sensor

network synthesis problem based on our optimal prediction model.

Section V-A generalizes the problem and provides definitions. Sec-

tion V-B discusses the reasoning and underlying observations for the

synthesis algorithm. Section V-C describes the algorithm in detail.

V.A. Problem Definition

In a hybrid sensor network, there might be multiple types of sensors

with varying accuracies, long-term drift rates, lifespans, and prices.

Our work mainly focuses on the trade-off between accuracy and price.

In other words, given the same budget, we want to minimize the

personal exposure estimation error of the sensor network.

Note that the exposure error, denoted as Ei, is different from the

estimation error ei and expected error δi as defined in Section IV-A.

In real world applications, we are interested in personal exposure

rather than indoor concentrations. Thus, the value of a sensor should

be determined both by its measurement accuracy and the number of

people it serves. For example, if a sensor is placed in an isolated



zone with no people in it, even if its reading is accurate, it does not

improve the quality of personal exposure measurement.

We define the exposure error for zone i as

Ei =
k

X

m=0

δi(t0 + m∆t) · Pi(t0 + m∆t) · ∆t, (30)

where Ei is the exposure error, δi(t0 + m∆t) is the expected error

of zone i during time interval from t0 + m∆t to t0 + (m + 1)∆t,

Pi(t0+m∆t) is the number of people in zone i during the same time

interval, ∆t is a time interval during which the number of people and

expected error of each zone are considered to be constant, and k is the

total number of such time intervals in a day. Note that the expected

error is a function of time because of the motion of sensor carriers.

We also assume that the information of sensor readings is shared

by everyone in the same zone, with or without sensors. Thus, their

personal pollutant exposure measurement have the same expected

error δi.

The problem of hybrid sensor network synthesis can be described

as follows: given a certain budget b, the set of zones Z, the set of

mobile sensor carrier candidates J , the set of sensor prices T , and

assuming that the total cost of the deployed sensors is c, find a sensor

network architecture, i.e., z1,2,... ∈ Z and j1,2,... ∈ J where sensors

are deployed, so that the total exposure error,
Pn

i=1 Ei, is minimized

under the constraint c < b. One could modify this definition if the

accuracy were more important for some people than others, e.g., those

with respiratory health problems.

V.B. Synthesis Overview

To construct a hybrid sensor network, we need to determine the

types and quantities of sensors first. This problem is similar to the

knapsack problem, in which we have a budget and a list of items.

Each item has a weight and value, and we need to find the set of items

that maximizes value while meeting a weight budget. If each type of

sensor has a fixed value, i.e., amount of exposure error reduction, the

problem is equivalent to the knapsack problem and hence NP-hard.

In our problem formulation, the exposure error improvement of

each type of sensor is not fixed. It is dependent on the inter-zone

airflow, sensor location, sensor drift distribution, source generation

rate distribution, and the sensor architecture. For example, different

placement locations for a sensor can lead to significantly different

exposure error improvement results. Therefore, to determine the

correct value of each sensor, we must perform sensor placement and

allocation algorithms during the process of sensor selection. However,

the sensor placement problem, even for the stationary sensors, is also

NP-hard [29].

To address this problem, we rely on the observation that the price

of the accurate stationary sensors is much higher than that of the

inaccurate mobile sensors. For example, an accurate photo-ionization

detector (PID) based VOC sensor may cost $600, while a metal oxide

VOC sensor costs only $11. Even after considering the cost of all the

peripheral components, the stationary sensors are still several times

more expensive than the mobile sensors. Moreover, the stationary

sensors need to be manually calibrated frequently, which increases

maintenance cost.

Therefore, we decompose the synthesis problem into two sub-

problems. The first sub-problem is the selection and placement of

the stationary sensors, which we solve by exhaustively searching all

the possible selection and placement schemes. There are two reasons

for this design decision: (1) the high cost of the stationary sensors

constraints the quantities that can be deployed in the sensor network

and (2) stationary sensors can provide calibration opportunities for

the mobile sensors, thus help to improve the accuracy of the entire

network.

The second sub-problem is the allocation and assignment of the

mobile sensors. Because of the relatively large quantity of the mobile

sensors, exhaustive search would be computationally intractable. We

use a heuristic in which we choose one sensor per iteration based on

its unit value. Unit value is defined as the exposure error reduction

per unit cost. This is repeated until the budget is met. Note that the

inaccurate and low-cost sensors can be used as stationary sensors. In

that case, they are treated as mobile sensors each of whose trajectories

are confined in a single zone.

V.C. Algorithm

Algorithm 1 Hybrid sensor network synthesis algorithm

Require: Z // set of rooms
Require: SM // set of mobile sensors
Require: SST // set of stationary sensors
Require: J // set of mobile sensor carriers candidates
Require: U // set of source generation rate distributions
Require: D // set of sensor drift error distributions
Require: T // set of sensor prices
Require: M // set of mobility patterns of all the individuals
Require: b // budget

emin =∞ // minimal personal exposure error
Ymin ← {} // sensor network architecture of emin

YST ← placement_search(SM , b) // YST is the set of all the possible
stationary sensor placement schemes under current budget
∀Y ∈ YST , W (Y )← weight_calculation(Y, D, U) // W is the weight
table
for Y ∈ YST do

epre ← error_calculation(Y, U, D, M, W (Y ))
Ypre ← Y
c← total_cost(Y, T )
while c < b do

∆eint ← 0
for s ∈ SM do

for j ∈ J do
X ← Ypre ∪ (s, j)
W (X)← weight_calculation(X, D, U)
ecur ← error_calculation(X, U, D, M, W (X))

∆ecur =
epre−ecur

T (s)
if ∆ecur ≥ ∆eint then

∆eint ← ∆ecur

eint ← ecur

Yint ← X
end if

end for
end for
epre ← eint

Ypre ← Yint

c← total_cost(Ypre, T )
end while
if epre < emin then

emin ← epre

Ymin ← Ypre

end if
end for

The detailed algorithm is shown in Algorithm 1. The algorithm first

searches all the possible assignments for stationary sensors within

the budget limit. For each stationary sensor assignment, a greedy

algorithm is used to assign mobile sensors. As long as the budget

is not exceeded, the greedy algorithm tries to find the mobile sensor

and the corresponding carrier so that the exposure error reduction per

unit price, ∆E, is maximized. ∆E is defined as

∆E =
Epre − Ecur

T (s)
, (31)

where Epre is the previous average exposure error before assigning

the new sensor, Ecur is the current average exposure error after the

assignment, and T (s) is the price of the sensor to be assigned. When



the algorithm ends, it returns a sensor network architecture, i.e., a

sensor selection and the location/carrier of each sensor, with the

minimal exposure error that the algorithm can find within the budget

limit.

VI. EXPERIMENTAL RESULTS

This section describes the evaluation of our model and synthesis

algorithms. Section VI-A describes the experimental setup and the

CO2 experimental measurement for an office building. Section VI-B

shows the evaluation results of our pollutant concentration predictor.

Section VI-C presents the simulation results of our hybrid sensor

network synthesis algorithm.

VI.A. Simulation Setup

The sensing error of each zone is determined by the distributions

of sensor drifts and the distributions of the source generation rates of

all the connected zones, as shown in Equation 26. Thus, real-world

deployment, with each deployment only providing one sampling point

of the error distribution, is insufficient to estimate the accuracy of the

sensor network. Therefore, we use simulation with parameters derived

from real-world measurements to evaluate our techniques.

In this section, we talk about the selection of the simulation

parameters, including pollutant generation rate and sensor drift dis-

tributions, sensor prices, and human motion traces. We also describe

the deployment of a CO2 sensor network in a building, which is used

to determine the inter-room airflow.

VI.A.1) Parameter Selections: The standard deviation of pollutant

generation rate estimation is assumed to be around 0.3 PPM based

on the indoor VOC concentration measurement of an industrial area

building [22]. The data have passed the Lillie normality test. There-

fore, we assume that the distributions of indoor source generation

rates are Gaussian. We estimate the sensor drift error based on

existing work [29]. The drift error of Figaro TGS2602 VOC sensors,

after compensation, is about 0.24 PPM. The drift error data have also

passed the Lillie normality test and hence its distribution is assumed

to be Gaussian.

In our synthesis, the mobile sensor is modeled on Figaro TGS2602

VOC sensors, which cost about $11 each. The stationary sensor

is modeled on Baseline-MOCON VOC sensors. Its measurement

error is limited by the resolution of the analog-to-digital converter

interface, and is assumed to be 0.03 PPM. The cost of the accurate

Baseline-MOCON sensor is about $600. Both of these sensors require

peripheral circuitry to gather and transmit data and perform proximity

detection. The cost of such supporting circuit is about $150 [17].

Thus, in this work, we assume that the total costs of the mobile and

stationary sensor nodes are $150 and $750, respectively.

Mobile sensors are automatically calibrated when in the same zone

with a stationary sensor. We assume that once calibrated, the mobile

sensors’ drift can be removed. Note that our technique can be used

even if the calibration is imperfect, i.e., some residual drift error

remains after calibration.

To evaluate the sensor network performance and select appropriate

mobile sensor carriers, human motion traces are needed. In this work,

we generate motion traces using the human mobility model described

by Kim et al. [18]. Their mobility model is based on a statistical

survey of the existing literature and U.S. Bureau of Labor Statistics

data. The details of the distributions and parameters can be found in

the existing literature [18].

VI.A.2) A CO2 Sensor Network Deployment and Analysis: To

estimate the airflow in a building, we performed a field experiment in

which eight air quality sensing platforms were distributed throughout

(a) (b)

Fig. 2. Deployment environment and equipment: (a) building for deployment
and (b) custom-built CO2 measurement equipment.

an office building. The sensor nodes, as shown in Figure 2(b),

are custom-built with a processor-communication architecture based

on the Arduino platform [1]. The sensor nodes are equipped with

multiple sensors, including the non-dispersive infrared S100 CO2

sensor from ELT. This sensor has high accuracy, low drift, and low

sensitivity to temperature and humidity. The CO2 concentration is

sampled at 0.2 Hz and is stored with a time stamp on a micro-SD

card. A fan is used to pull air through the sensors at a constant rate

of around 1 liter per minute.

Sensor calibrations were performed in a gas chamber before

deployment. Gas mixtures in the chamber were precisely set using

mass flow controllers operated through a LabVIEW control system.

We performed the calibration at 3 different CO2 levels: 0 PPM,

730 PPM, and 2,268 PPM. The exposure at each concentration level

lasted 60 minutes.

Figure 2(a) shows the floorplan of the deployment building and

sensor locations. The building is divided into eight zones, and

contains room types such as single-occupancy office, large office

with multiple occupants, and conference room. A sensor node was

placed in each zone and collected data continuously from 8 June 2012

through 21 June 2012. The platforms were generally positioned near

the locations frequented by room occupants, while trying to ensure

they were far enough away to not be a nuisance, or be disturbed.

The measurement data from the deployment are used to derive the

indoor airflow matrix A. The daily average concentration for zone i

can be estimated as

(−aii)
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, (32)

where Ci(t) is the average concentration for day t, l is the total

duration of the experiment, and Gi(t) is a constant determined by

the daily outdoor concentration and indoor generation rates. Linear

regression analysis is applied to Equation 32 to estimate the airflow

matrix A. The airflow matrix is later used in simulations to evaluate

our concentration prediction and synthesis techniques in Section VI-B

and Section VI-C.

VI.B. Concentration Prediction Model Evaluation

In this section we evaluate our pollutant concentration prediction

models. Since the stationary sensors are accurate and hence always

have fixed weights of 0, we do not include stationary sensors in

this evaluation. We have randomly selected 5 carriers from the

motion traces and varied the number of mobile sensors. Based on the

resulting sensor network architectures, we apply different methods to
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Fig. 5. The synthesis results for (a) small, (b) medium, and (c) large human motion traces.
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Fig. 3. The average error for different error estimation schemes.
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Fig. 4. The optimal sensor drift compensation weight distribution.

predict the pollutant concentrations of all the zones. During sensor

network construction, the weights and average expected errors are

recorded.

Figure 3 shows the expected errors of various concentration

prediction schemes. The “sensor isolated” scheme assumes that a

sensor’s readings are not used to aid in estimating concentrations in

other zones. The “sensor dependent” scheme uses sensor readings to

aid in estimates for distant zones; the prediction error is calculated

based on Equation 19. In contrast to our technique, neither of the two

schemes use weights to trade off position error and drift error. As a

result, our technique improves the prediction accuracy by 40.4% on

average compared with the “sensor isolated” method, and by 11.2%

on average compared with the “sensor dependent” method. When

there are 5 sensors deployed, the “sensor dependent” method incurs

26.3% more error compared with our optimal technique. The results

TABLE I
COMPARISON BETWEEN THE HEURISTIC AND OPTIMAL SOLUTION

Budget Average error (PPM×minute) Differences

($) Heuristic Optimal (%)

750 108.93 108.93 0
900 88.72 88.72 0

1050 81.26 66.97 17.58
1200 73.32 62.24 15.11
1350 68.62 60.13 12.38
1500 59.00 59.00 0

Average 7.51

show that both indoor airflow modeling and weight adjustment are

important.

Figure 4 shows the distribution of all the weights. The X axis gives

the weight values and the Y axis gives the frequency of appearance.

The wide spread of weights explains why our technique, which

adjusts weights dynamically and optimally, outperforms other models

with fixed weights.

VI.C. Hybrid Sensor Network Evaluation

We compare hybrid sensor network architecture accuracy against

that of two other architectures. The first contains only mobile,

inaccurate, low-cost sensors. The second contains only stationary,

accurate, expensive sensors. All of the three approaches use the

algorithm described in Algorithm 1 to construct the network.

Figure 5 presents the simulation results. The simulation is per-

formed on small, medium, and large human motion traces. There

are 20 individuals and 4 sensor carrier candidates in the small trace,

30 individuals and 6 sensor carrier candidates in the medium trace,

and 40 individuals and 10 sensor carrier candidates in the large

trace. When the budget is less than $750, stationary sensors are

unaffordable, thus the solution is the same for both the mobile-only

and hybrid schemes. As the budget increases, the hybrid solution

starts to outperform the other two solutions. Note that the stationary-

only solution is optimal (but for a constrained problem definition),

while the mobile only and hybrid solutions are heuristic due to the

problem decomposition described in Section V-B.

When the budget is very limited, the mobile-only solution outper-

forms the stationary-only solution since no stationary sensor can be

afforded. When we have a large enough budget, the stationary-only

solution gives the most accurate measurement by placing an accurate

sensor in every zone. The hybrid sensor network architecture, how-

ever, provides the best solution when the budget is between these

extremes. In our simulation, when the budget is no less then $750

(thus can afford at least one stationary sensor), the hybrid architecture

improves the sensor network accuracy by 23.9% on average compared

with the mobile-only architecture, and by 35.8% on average compared

with the stationary-only architecture.



Even though our proposed algorithm can significantly improve

the personal exposure measurement accuracy, it is not optimal.

We compared the algorithm with the optimal solution for a small

trace with 20 individuals and 5 carrier candidates (computational

cost prevented us from finding optimal solutions for larger problem

instances). The optimal solution was found using exhaustive search

for both the stationary sensors and mobile sensors. The results are

shown in Table I. In 3 of the 6 test cases, our heuristic returns the

optimal solution. In the worst case, it has 17.58% more error. On

average, our heuristic has about 7.5% error compared with optimal.

VII. CONCLUSION

We have described a synthesis and evaluation framework for hybrid

sensor networks. This framework is composed of an optimal indoor

concentration prediction and its error estimation model, and a hybrid

sensor network synthesis algorithm. A field experiment was used

to measure the inter-zone airflow. Compared with approaches that

do not consider inter-zone airflow, our model improves accuracy by

40.4% on average by considering both the location-dependent and

drift-dependent measurement errors. Simulations indicate that our

hybrid sensor network architecture on average is 23.9% more accurate

than the mobile-only architecture and 35.8% more accurate than the

stationary-only architecture.
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