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Abstract—In this paper, we present a new economics-based power-aware protocol, called the distributed economic subcontracting

protocol (DESP), that dynamically distributes task computation among mobile devices in an ad hoc wireless network. Mobile

computation devices may be energy buyers, contractors, or subcontractors. Tasks are transferred between devices via distributed

bargaining and transactions. When additional energy is required, buyers and contractors negotiate energy prices within their local

markets. Contractors and subcontractors spend communication and computation energy to relay or execute buyers’ tasks. Buyers pay

the negotiated price for this energy. Decision-making algorithms are proposed for buyers, contractors, and subcontractors, each of

which has a different optimization goal. We have built a wireless network simulator, called ESIM, to assist in the design and analysis of

these algorithms. When the average communication energy required to transfer a task is less than the average energy required to

execute a task, our experimental results indicate that markets based on our protocol and decision-making algorithms fairly and

effectively allocate energy resources among different tasks in both cooperative and competitive scenarios.

Index Terms—Ad hoc network, economics-based protocol, distributed computing, power-aware computing, resource management.
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1 INTRODUCTION

IN ad hoc wireless networks [1], mobile computation
devices are usually battery-powered. A limited energy

budget constrains the computation and communication
capacity of each device. Energy resources and computation
workloads have different distributions within the network.
Some mobile devices have spare energy. Devices that
expend all their energy can only be recharged when they
leave the network. Therefore, it is beneficial to redistribute
spare energy resources to satisfy unevenly distributed
workloads. In this paper, we propose a protocol for
computation distribution that solves this dynamic energy
resource allocation problem.

This work is motivated by dynamic workload balancing

techniques used in parallel and distributed computing, e.g.,

task migration and process migration. In wireless networks,

the ratio of computation energy consumption to commu-

nication energy consumption varies in a wide range,

depending on the application type. In some application

domains, e.g., microsensor networks, communication ac-

counts for the majority of energy consumption [2], [3]. In

other application domains, e.g., many military applications,

voice, face, and handwriting recognition, map searching,
image processing, simulation, classification, artificial intelli-
gence, target detection, pattern matching, decision making,
etc., computation energy consumption generally dominates
communication energy consumption. Previous work [4], [5],
[6], [7], [8], [9] has demonstrated that the energy efficiency
of the mobile devices can be improved using remote
computation for those computation-intensive applications.
Therefore, within the mobile ad hoc network, if devices
with excess computation-intensive tasks can, for a fee,
transfer these tasks to devices with spare energy and time,
both buyer and seller devices benefit; sellers may use their
earnings to buy energy in the future.

Mobile ad hoc networks have no centralized infrastruc-
ture to control devices and communication among them. In
some scenarios, e.g., large-scale military or commercial
operations, mobile devices collaborate. In others, they
compete. Competitive and cooperative scenarios must both
be considered.

In distributed computing systems, economics-based
techniques have been used to balance resource utilization.
Market-based infrastructures were proposed for computa-
tional resource allocation and balancing in computer net-
works [10], [11], [12], [13]. Kurose and Simha proposed an
economic model for file resource allocation in distributed
systems [14]. An auction-based approach was proposed for
energy management in hosting centers [15]. Game-theoretic
approaches were used to do power control in code division
multiple access (CDMA) wireless networks [16], [17].
Stonebraker et al. used a distributed microeconomic
approach to optimize query and storage management in
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wide-area database systems [18]. A market-based approach
was used to allocate bandwidth to control quality of service
[19]. An economics-based approach was also used for
packet forwarding in mobile ad hoc networks [20]. Dis-
tributed utility-based decision-making mechanisms were
proposed to maximize a global objective in wireless sensor
networks [21]. Energy consumption is a significant issue in
mobile ad hoc networks [22], [23]. Some wireless works
reduce mobile device power consumption by migrating
tasks from mobile clients to fixed-position servers, i.e.,
computers with line power [4], [5], [6], [7], [8], [9].

We propose a distributed economic subcontracting protocol
(DESP) to dynamically distribute task computation among
mobile or fixed-position devices in an ad hoc network.
Online bargaining is used to control the distribution of
tasks for which the energy to transfer the task to another
device is less than its local computation energy. Energy
sellers may be contractors or subcontractors. They
automatically adjust their energy prices based upon
market conditions. Local market sizes are dynamically
adjusted in order to balance communication energy and
the lowest prices available to buyers. DESP supports a
new class of economic agents, called subcontractors.
Subcontracting allows transitive transfers of task execu-
tion among devices; subcontractors tie local markets
together into a global market. Subcontracting can be seen
as a computational version of multihop communication.
We propose policies to handle both competitive scenarios,
where mobile devices try to maximize their own profit,
and cooperative scenarios, where the only goal of mobile
devices is to provide their spare energy to others. In our
current work, we assume the mobile devices are well-
behaved, which means each mobile device obeys the
transaction protocol and agreement, i.e., the contractors
and subcontractors spend spare energy to execute the
communication and computation workload, and the
buyers make payments based on the agreement. We will
discuss related security issues in a later section. We
believe that this first study demonstrates the effectiveness
of an economics-based approach as a power-aware
computation distribution mechanism for mobile ad hoc
networks.

The rest of this paper is organized as follows: In Section 2,
we present related concepts and a brief overview of our
work. In Section 3, we introduce the economics-based
protocol in detail. We present the network simulator in
Section 4. We experimentally demonstrate the feasibility of
our approach in Section 5. Finally, we conclude in Section 6.

2 PRELIMINARIES AND MODELING

In this section, we introduce related economic and wireless
communication models. We then define our subcontracting
protocol, DESP.

2.1 Basic Economic Concepts

In this section, we present basic economic definitions.
Rational decision. Agents are modeled as rational

decision makers [24]. Each rational decision maker makes
decisions based on preferences, � , over a set of options,
and chooses the option that is expected to yield the best

consequence. The preferences of the rational decision
makers are numerically represented by utility functions,
which are defined below.

Utility: Given preferences, � , over a set of options, X, a
numerical representation for the preferences is a utility
function U with a domain of X and a range of the real
numbers such that

x � y iff UðxÞ > UðyÞ; ð1Þ

where x; y 2 X [24].
There is not necessarily a utility function for a given

preference relationship. Utility theory investigates the
possibility of using a numerical function to represent a
preference relation [23].

2.2 Wireless Communication Energy Model

We use the wireless communication path loss model to
calculate transmission energy consumption [25], [26]. In
this model, the received signal power is dependent on the
distance between devices. The received signal power is
proportional to 1=dn, where d is the transmission distance
and n is an environmentally dependent path loss
exponent [25].

2.3 Distributed Economic Subcontracting Protocol

DESP performs dynamic allocation of energy resources in
ad hoc wireless mobile networks through online transac-
tions within markets. Mobile computation devices are
modeled as rational decision makers. This model is valid
for devices that use optimization algorithms to maximize
predefined utility functions during their transactions.

As illustrated in Fig. 1, DESP consists of the following
elements:

. Buyers. A device that intends to purchase energy
from other devices is a buyer. A buyer uses an
advertising broadcast to construct a local market in
which it may purchase energy.

. Sellers. A device that is willing to sell spare energy
to other devices joins one or more local markets as a
seller.

. Contractors. In a local market, sellers compete with
each other. The winner signs a contract with the
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buyer: It is a contractor. A contractor may decide to
execute a buyer’s task. However, it may, alterna-
tively, decide to create another local market to find
subcontractors. A contractor is a seller. However, if it
uses a subcontractor, it is also a buyer.

. Subcontractors. A subcontractor is a contractor that
sells to another contractor or subcontractor, instead
of selling directly to a buyer.

. Local market. Every energy transaction occurs
within a local market. Each local market is dynami-
cally constructed by a market owner that may be a
buyer, contractor, or subcontractor. The market
owner’s advertising broadcast energy controls the
market’s area. Multiple sellers within the local
market send out their, potentially encrypted, offers
to the market owner, which chooses the winner and
signs a contract.

3 THE SUBCONTRACTOR MARKET

In this section, we explain the transaction protocols and

corresponding optimization algorithms for the economic

agents in our protocol.

3.1 Transaction Protocols

In DESP, there are energy transactions between buyers and

sellers. Each device bases its judgment about market

conditions on a history of its recent transactions. Note that

contractors and subcontractors can be both buyers and

sellers. Next, we present the transaction protocols used by

each agent.

3.1.1 Transaction Protocol for the Buyer Market

Fig. 2 shows the buyer transaction protocol. First, the

buyer analyzes its pending tasks, remaining energy,

remaining money, and transaction history. Based on this

information, it decides whether to execute a pending task

or become a buyer and pay other devices to execute the

task for it. A buyer makes an advertising broadcast to

construct a local market. The advertising broadcast energy

controls the advertising range and, thereby, market area.

Among other things, the buyer’s advertisement includes

its original signal strength, task type, and task commu-

nication data quantity, as well as bid and decision

deadlines. The original signal strength may be used by a

seller to estimate the internode distance based on the

received signal strength [27], [28]. Alternatively, if mobile

devices are equipped with low-power global positioning

system (GPS) receivers, they can be used to determine

interdevice distances. Task type and communication data

quantity information allow a seller to estimate a task’s

execution time and energy. Bid and decision deadlines

allow a seller to determine when to send its bids and

expect the buyer’s decision. The sellers within the buyer’s

local market may make bids. The buyer accepts offers

until its bid deadline. After the bid deadline, and before

the decision deadline, the buyer may choose one of the

bids it has received and send out an acceptance message.

It then signs a contract with the corresponding seller,

thereby changing the seller to a contractor. Finally, the

buyer sends its tasks to the contractor, receives the

computation results, and pays the contractor. At the end

of the transaction, the local market automatically closes.
Fig. 3 shows the seller transaction protocol. First, a

device that is willing to sell energy becomes a seller and
begins to monitor the advertising channel. If a seller
receives an advertisement, it analyzes the incoming task,
its energy budget, and its transaction history. Based on
this information, the seller returns its bid, including price
and position information. It then waits for the buyer’s
decision until the buyer’s decision deadline. If the seller’s
offer is not accepted by this time, it assumes the offer is
rejected, and the transaction is closed. If, instead, its offer
is accepted, the seller signs a contract and receives the
task from the buyer, thereby becoming a contractor. This
contractor may decide to construct another, overlapping,
local market to find a subcontractor. After the resulting
data have been computed, either by the contractor or by a
subcontractor, the contractor sends them to the buyer.
Finally, the seller receives its payment and pays a
subcontractor, if necessary.
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3.1.2 Transaction Protocol for the Contractor and

Subcontractor Markets

When a seller becomes a contractor, it may construct its

own local market to find subcontractors. The transaction

protocol for contractors is shown in Fig. 4. The contractor

transaction protocol is similar to the buyer protocol. In

essence, the contractor becomes a relay node between the

buyer and the subcontractor, transferring tasks from the

buyer to the subcontractor and returning the results. For

this work, the contractor earns the difference between the

buyer’s payment and the subcontractor’s bid. This protocol

allows contractors and subcontractors to cooperate in

providing resources to a buyer and share the buyer’s

payment.

3.2 Transaction Policies for Buyers

In the absence of a central controller, mobile devices must

make their own energy purchasing decisions. In DESP,

buyers do local advertising broadcasts. A buyer may only

carry out direct transactions with sellers in its advertising

area. It is desirable to reduce communication energy and

price. However, these costs conflict with each other, i.e., it is

often possible to decrease one only by increasing the other.

Communication energy is the energy expended by a buyer

during the advertising broadcast and task transmission for

remote computation. It is correlated with the advertising

broadcast area. Price is correlated with the energy scarcity

of the available seller devices. In other words, increasing the

number of sellers in a market will, on average, reduce the

minimum price available. It is necessary to decide upon a

broadcast range that results in a good trade off between

price and communication energy.

Buyers face a similar decision when choosing between a

nearby seller and a more distant one that has a lower price.

In order to reduce communication energy, buyers prefer

sellers that are close; buyers will tolerate higher prices from

such sellers. Nearby sellers can take advantage of this and

bid at higher prices than other, more distant, sellers. Each
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bid has two costs, price and communication energy, i.e., the

energy used by the buyer to send the task to the seller and

receive the resulting data from it. It may not be possible to

find a bid with a lower price and communication energy

than all other bids. Therefore, buyers need to choose a

bidder that offers the best trade off between price and

communication energy.
In our protocols, buyers dynamically adjust their adver-

tising distance in the following way:

1. For task k, the buyer calculates an upper bound on
communication distance Dk, subject to the constraint
that communication energy is lower than computa-
tion energy. The buyer also predicts the commu-
nication distance lower bound dh, based on previous
successful transactions. If Dk < dh, then the buyer
executes the task locally. Otherwise, it proceeds to
Step 2.

2. If the last transaction succeeded, the buyer multi-
plies the advertising range by a user-defined
constant, e.g., 0.9. Otherwise, the advertising range
is similarly increased, under the constraint that
advertising range is less than Dk.

3. Periodically, the buyer doubles its broadcast dis-
tance to probe for superior offers available only
beyond its current advertising range, under the
constraint that this range is less than Dk.

In order to evaluate a seller’s price, buyers use a unit

energy price upper bound Pu i, defined as

Pu i ¼
Mrem i

Epending i �Ratiohist
; ð2Þ

where Mrem i is buyer i’s remaining money and Epending i is

the estimated energy consumption for local computation of

buyer i’s remaining tasks. Ratiohist is an energy purchase

ratio obtained via analysis of the transaction history: the

total purchased energy during the buyer’s transaction

history divided by the total energy consumed for its

finished tasks, including purchased energy and its own

energy consumption due to local computation. Epending i

times Ratiohist is used to predict the amount of energy that

can be purchased from other sellers. Considering the

remaining money budget Mrem i, Pu i is the expected value

of the unit energy price the buyer can afford.
From all the received offers, buyers use the following

algorithm to choose, at most, one offer.

1. For each offer j, calculate the equivalent unit energy
price pij ¼ Pj=Eik, where Pj is the price of offer j for
task k, and Eik is the energy required by device i to
execute task k locally. If pij > Pu i, reject offer j.

2. Calculate the average unit energy price, pe, in the
transaction history. For each offer, calculate the
equivalent total price P �

j based on the following
equation:

P �
j ¼ pe � Ecomm j þ Pj; ð3Þ

where Ecomm j is the communication energy for

offer j and Pj is offer j’s price.

3. Choose the offer with the lowest equivalent price.

During any transaction, if the buyer declines all bids, the

transaction fails; otherwise, it succeeds.

3.3 Transaction Policies for Sellers

Multiple sellers may exist within a local market, each

competing to maximize its own optimization criterion. In

this subsection, two optimization criteria are proposed: one

for competitive scenarios and one for cooperative scenarios.
In local markets, we assume that energy demand is a

nonincreasing function of price, i.e., we assume that, as

energy price increases, demand remains constant or

decreases. Each device, i, has a monetary budget Mi, an

energy budget Ei, and a lifetime Ti, the duration the device

remains in the network.

3.3.1 Competitive Sellers

In competitive ad hoc mobile networks, sellers have the

goal of maximizing their total profits subject to their energy

budgets and lifetime constraints, i.e., they attempt to

maximize

profit ¼ max

X

Ti

t¼1

ðxiðtÞ � costiÞ � eiðxiðtÞ; tÞ

( )

ð4Þ

subject to the following constraint:

X

Ti

t¼1

eiðxiðtÞ; tÞ � Ei; ð5Þ

where xiðtÞ is seller i’s unit energy price for the transaction

at time t, eiðxiðtÞ; tÞ is the total amount of energy that seller i

sells at time t, costi is the unit cost of seller i’s energy, Ti is

seller i’s lifetime, and Ei is seller i’s spare energy.
In order to guarantee optimal profit, it would be

necessary to perfectly predict the market conditions during

the device’s entire lifetime. The mobile network is a

dynamic system; guaranteeing optimal profit would require

global information and perfect prediction of future market

conditions. In reality, each device has only imperfect

information and must base its predictions on its recent

transaction history, thus guaranteeing an optimal profit is

not possible. Furthermore, energy efficiency requires a

simple implementation. Therefore, in this work, we use an

incremental greedy derivative-following strategy to max-

imize profit.
We assume that the utility function is always concave, as

shown in Fig. 5a. Intuitively, initial increases in price do not

substantially reduce sales, allowing an increase in total

profit. Eventually, price increases result in a significant

reduction in sales, reducing total profit. The point between

these regions is the unit price resulting in maximal profit.

Marginal utility is equivalent to the profit gradient, which is

positive at the beginning and nonincreasing. Maximum

profit is achieved when the profit gradient is zero, i.e., given

that EiðtÞ is the remaining energy at time t, fiðxiðtÞ; tÞ is the

energy consumption rate at time t and TiðtÞ is device i’s

remaining time in this network:
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profitmax ¼max
xiðtÞ

�

ðxiðtÞ � costiÞ � fiðxiðtÞ; tÞ

�min

�

EiðtÞ

fiðxiðtÞ; tÞ
; TiðtÞ

��

:

ð6Þ

We define the equivalent lifetime TiðtÞ
� of device i as

follows:

TiðtÞ
� ¼ min

EiðtÞ

fiðxiðtÞ; tÞ
; TiðtÞ

� �

: ð7Þ

If TiðtÞ
� < TiðtÞ, it implies that, given the current energy

consumption rate, device i will use all its spare energy
before it leaves the network.

The incremental greedy derivative-following algorithm
has the following properties:

1. It avoids bids with negative profit and does
boundary checks to guarantee that the bid price is
higher than the energy cost.

2. It increases its unit energy price if, based on its
transaction history, this is expected to increase
profit.

3. It decreases its unit energy price if this is expected to
increase profit.

4. After arriving at a stable unit energy price, it
dynamically probes and adapts to changing market
conditions.

We use an adaptive step-size strategy to change the
seller’s unit energy price:

pricejþ1 ¼ pricej þ pricej

� sign pricej � pricej�1

� �

� g
profitj
profitj�1

� �

;
ð8Þ

where pricejþ1 is the predicted unit energy price to be used
in the next transaction jþ 1, pricej, and pricej�1 are unit
energy price estimates, profitj and profitj�1 are profit
estimates. These estimates are based on the transaction
history. Basically, parameters j and j� 1 are based on
different previous transactions. In the simplest case, j can be
the most recent transaction and j� 1 the transaction before
j. However, mobile networks are dynamic and noisy. We

use an exponential weighted average to filter out network

noise and smooth estimates. Function signðxÞ ¼ �1 if x is

negative, otherwise signðxÞ ¼ þ1.
We use a transformation function, gðuÞ, as shown in

Fig. 5b, to dynamically adapt the step-size. Two problems

must be considered. First, during fast changes in profit, we

want to ensure that the price adaptation policy is stable. In

such a scenario,

gðuÞ ¼
ABðu� 1Þ

AuþB
:

When the profit ratio u is very high, gðuÞ ! B. When the

profit ratio is very low (close to 0), gðuÞ ! �A. A and B are

predefined values used to constrain the maximum changes

to the price adaptation step size. Second, under slow

changes in profit, i.e., when u is close to 1, we want the price

adaptation policy to be sensitive enough to probe the

network and adapt to a higher profit. In this scenario, if we

use the previously stated function, the incremental price

will tend to zero. Instead, we use gðuÞ ¼ ku. Parameter k is

made large enough to ensure that each seller periodically

probes the network.
In summary, our strategy ensures that, when the change

in profit is small, the change in unit energy price is also

small. To ensure stability, we bound changes to unit energy

price during rapid profit change.
Filter and stability. The mobile network experiences two

types of dynamic changes: short-term fluctuations, i.e.,

noise, and long-term changes. A price adaptation strategy

should filter out short-term fluctuations and adapt to long-

term changes.
Our price adaptation strategy is based on two techni-

ques. The first of these analyzes a window of recent

transactions to predict future market changes. The window

size is predefined and can be dynamically adjusted

according to the network’s detected long-term rate of

change.
The second strategy is based on exponential weighted

average (EWA) filtering to smoothen price estimation. The

EWA filter assigns a different weight to each transaction in

its history, giving the highest weights to recent transactions

and lower weights to earlier transactions:
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Ei ¼ w� Si þ ð1� wÞ � Ei�1; ð9Þ

where the price estimation, Ei, of the current market is
based on Si, the transaction price in the most recent
transaction i, and Ei�1, the estimated price of the transac-
tion history before transaction i. The weights for each
transaction decrease exponentially depending on value w.

3.3.2 Cooperative Sellers

In a fair market, a rational decision maker receives a
quantity of service proportional to the amount of money it
spends. DESP can be tailored to optimize fairness. Within a
wireless market, energy price is determined by energy
supply and demand. An increase in demand, relative to
supply, increases price. Therefore, market price can be used
to regulate buyer policy. A low price indicates that more
energy is available; buyers react by migrating more tasks to
sellers. A high price indicates that less energy is available.
In this situation, buyers can only afford to buy energy for
their most important tasks; they must locally compute,
delay, or drop others.

In the cooperative market scenario, a seller adjusts its
price to finish expending its energy at the moment it exits
the network, instead of attempting to maximize its total
profit. The seller dynamically adjusts its price to maintain
an energy consumption rate Er, defined as Ei=Ti, where
Ei is its remaining energy and Ti is its lifetime, as shown
in Fig. 6. A cooperative seller attempts to provide energy
to buyers at a constant rate. This stability promotes
market fairness. In addition to changing its bid price, a
seller reacts to a change in its energy consumption rate
by appropriately adjusting the bid price it will tolerate
from subcontractors.

We use an incremental greedy goal-directed strategy for
energy resource allocation. Each seller decides its pricing
policy based on the following algorithm.

1. Respond to a negative transaction profit by increas-
ing the unit energy price. During each transaction,
this algorithm performs a boundary check to guar-
antee that the offer price is higher than the monetary
cost of carrying out the necessary transactions.

2. Compute the recent energy consumption rate based
on the transaction history. Use this rate as a
predictor for future market conditions. If this energy
consumption rate is higher than Er, increase the unit
energy price.

3. If the energy consumption rate is lower than Er,
decrease the unit energy price.

We use an adaptive step-size strategy to change the
seller’s unit energy price. Given that pricejþ1 is the
predicted unit energy price to be used in the next
transaction jþ 1, pricej is a unit energy price estimate
based on the transaction history, Erate j is the energy
consumption rate from the transaction history, Erem j is
the remaining energy, and Trem j is the remaining lifetime:

pricejþ1 ¼ pricej þ pricej � g
Erate j � Trem j

Erem j

� �

: ð10Þ

We dynamically adjust the step size with the same
transformation function, gðuÞ, described in Section 3.3.1. We
use the previously described transaction history window
and EWA filter to stabilize the price computation.

3.4 Transaction Policies for Contractors

In this section, we explain the transaction policies for
contractors. We first describe the policies used by compe-
titive contractors, i.e., contractors that optimize their own
profit. We then describe cooperative contractors, i.e.,
contractors that attempt to maintain steady energy usage.

3.4.1 Competitive Contractors

In the competitive scenario, the contractor tries to maximize

its total profit subject to its lifetime and energy budget

constraints. It may be in the contractor’s economic interest

to collaborate with a subcontractor. If a contractor has little

remaining energy, its equivalent lifetime, TiðtÞ
�, is less than

TiðtÞ. This implies that it will expend all its spare energy

before it leaves the network. Although collaboration

requires the contractor to share the buyer’s payment with

a subcontractor, subcontracting may allow it to reach a

higher equivalent unit price, xiðtÞ, than possible by locally

executing every task. The contractor’s only cost is the

communication energy required to relay the task and

computation results. As a result, collaborating with a

subcontractor can increase a contractor’s equivalent life-

time, TiðtÞ
�, allowing a higher profit. If, based on its buyer

and subcontractor transaction histories, a contractor pre-

dicts that collaborating with a subcontractor will be more

profitable than executing a task locally, the contractor forms

a local market to find a subcontractor.

3.4.2 Cooperative Contractors

In the cooperative scenario, the contractor’s decision is
based on the following criteria.

1. If the contractor’s current energy consumption rate
is higher than Er, finding a subcontractor may
extend its equivalent lifetime. Collaborating with
subcontractors provides the additional advantage of
making prices in the network more homogeneous;
local regions, in which the price decided by the
balance between supply and demand is extreme, are
dispersed.

2. Although profit is not directly considered in a

collaborative contractor’s pricing policy, it is

considered when deciding whether to collaborate
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with a subcontractor. Collaboration only occurs if
it results in a profit. If a subcontractor has a higher

price than a contractor, this implies that the

subcontractor has a higher workload than the

contractor, relative to its spare energy. In this

situation, task execution by contractors balances

the network’s workload distribution and prevents

high communication energy consumption from

causing inefficient energy resource allocation.

3.5 Energy Overhead Analysis

Our power-aware computation distribution protocol intro-

duces some energy overhead. We first analyze the energy

overhead of the buyer protocol. Both computation and

communication consume energy. Computation energy is

consumed when buyers determine the scope of local

markets and choose from among multiple received bids.

This energy consumption is linearly proportional to the

number of received bids. Let us estimate the computation

energy, assuming the use of a StrongArm SA-1100 micro-

processor running at 1.5V and 206MHz. We set the average

number of received bids to a conservative value of 50;

based on our simulations, most auctions have fewer than

50 bidders. Based on these assumptions, 53 uJ of energy is

required to decide which bid to accept, if any. For

comparison purposes, we also estimated the energy con-

sumption of a simple 64-pixel discrete cosine transform

computation as 15,816 uJ. These results demonstrate that

the computation energy overhead of the buyer protocol is

negligible.

The communication energy of the buyer protocol has

three components. First, buyers broadcast messages to

create local markets. Second, buyers receive bid messages

from sellers. Third, if a buyer accepts an offer, it sends out

acceptance and payment messages. Each of these messages

only requires a few bits of data. The communication energy

overhead is related to the communication distance. In

DESP, due to the help from contractors and subcontractors,

buyers only contact local sellers within each local market.

Each buyer dynamically adjusts the size of its local market.

In general, when there are more sellers in the local market,

the buyers decrease market size. Therefore, the number and

size of messages and communication distance are all quite

constrained.
The energy overhead is not highly sensitive to seller

decisions because a device can become a seller only if it has

spare energy. However, energy-efficient seller protocols are

still beneficial; they leave more spare energy for sellers to

provide to buyers. Before seller devices become contractors,

its energy overhead is composed of the energy required to

determine and send out its bids. Due to the efficiency of the

proposed policies, this energy overhead is even lower than

that of the buyer protocol. If a seller becomes a contractor, it

may create another local market and find subcontractors.

However, this is analogous to the buyer protocol and the

energy overhead is, similarly, negligible.

3.6 Security

Security is an important metric in the design of wireless

networks. Various techniques have been proposed for

secure mobile ad hoc network design. The Terminodes

project [20] is based on a public-key infrastructure. Each

mobile device is assumed to contain trusted hardware that

prevents illegitimate access in addition to controlling the

packet forwarding and synchronization protocols. Re-

searchers have considered both security and energy con-

sumption issues, leading them to propose energy-efficient

public-key encryption algorithms targeting mobile wireless

networks [29], [30]. In our current work, we assume the

mobile devices are well-behaved in that they obey the

transaction protocols and agreements. To extend DESP to

the application scenario with misbehaved devices, where

both buyer and seller devices can misbehave—buyers may

refuse to make the payment, while sellers may provide fake

results, more robust transaction protocols, including more

strict authentication and certification mechanisms, will be

needed. Previous research work has proposed various

techniques to detect and avoid misbehavior. For example,

Byzantine-General-based protocols [31] can be used to catch

misbehaving sellers—each buyer signs contracts with

multiple contractors concurrently and compares the multi-

ple received computation results to detect invalid results

and refuses payment to punish misbehaving sellers. Some-

times, efficient verification algorithms are also available to

verify the correctness of the result of complicated computa-

tion tasks; NP-hard problems have verification algorithms

with polynomial complexity. In order to compel buyers to

fulfill their payment obligations, previous works, such as

DigiCash [32] and NetBill [33], propose the following

scheme–contractors can first send an encrypted result to

the buyers and send the decryption key after receiving the

payment. Digital signatures [32] can be used to provide

unforgeable credentials. A trustable third party may be

required, which may not be available during online

transactions. However, authentication can be done offline

and misbehaving buyers and sellers can be punished in the

future. All of these techniques can be applied in conjunction

with DESP. Generally, these mechanisms may degrade the

energy efficiency of network transaction protocols, which is

the trade off that needs to be made under a malicious

environment. How to adapt DESP to a malicious environ-

ment, while maintaining an energy-efficient transaction

protocol, is an interesting extension of our current work that

can be addressed in the future.

4 NETWORK SIMULATOR

We have implemented a network simulator, ESIM, which is
designed to model the behavior of mobile devices in ad hoc
wireless networks. It is implemented in C++ and runs
under Linux. ESIM simulates a wireless network. Mobile
devices dynamically enter and leave the network. These
devices move and trade energy with each other using the
transaction policies described in Section 3. In ESIM, there
are a number of parameters associated with each device.
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Each device starts with an energy budget, a monetary
budget, and a two-dimensional position. Independent
Poisson processes with randomly selected, device-depen-
dent average rates control the motion and task arrival times
of each device. The ratio between distance-dependent
communication energy and computation energy randomly
varies from task to task. Each device has an initial
advertising distance that is adjusted during transactions,
using the algorithms described in Section 3.2.

5 SIMULATION RESULTS

In this section, we present experimental results to evaluate

the performance of DESP. We focus on the behavior of our

dynamic pricing strategies in the presence of different price-

demand curves. In addition, we examine the energy

allocation effectiveness of DESP in competitive and co-

operative scenarios.

5.1 Dynamic Pricing of Competitive Sellers

In this section, we evaluate the dynamic pricing strategies
of competitive sellers in two different market scenarios. In
the first scenario, the relationship between price and
energy demand is a step function. When a seller’s price
is less than a buyer-defined upper-bound, the energy
demand is a positive constant; otherwise, the energy
demand drops to zero. Fig. 7 contains the simulation
results for dynamic pricing of competitive sellers in this
scenario. The simulation period is 3,500 seconds. In this

figure, three different market configurations are studied. In

the first configuration, the buyer-defined upper-bound on

price is a continuous function that decreases from 400 to 50

during the simulation. In the second configuration, the

upper-bound on price is a concave function. Its initial value

is 50, it increases to 400, and then decreases to 50. In the

third configuration, the upper-bound price is a step

function that starts at 100, changing to 200 at time 501,

300 at time 1,001, 400 at time 1,501, 300 at time 2,001, 100 at

time 2,501, and 50 at time 3,001.
From the simulation results, it is clear that, in each

configuration, sellers using DESP dynamically adjust their

prices to reach the buyer-defined upper-bound on price,

thereby maximizing their total profits. Similarly, they

dynamically adapt their prices to changes in the buyer-

defined upper-bound on price. The slight oscillations

around the optimal prices result from continuously probing

the market conditions.

In the second scenario, the relationship between price

and energy demand is a continuous nonincreasing function.

The relationship between price and profit is a concave

function in which profit is maximal at price 400. Fig. 8

contains the simulation results for dynamic pricing of

competitive sellers in this market. The simulation results

show that using DESP allows a seller to adjust its price to

maximize its total profit.
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5.2 Dynamic Pricing of Cooperative Sellers

In this section, we evaluate the dynamic pricing strategies of

cooperative sellers. First, we examine these strategies when

energy demand exceeds supply. We use a setup similar to

that in Section 5.1. As shown in Fig. 9, the prices offered by

cooperative sellers vary around the buyer upper-bound on

price. This results in sellers expending the last of their

energy as they exit the market. Second, we examine the

fairness of energy allocation in this scenario. As described

in Section 3.3.2, in a fair market, the quantity of energy that

a rational decision maker receives is proportional to the

amount of money it spends. We examined the amount of

energy allocated to buyers with different monetary budgets.

Table 1 shows the network setup. In this table, the funding

ratio column contains the ratio between the starting money

held by three different classes of buyers. The finished task

energy ratios column shows, for the three classes of buyers,

the ratios between the amounts of energy used for task

execution. As we can see from the table, cooperative sellers

allocate their energy in a manner that approximates their

funding ratios, i.e., they achieve fair energy allocation. The

deviations of the energy allocation ratios from the funding

ratios are caused by numerous factors, e.g., the uneven

spatial and temporal distributions of energy and well as the

discrete nature of transactions.

5.3 Effectiveness in Cooperative Markets

Network effectiveness is the proportion of task volume that

the network is able to execute. To determine the impact of

subcontractors on effectiveness, we consider two scenarios.

In the first, subcontracting is allowed; in the second, it is

forbidden. In addition, we examine the effect of varying the

ratio between computation and communication energy. We

simulate an ad hoc network composed of 100 buyers and

1,000 sellers. The average speed of each device is 5 meters

per second. The average distance between neighboring

devices is 50 meters. We vary the ratio of computation to

communication energy, for devices separated by this

average distance, in a range from 1 to 100.

Fig. 10 shows the simulation results for DESP under four

different market conditions: advertising distances (adv.) of

30 m and 50 m, with and without subcontractors (sub.).

These results indicate that DESP made good trade offs

between energy demands and communication energy.

When the computation energy to communication energy

ratio is high, DESP allocates energy resources from sellers

outside a buyer’s local market. As the ratio decreases, the

energy overhead associated with subcontractor collabora-

tion also increases. As a result, subcontractors are used less

frequently. As shown in Fig. 11, this causes a decrease in the

average number of subcontractors used in the chain from

the initial buyer to the final seller. When the ratio reaches

one, communication energy has the same cost as computa-

tion energy. In this case, buying energy from sellers is not

beneficial. In this case, the subcontractor chain length is

greater than 0 because the energy ratio sometimes deviates

from the average due to nonuniform and varying device

positions.

An increase in advertising distance allows a buyer to

directly negotiate with more distant sellers that would

otherwise have required a contractor intermediary to reach.

However, a large increase in advertising distance results in

a large increase in advertising energy. Further experiments

indicate that using DESP results in a significant improve-

ment in network effectiveness when compared with a

network protocol that does not allow subcontractors. A

network protocol without subcontractors requires an

advertising range of 106 meters (without considering the

communication overhead for buyers) in order to execute the

same task volume as a DESP network with an advertising

range of 50 meters. As indicated by the energy model in

Section 2.2, increasing advertising distance from 50 to

106 meters, with n ¼ 2, results in a 4.5-fold increase in

advertising energy.
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Fig. 11. Average subcontractor chain length.

Fig. 12. Effectiveness of energy allocation.

Fig. 10. Effectiveness of energy allocation.

Fig. 13. Average subcontractor chain length.



5.4 Effectiveness in Competitive Markets

Figs. 12 and 13 show the effectiveness of DESP in

competitive markets. In such markets, each seller tries to

maximize its total profit. DESP allows better allocation of

spare energy resources to buyers, and higher seller profits

than a market without subcontractors because sellers

outside a local market are sometimes willing to provide

their energy at lower prices than contractors. Therefore,

when a contractor’s energy level is low, it can increase its

profit by collaborating with subcontractors.

6 CONCLUSIONS

We presented a novel economics-based protocol, called

DESP, that dynamically allocates energy resources in ad hoc

wireless mobile networks. DESP is a scalable, distributed

approach: It requires no central coordinator. We have

provided and analyzed buyer and seller decision strategies

for cooperative and competitive scenarios. Experimental

results indicate that DESP fairly and effectively allocates

energy resources to devices in mobile ad hoc networks.

Security is an important issue in the design of such

networks. In our current work, we assumed that the mobile

devices are well-behaved. In scenarios in which misbehav-

ing devices can be present, stricter security is necessary.

This is part of future work.
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