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ABSTRACT

Several techniques are available to save power consumption in
laptop computers. However, their effect on user satisfaction
has not been well studied. We analyze how user satisfaction
is affected by these techniques and show that, within a fixed
power budget, some techniques cause more dissatisfaction
than others. Second, we study the use of physiological sen-
sors and show that the sensor readings are stable across times
when no technique is applied, whereas they show statisti-
cally significant changes when power-saving techniques are
employed. Finally, we demonstrate a prediction mechanism
using these sensors that predicts user satisfaction with over
80% accuracy.

Categories and Subject Descriptors: C.5.3 [Com-
puter System Implementation]: Microcomputers—
Personal computers; H.1.2 [Models and Principles]:
User/Machine Systems—Human Factors; J.4 [Com-
puter Applications]: Social and Behavioral Sciences—
Psychology ;

Keywords: Affective computing, human factors, user-aware
computing, power saving techniques, empathic systems and
architectures

1. INTRODUCTION
The primary goal of a computer system is to satisfy the

end-user. Traditionally, computer designers measure the
effect of their optimizations using metrics expected to corre-
late with user satisfaction (e.g., tasks per time, instructions
per cycle, packets per time). However, previous work has
shown that a) providing higher performance levels does not

This work was supported by the United States National Sci-
ence Foundation through grants CCF-0916746, CCF-0747201,
CNS-0720691, and DGE-0948017.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’12, July 30–August 1, 2012, Redondo Beach, CA, USA.
Copyright 2012 ACM 978-1-4503-1249-3/12/07 ...$10.00.

necessarily improve the user satisfaction and b) the level
of performance necessary to satisfy a particular user varies
significantly among users (e.g., [7, 16].) With no knowledge
of user satisfaction regarding machine performance, optimiza-
tions exercising trade-offs between performance and power
consumption will be designed to satisfy the nonexistent “typ-
ical” user with a “one-size-fits-all” approach. This will often
lead to sub-optimal configuration choices, which could be
improved by understanding individual user satisfaction.

Computer optimizations are typically performed from the
perspective of a single component or system block. For
example, Dynamic Voltage and Frequency Scaling (DVFS)
[12], which reduces power at the cost of CPU performance
for a period of time, is controlled independently from screen
brightness, which may be adjusted to conserve power. User
satisfaction is a function of both CPU performance and
screen brightness, but current control schemes do not consider
combined effects. This paper aims to lay the groundwork for a
new method of measuring computer performance that would
allow the integration of such effects and their derivation from
easy-to-acquire user measurements. This new method of
evaluating computer systems describes how well a computer
performs, not only in traditional terms of raw computational
capabilities or power efficiency, but from the perspective of
end-user satisfaction.
In this study, we first construct a linear regression-based

power model to estimate power consumption of a computer
system using software-visible metrics. We leverage this model
to estimate the impact of various power-saving techniques
on total system power. We then perform user studies, acti-
vating combinations of these power-saving techniques during
machine use. We request that users in the study verbally
report dissatisfaction with the computer system. We also em-
ploy several physiological and behavioral sensors to monitor
the user. These sensors measure the galvanic skin response
(GSR), pupil dilation and movement, the amount of wrist
movement, the pressure applied to the keyboard during key
presses, and the frequency of key presses. Finally, we analyze
the sensor readings based on the reported dissatisfaction.
We next demonstrate the impact of power-saving tech-

niques on user satisfaction. We find that the frequency
of user-reported dissatisfaction varies by power-saving tech-
nique, even though the same reduction in power consumption
is achieved. We also find that changes in user satisfaction
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are reflected in measurable physiological responses. In situ-
ations where saving power does not affect user satisfaction,
physiological sensor data remains constant. However, when
a power-saving technique affects reported user satisfaction,
sensor data changes. These findings motivate satisfaction-
oriented power/performance optimizations in light of con-
strained power requirements on personal computers.
We also create a prediction system that predicts whether

a power-saving technique changes the user satisfaction. Our
system achieves over 80% accuracy. Finally, we perform a
supplementary study which demonstrates that our prediction
system performs equally well whether users verbally indicate
dissatisfaction or not.

The rest of the paper is organized as follows. In Section 2,
we present our experimental setup. In Section 3, we present
our analysis of the sensor data, as well as the results of our
prediction system. In Section 4, we discuss related work in
the field, and we conclude in Section 5.

2. EXPERIMENTAL SETUP
We now describe the environment in which we carried out

our studies, and the studies themselves.

2.1 Power Model
Before correlating user satisfaction with power savings

techniques, we first develop a model for accurately estimating
the power saved by each technique. Techniques may then
be parameterized to save roughly equivalent levels of system
power.
Our target platform is an IBM Thinkpad T61 with a 2.2

GHz Intel Core 2 Duo T7500 processor and 2 GB DDR2
SDRAM running Microsoft Windows XP. This computer is
also the platform used during user studies.

The predictors we target in the power model follow: RAM
bus transactions, disk accesses, processor utilization percent,
screen brightness, screen on/off state, and WiFi on/off state.
We also directly measure the power being used by the system;
this is our dependent variable.
One of the most common techniques for saving power

is reducing CPU frequency. However, changing the CPU
frequency substantially alters the amount of power that
the other predictor variables would contribute to the power
model. Hence, we generate separate power models for the
system running at 1.6 GHz and 2.2 GHz.

To create the power model, we run a variety of benchmarks,
each which primarily stress one component on the system.
We then create a linear regression model from this data.

We also perform four user-driven verification workloads,
each which stress a different aspect of the computer. Using
these workloads, we compare the actual power readings with
the power levels predicted by our model. Averaged across
all readings and verification workloads, our mean absolute
error is less than 2%.

2.2 Physiological Sensors
In this work, we utilize a GSR sensor, a 3-axis accelerome-

ter, an eyetracker, and piezoresistive force sensors to measure
the physiological and behavioral effects of different power
saving techniques. Additionally, we also record keyboard
button presses via software hooks.

The GSR sensor and the accelerometer are both mounted
on a wrist strap, the signals from which are fed into an
Arduino-based microcontroller. The force sensors are at-

tached to the arrow keys on our keyboard, and their signals
are also fed into an Arduino device. The eyetracker is made
by MobileEye [2], and consists of a head-mounted camera
which is controlled by a dedicated laptop.

From those sensors and logging software, we extract seven
different metrics:

• AccelMag: sum of squares of X, Y, and Z accelerometer
axes

• DeltaGSR: change in GSR value since the last sensor
reading

• Keypress: time since the last keyboard button press

• MaxForce: largest current value from the force sensors

• NormalMaxForce: same as MaxForce, but normalized
to each key’s highest force reading

• PupilMovement: change in position of the pupil since
the last pupil reading

• PupilRadius: the radius of the pupil.

We tried to match the metric to what we expected to be
the most interesting behavior of the sensor. For instance,
GSR sensors tend to exhibit a low-frequency change in sensor
values on top of the more interesting high-frequency signal,
so we only look at the change in GSR since the last sensor
reading to reduce the low-frequency effects.

2.3 User Studies
In this section, we describe the techniques that are used

to reduce power consumption. To simplify the discussion,
we call these techniques ‘annoyance events’ because they are
applied for short durations during our user studies, and they
may cause user dissatisfaction/annoyance.

From the results of the power model, we decided to focus on
the CPU utilization (CPUUtil), CPU frequency (CPUFreq),
and screen brightness (ScreenDim and ScreenGrad). CPUUtil
limits the scheduling time of the target application without
changing the frequency. CPUFreq reduces the frequency of
the system’s processor. ScreenDim reduces the brightness
of the screen to save power. ScreenGrad does the same, but
does so gradually over 10 seconds. The rest of the predictors
either would completely disrupt the experiment (e.g., WiFi
on/off), or are not easily throttleable (e.g., RAM accesses).
We select a variety of different annoyance events which

total up to 4, 8, or 12 Watts of power savings for our target
system (Table 1). If multiple annoyances are in effect at
the same time, the power savings is split between them
(e.g., if 3 annoyances are active for 4 Watts of total savings,
each annoyance saves 1.33 Watts). We also include ‘pseudo
annoyances’, where no annoyance is initiated by our system.
We initiate each annoyance event twice during user studies.
Every annoyance event is active for 30 seconds after which
the computer reverts back to the original state for 25-40
seconds. The order of annoyance events are randomized to
eliminate any possibility of biasing.
The workload that each user in this study performs is a

racing game called Motocross Madness 2. We use a racing
game as our workload because it is relatively CPU-bound,
and requires consistent attention to play. Future work will
likely explore additional workloads. The laptop typically
consumes 40-41 Watts of power while running the game
without any active annoyance events.
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Table 1: Total number of times (out of 40 instances)
that the annoyance event combination was indi-
cated as being annoying. If multiple events are ac-
tive, each contributes an equal amount to the total
amount of power saved.
Power
Saved

Annoyance Events Active # Times User
Indicated
Annoyance

0W None 1

4W CPUFreq 1

4W CPUUtil 15

4W ScreenDim, CPUFreq, CPUUtil 15

4W ScreenDim 30

4W ScreenGrad 31

8W CPUFreq 0

8W CPUFreq, CPUUtil 18

8W ScreenDim, CPUFreq, CPUUtil 27

8W ScreenDim, CPUUtil 30

8W ScreenDim, CPUFreq 31

8W CPUUtil 31

12W ScreenDim, CPUFreq, CPUUtil 33

As the users are playing the game, we request that they
verbally notify us when they become dissatisfied. Other
methods of reporting dissatisfaction are possible, such as
using a physical button or periodically rating machine per-
formance on a scale of values. Simple verbal reports require
minimal user action, which is desirable since gameplay is
continuous through annoyance events.

We ran this study on 20 users. The studies are conducted
in a well-lit room with overhead fluorescent lighting and
drawn shades, to minimize the effect that the time of day
and screen brightness have on the user’s pupil dilation.

The advertisements for the study were placed around var-
ious parts of Northwestern’s campus, and the respondents
were all university students. Of the 20 users, there were 12
males and 8 females. 10 were undergraduate students, and
10 were graduate students.

3. RESULTS
We now examine the results of our study in order to derive

a model for predicting user satisfaction from the physiological
sensors.

3.1 Annoyance Event Analysis
In this section, we examine how users react to the annoy-

ance events. As the users are playing the game, we request
that they verbally notify us when they are dissatisfied. We
then note how many times users indicated annoyance for
each annoyance event. In Table 1 we list how frequently the
users indicated annoyance.
One interesting piece of information to note from this

table is that different users have very different reactions to
the CPUFreq and CPUUtil annoyances. Users very rarely
express annoyance when only the CPU frequency is reduced,
even though the corresponding CPU utilization reduction
saves the same amount of power. Reducing the frequency not
only reduces the number of cycles the processor can complete
in a given amount of time, but also allows the processor to
reduce its voltage, which may explain this discrepancy in
indicated annoyance events.

It’s also interesting how users readily notice screen bright-
ness changes. Users frequently report annoyance with the
system when the screen is dimmed. One notable exception
is the 4-Watt ScreenDim + CPUFreq + CPUUtil annoyance:
even though there is a ScreenDim annoyance active in that
set, the screen isn’t dimmed for this annoyance as much as
other cases. This seems to suggest that there is a particular
threshold for when users indicate annoyance with a system
component. This result alone shows the importance of un-
derstanding user satisfaction with power saving techniques:
a näıve optimization would dim the screen (with or without
a change in CPU frequency) to save power. However, our
results show that for this target application, the best method
is to partially reduce the CPU frequency, and partially dim
the screen . A system that can understand user satisfaction
with different optimizations will choose this option over the
rest.

3.2 Statistical Sensor Value Analysis
To analyze the data collected from the biometric sensors,

we first note that there are two distinct sets of data that
relates to every individual annoyance event: data during
the non-annoyance phase preceding the introduction of the
annoyance event, and data during the annoyance phase.

Intuitively, we would expect the sensors to either substan-
tially change before and during an annoyance event, or to
remain approximately the same. We hypothesize that events
which the users either don’t notice or don’t care about will
not substantially change the sensor metrics. Conversely, we
expect that annoyance events which the user perceives as
annoying would cause a measurable change between the two
sets of sensor readings.
Since the data before and during each annoyance event

consists of hundreds of sensor readings, we compute the
standard deviation, mean, and median of each of the metrics
before and during each annoyance event.

We do not know for certain how the users’ biometric data
will change for each annoyance event. There’s a good chance
that we would miss some sensor responses if we only looked at
one static span of data for each event; some sensors may have
a delayed reaction, or the change may happen over a larger
or smaller window of time. To improve our likelihood of
capturing the timespan that is most indicative of annoyance
for each sensor, we consider multiple data windows and
offsets to see how the different sensors respond. We look at
window sizes of 10, 15, 20, and 25 seconds for multiple offsets
from the start of the annoyance event. Please note that the
larger windows do not have as much room to move within
the 25-second window of non-annoyance, and hence, we do
not analyze as many offsets for those windows.
Since we are only concerned with detecting changes in

metrics when the user is actually annoyed, we first only
consider event instances which are indicated by the user as
unsatisfactory. For each event, we have data from seven
sensor metrics (Section 2.2). For each metric, we collect data
from the various window/offset combinations, as described
above. On each of those, we then calculate a standard
deviation, mean, and median. Each of these data frames
consists of the mean, median and standard deviation from
the window before and during one annoyance event instance.
All of those similar data frames are then compared from

before and during the annoyance using a paired 2-tailed t-
test. 2-tailed t-tests with a relevant p-value (p<0.1 in this
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study) suggest a statistical difference between two sets of
samples.
Due to space constraints, we do not present graphs for

every sensor, but the results for the selected set of sensor
metrics are shown in Figure 2.
One interesting thing to note in these graphs is that the

metrics and windows which give statistically significant t-
tests differences vary for each sensor. Some of the sensors
respond best with a larger window, while others seem to react
best using a smaller one. Additionally, it seems that lower
offsets perform better than larger offsets, which would suggest
that these sensors reflect external stimuli fairly quickly. Many
of the sensors show promise for our future studies, as we can
statistically show the difference between the data before and
during an annoyance event with a high degree of confidence
for many of the windows and offsets.

3.3 Equivalence Analysis
A false positive occurs whenever the user annoyance pre-

diction system indicates that the user is annoyed when they
actually are not. A theoretical system could be devised
which always detected a difference in some sensor metric.
This system would always indicate that the user is annoyed,
and so would be 100% effective in detecting annoyance, but
would never detect non-annoyance. Thus, we have to prove
that our sensor metrics are not only good at detecting differ-
ences in sensor data due to annoyance events, but we also
must show that they perform reasonably well at detecting
non-annoyance. In other words, the system needs both a low
false negative rate and a low false positive rate.

‘TOST’ [15], or ‘two one-sided tests’, is one way of demon-
strating equivalence between two sets of data. TOST works
by running two paired one-tailed t-tests with some offset ǫ.

When proving dissimilarity (Section 3.2), we only analyze
data sets that the user deems annoying. Conversely, for this
equivalence analysis, we only consider data sets in which the
user did not indicate annoyance. From the previous t-test
analysis, we take the sets of data with the 10 lowest p-values,
but at least one and no more than two from each sensor. We
then determine the smallest possible ǫ value that is required
to achieve a confidence of 90% that the two sets of data
are equivalent. In Table 3, we present the results of our
equivalence analysis. We represent the relative size of the
offset by dividing ǫ by the average of the means.

The required ǫ values for all of the metrics we analyze are
relatively small, compared to the rest of the data. However,
a few of the t-tests (PupilMove, one of the AccelMag) are
statistically significant: this would suggest that those par-
ticular sensor/window/offset combinations may not be the
best choice for an eventual prediction system. The rest of
the metrics behave well, however.

3.4 User Annoyance Prediction
In this section, we determine how accurately we can actu-

ally predict user annoyance.
To perform this analysis, we employ standard data mining

techniques using labeled instances of data. We employ the
Weka [1] data mining suite to assist in handling the data
and building the models. In this analysis, we label any event
where the user expressed annoyance as ‘True’, and instances
where they did not as ‘False’.

We then create a large number of attributes on those
labeled instances. To generate our attributes, we take data

from 0–2 sec, 2–4 sec, 4–6 sec, 6–8 sec, 0–5 sec, 5–10 sec,
10–15 sec, 15–20 sec, 0–10 sec, and 10–20 sec, from before
and from after each annoyance event. For each of those time
periods, we find both the means and standard deviations.
Additionally, we take the difference from before and after.
This gives us a total of 60 attributes. We run this attribute
generation method for each of our 7 sensor metrics.
If we were to simply use all of those attributes in a data

mining algorithm, the most useful attributes would get lost
in the noise of the rest of the attributes. Thus, to improve
our eventual model’s accuracy, we employ CFS [8], a feature
selection algorithm, which reduces the number of attributes
we end up using in the actual model.

After feature selection, we then run the actual data mining
algorithm. To build our model, we use logistic regression [18],
which is a type of generalized linear model frequently used on
binary labeled data. For all of our analyses, we use 10-fold
cross-validation.
We generate a different model for each user. We also

include a ‘baseline’ set of data. This baseline was generated
by using ZeroR, which is a näıve algorithm that always
chooses the most common label (True or False). The results
are presented in Figure 4.
As the graph shows, all of the individual sensors have

medians better than the ZeroR baseline case. However, when
all of the sensors are combined in the model, the prediction
accuracy is significantly better. We would like to note that
some users did not indicate any annoyance, which gives ZeroR
a slight advantage (since it is always correct for those users),
but we did not discard the data; we assume that they could
not tell a difference in performance.
We must also know how accurate the system is at indi-

vidually predicting ‘True’ and ‘False’ instances, as a system
which has a very high ‘True’ prediction accuracy, but very
low ‘False’ prediction (or vice-versa) is not as useful. Using
the combined sensors model, our system predicts ‘True’ ac-
curately 212/263=80.6% of the time, and ‘False’ accurately
203/257=79.0% of the time (false positive=19.4%, false neg-
ative=21%).

3.5 Results Verification
In our original experiment, the users verbally notified us

when they were annoyed. However, their verbal notification
could alter the readings on our biometric sensors. To address
this possibility, we run a small supplementary user study
on five users to verify that we can detect when the user is
annoyed without a verbal indication. The primary difference
in this study is that we do not have the users notify us when
they are annoyed; we simply have them play the game as the
performance changes.
Since we already have determined which annoyances the

user perceives as annoying and non-annoying, we only use
the top 5 most annoying events, as reported by users in our
original study (see Table 1), as well as 5 ‘pseudo’ annoyance
events where there is no change in performance. We run
each of those annoyance events two times. We increase the
time of non-annoyance to 55–65 seconds, with 30 seconds of
annoyance.
We then run a similar analysis to our original study, but

instead of using the user-reported annoyances to label the
annoyance events as ‘True’ or ‘False’, we label all of the
intentionally annoying events as ‘True’, and all of the pseudo
annoyance events as ‘False’. The graphs in Figure 5 are the
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Figure 2: Windowed t-test analysis for selected sensors. Low p-values, represented by dark areas, indicate
metric/offset/window combinations where sensor data differs before and during annoyance events. Only
user-indicated annoyances are analyzed.

Table 3: Confidence intervals for equivalence test analysis, using data from the non-annoying events. Only
includes selected metrics which performed well in the previous t-test analysis.
Sensor Metric Window Offset Average

Before
Annoyance

Average Dur-
ing
Annoyance

Required
ǫ for 90%
Confidence

ǫ / avg
of means

t-test
P-value

AccelMag std 15 3 3.0123 3.2871 0.7048 0.2238 0.1853

AccelMag std 20 0 3.0288 3.4610 0.9376 0.2890 0.0949

DeltaGSR std 10 5 38.9661 39.3882 6.8749 0.1755 0.7906

DeltaGSR std 10 6 39.0690 39.4917 6.9296 0.1764 0.7889

Keypress mean 25 0 0.1968 0.1878 0.0249 0.1297 0.2565

MaxForce median 15 1 142.7626 138.3891 20.1704 0.1435 0.5764

NormalMaxForce std 10 15 0.1468 0.1431 0.0130 0.0896 0.3681

PupilMove std 10 13 7.6988 6.7270 1.7515 0.2428 0.0267

PupilMove std 10 15 7.5278 6.8014 1.4574 0.2034 0.0717

PupilRadius std 15 2 25.7464 25.2551 2.1452 0.0841 0.5001

result of our prediction analysis. The baseline for this graph
is exactly 50%: there were exactly 10 annoying events and
10 non-annoying events for each user, so ZeroR would always
be correct 50% of the time.

As the graph shows, all sensors perform much better than
the baseline, and again, the combined sensor model performs
the best, with an average accuracy of 79%. This shows that
our system works, regardless of whether there are any verbal
user indications of annoyance or not.
Using the combined sensors model, we are able to pre-

dict ‘True’ instances 38/50=76% of the time, and ‘False’
instances 41/50=82% of the time (false positive=24%, false
negative=18%).

4. RELATED WORK
Mouse and keyboard actions alone are often used to de-

termine user state in human-computer-interaction scenarios.
Fox et al. [6] try to determine user satisfaction based on
these in the context of web searching. Macaulay [10] uses
mouse click frequency as an indicator for user anxiety.
Endo et al. [5] explore using OS event handling latency,

rather than computational throughput, as a measure for

performance. Video frame rates and application response
times are also used as a user-perceivable performance metric
for the system, as a proxy for user satisfaction [11]. Gupta
et al studied the effects of resource scheduling decisions on
directly reported user satisfaction [7]. Even further studies
investigate leveraging biometric data to adjust microproces-
sor power level, to account for user satisfaction [17]. However,
none of these studies analyzed the impact of different power
saving methods.
Picard et al. [13], proposes a method of using a variety

of sensors to reduce the negative impact that interruptive
technologies have on users. That same group also proposed
a method of predicting user frustration using sensors in a
learning environment (Kapoor et al. [9]), but use a different
set of sensors, and do not consider power saving methods in
this case.
Considerable work has been put into systems which use

sensors to acquire affect data from users in order to enable
computers to perform certain user-facing tasks. For example,
the educational field has looked into using sensors to improve
tutoring systems. Cooper et al. [4] describes a tutoring
system which uses multiple sensors to improve the relevancy

295



0.0

0.2

0.4

0.6

0.8

1.0

Acc
el

D
el
ta

G
SR

Key
pr

es
s

M
ax

Fo
rc

e

N
or

m
al
M

ax
Fo

rc
e

Pup
ilM

ov
e

Pup
ilR

ad

C
om

bi
ne

dS
en

so
rs

Bas
el
in
e

Sensor

A
c
c
u

ra
c
y

Figure 4: Model prediction accuracy using individu-
alized user models. We include results for 7 individ-
ual sensors, a combined model which uses all 7 sen-
sors, and a baseline prediction accuracy. The box’s
bottom and top are the 25th and 75th percentile,
the middle line is the median, and the whiskers go
to the highest and lowest points within 1.5 IQR of
the higher and lower quartiles. Dots represent out-
liers beyond 1.5 IQR.
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Figure 5: This boxplot is similar to the plot in Fig-
ure 4, but the users don’t verbally indicate if they
are annoyed. Data is labeled based on if the annoy-
ances were typically annoying or not.

of questions on a standardized test studying platform by
maximizing user engagement. Burleson describes a system
[3] where a virtual agent helps guide the user through the
Towers of Hanoi problem; the agent uses sensors to try to
empathize with the user’s current emotional state. Predinger
and Ishizuka describe another agent-based interface that
empathizes with the user through the use of physiological
sensors [14]. However, these studies do not consider computer
system performance or power saving methods.

5. CONCLUSION
We have argued for measuring and understanding end-

user satisfaction using physiological sensors, and supported
our argument through a user study whose data allow us
to correlate voiced satisfaction, biometric information, and
intentionally-introduced power-savings events. We found that
different power-savings techniques reduce user satisfaction to
different degrees, and that saving a given amount of power
using a combination of techniques is generally preferable to
using a single technique alone.
We have also shown that it is possible to accurately mea-

sure changes in user satisfaction via various physiological

metrics. When the performance is constant, biometric read-
ings remain constant, while when performance varies, bio-
metric readings also vary. This correlation can be used to
predict user satisfaction from the metrics, and we showed
how to do so with 80% accuracy through the use of per-user
models developed through data-mining.
In a design environment where power and performance

trade-offs directly impact user experience, understanding
the relationship between user satisfaction and power-saving
techniques is critical. This paper highlights some of these ef-
fects, and indicates that biometric sensors are a powerful way
to acquire feedback about the individual end-user without
requiring any effort on his part.
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