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Abstract 
The ultimate goal of a computer system is to satisfy its users. The 

success of architectural or system-level optimizations depends 

largely on having accurate metrics for user satisfaction. We propose 

to derive such metrics from information that is “close to flesh” and 

apparent to the user rather than from information that is “close to 

metal” and hidden from the user. We describe and evaluate 

PICSEL, a dynamic voltage and frequency scaling (DVFS) 

technique that uses measurements of variations in the rate of change 

of a computer’s video output to estimate user-perceived 

performance. Our adaptive algorithms, one conservative and one 

aggressive, use these estimates to dramatically reduce operating 

frequencies and voltages for graphically-intensive applications 

while maintaining performance at a satisfactory level for the user. 

We evaluate PICSEL through user studies conducted on a Pentium 

M laptop running Windows XP. Experiments performed with 20 

users executing three applications indicate that the measured laptop 

power can be reduced by up to 12.1%, averaged across all of our 

users and applications, compared to the default Windows XP DVFS 

policy. User studies revealed that the difference in overall user 

satisfaction between the more aggressive version of PICSEL and 

Windows DVFS were statistically insignificant, whereas the 

conservative version of PICSEL actually improved user satisfaction 

when compared to Windows DVFS. 

Categories and Subject Descriptors    C.3 [Performance of 
Systems]: Measurement Techniques, Performance Attributes; B.4.2 

[Input/Output and Data Communications]: Input/Output Devices 

- Image display 

General Terms   Algorithms, Management, Measurement, 

Performance, Human Factors 

Keywords   User-perceived Performance, Dynamic Voltage and 

Frequency Scaling, Power Management, Thermal Emergency 

1. Introduction 
Existing architectures and systems software typically optimize for 

user satisfaction by employing metrics based largely on instruction 

throughput (e.g., instructions-per-second). These metrics are used 

because they are easy to access, easy to compare across platforms, 

and are believed to reflect user demands for performance at a very 

low level. However, in this paper, we will show that low-level 

information is not as good a proxy for user satisfaction with 

performance as is high-level information actually observed or 

perceived by the user. We focus on interactive applications and 

show that it is possible to infer information about user-perceived 

performance by measuring changes in video output. This provides 

better information about the performance level necessary to 

maintain user satisfaction.  We demonstrate the utility of this 

information in on-line power management. 

Processor frequency has a strong effect on power consumption and 

temperature, directly and also indirectly through the need for higher 

voltages at higher frequencies. Dynamic Voltage and Frequency 

Scaling (DVFS) is one of the most commonly used power reduction 

techniques in modern processors. DVFS varies the frequency and 

voltage of a microprocessor at runtime to trade off power 

consumption and processor performance. Specifically, existing 

DVFS techniques in high-performance processors select an 

operating point (CPU frequency and voltage) based on the 

utilization of the processor and other information available to the 

Operating System (OS) kernel. This approach is often pessimistic 

regarding user satisfaction, setting the processor frequency higher 

than necessary to ensure user satisfaction with performance. A high 

level of CPU utilization or a burst of certain OS events leads 

directly to a high frequency (and high voltage), regardless of the 

user’s satisfaction with performance. This can produce unnecessary 

increases in frequency, voltage, power consumption, and 

temperature. 

In response to this observation, we have developed a new power 

management technique that relies upon a more accurate proxy for 

user performance needs than CPU- or OS-level events, but that is 

still inexpensive to measure. We estimate user satisfaction with 

processor performance using information that is “close to flesh” and 

apparent to the user rather than information that is “close to metal” 

and hidden from the user. Interface devices are the logical locations 

for these measurements since they sit between computation and user 

perception. The display is particularly useful because it is the user’s 

primary source of information regarding the performance of the 

computer.   

We must note that a user satisfaction-aware optimization policy 

does not need an absolute metric for user-perceived performance to 

make decisions. The policy will only make decisions for the 

architecture on which it is implemented. Using this idea in the 

context of DVFS, we can compare the displayed performance of 

applications that change the display at lower frequencies to the 

displayed performance at the processor’s highest available 

frequency. If the two frequencies result in identical sequences and 

timing of frames on the screen, then we can safely conclude that 

these two processor states have the same displayed performance. 

This maximum frequency satisfies user demands for displayed 
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performance as well as the architecture can, marking a basis for 

satisfying the user that is fixed for the architecture. Hence, 

initializing a DVFS policy at the maximum frequency “seeds” the 

policy with a meaningful level of displayed performance. 

To bring this idea to life and evaluate it, we have developed a new 

power management framework called PICSEL (Perception-
Informed CPU performance Scaling to Extend battery Life) that 

monitors the rate of change of pixel intensities in the display. An 

algorithm controlling the processor’s operating frequency then 

makes decisions based upon these rates of change. The algorithm is 

tested with two configurations: conservative PICSEL (cPICSEL) 

and aggressive PICSEL (aPICSEL) (Section 3.2). We focus on the 

DVFS technique implemented by a commercial OS and show that 

runtime estimation of user-perceived performance using pixel 

intensities can enhance the effectiveness of the power management 

scheme. We also show that this approach can result in optimizations 

that are not possible otherwise. Our work makes the following 

contributions: 

1. We show that traditional performance metrics do not 

necessarily represent user-perceived performance,  

2. We introduce new metrics that can successfully measure 

user-perceived performance, and 

3. We propose, implement, and evaluate PICSEL, a power 

management scheme based on estimates of user-perceived 

performance. 

2. User-Perceived Performance 
The motivation for including user-perceived performance in any 

objective function is clear: an optimization ultimately aims to satisfy 

the user. However, the difficulty in optimizing directly for user-

perceived performance is in finding a corresponding metric that can 

be efficiently measured at runtime. For interactive applications, the 

events occurring on the input/output devices are good candidates for 

measuring user satisfaction with performance. However, input 

events are rare compared to output events. Therefore, considering 

output to the user is preferable for estimating the performance 

experienced by the user. Of all the types of output supplied to the 

user, graphics are used in the highest proportion of applications. 

Therefore, exploiting properties of the display to estimate user-

perceived performance is a good alternative. 

Given an application that only changes the display, it is plausible 

that the frame sequence and frame rate are indications of the user-

perceived performance of that application. For example, if there are 

two architectural alternatives that result in identical frame sequences 

and frame rates, we can reasonably say that these architectures 

provide the same user-perceived performance. Ghinea and Thomas 

[8] have done a perceptual study showing that varying both the 

color depth and the frame rate has a significant effect on user 

satisfaction with performance. However, extracting the exact frame 

rate and color depth information would require changes in the 

application or OS. Hence, we decided to employ a metric that is 

independent of the application and easily measurable: the rate of 

pixel intensity change over time. This captures the combination of 

these two metrics.  

We have performed a set of experiments to understand the 

relationships between instruction throughput, rate of pixel change, 

and user-perceived performance. In these experiments, we measured 

the number of instructions-per-second (IPS) on a 2.13 GHz Intel 

Pentium M-based laptop (please see Section 4.1 for further details 

on the experimental study environment) for three applications: a 3D 

Shockwave animation, a DVD quality video, and a 3D video game. 

We also measured the changes in intensity in the red, green, and 

blue channels of some of the pixels being used to display these 

applications using the method described in Section 3.1, and 

averaged these changes together for each time instance to obtain the 

Average Pixel Change (APC). The procedure to calculate APC is 

presented in Table 1. We repeated these measurements at all six 

available processor operating frequencies. 
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Figure 1. IPS and APC curve 

Table 1. User-Perceived Performance Metrics 

Metrics Measurement Procedure 

Average Pixel Change 

(APC) 

- Capture the Pixel intensities of the RGB 

channels of all the pixels in a memory 

buffer 

- Calculate the relative changes for all the 

sampled pixels 

- The mean of relative changes is the APC 

Rate of Average Pixel 

Change (APR) 
(APCTi – APCTi-1)/(Ti - Ti-1) 

Figure 1 illustrates the results of this experiment, with the solid lines 

representing the APC curve and dotted lines representing the IPS 

curve. As depicted in the figure, the IPS of the system is closely 

related to the operating frequency of the CPU and is fairly uniform 

across the three applications. APC is also dependent on the 

operating frequency, but this dependence is influenced by the 

application more than IPS is influenced. For the Shockwave 

application, the effect on APC due to frequency throttling is below 

10% for the highest three frequencies. The Video application shows 

similar properties. For this task, we could simply set the frequency 

statically to a lower value without causing noticeable change in the 

APC. For the game application, the highest two frequency states can 

sustain the APC value within 10% of its maximum value. However, 

the lower frequency states cause the APC value to drop suddenly. 

Most importantly, we see a significant difference between the 

reduction in IPS and APC. In other words, these results show that 

the instruction throughput and user-perceived performance are not 

linearly related. We observe that the APC value of a system can 

quantify user perceived performance and can be used as a metric for 

a power management scheme that implements DVFS based on user-

perceived performance. 

The primary metric we use for user-perceived performance is APC 

normalized to the total number of pixels in the display. As shown in 

Figure 1, we observe considerable variation in the APC values 

across different applications as well as different frequency states. 



On the other hand, it is also possible that the reduction in the 

frequency may result in discontinuities in the display. Previous 

researchers [10] have found that jitter and latency are the main 

sources of user discontent in networked multimedia applications. 

For example, consider an application that starts skipping frames 

when the computational power is reduced. In such a case, the APC 

may not be affected significantly: in a sequence of frames, even if 

some of the intermediate frames are skipped, the pixel difference 

between the first and the last does not change.  

To capture the occurrences of such discontinuities, we record the 

Rate of Average Pixel Change (APR) normalized over the number 

of pixels. In other words, we calculate the difference between the 

APC values measured at each time instant. This roughly 

corresponds to the derivative of the APC. Figure 2 illustrates the 

APR trends observed in three applications used in this paper. When 

there are glitches during display, the APR value tends to increase 

rapidly. This is true for applications where video glitches are 

observed at lower frequencies, namely the Video and 3D 

Shockwave animation. For other applications (such as the game), 

we simply observe an overall slowdown and APR values drop in 

parallel to APC levels. Such applications reduce game jitter at the 

price of reducing the frame rate. As a result, for this particular 

application we actually observe a reduction in APR value at lower 

frequencies as the game’s average frame rate is reduced.  
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Figure 2. APR curves for the three applications 

APR reveals even more pronounced differential behavior across 

applications than APC. This behavior can permit a DVFS algorithm 

to differentiate between two applications with similar computational 

loads and to assign them to different operating frequencies, one 

potentially lower than would have otherwise been assigned by 

existing pessimistic DVFS schemes. 

3. PICSEL Framework  
User-perceived performance-based frequency scaling has two 

components. First, we have to measure the rate of change in the 

pixels displayed on the screen. This measurement tool is described 

in the next section. Then, we have to make a throttling decision 

based on these measurements. The algorithm making this decision is 

described in Section 3.2. In Section 3.3, we describe how PICSEL 

interacts with the system.  

3.1 PICSEL Display Access 
PICSEL gathers screen information using the Windows GDI 

screenshot method, which is simple to implement and can blit any 

region of the screen to main memory. However, screen content may 

be missing from sections of the blitted region if those sections were 

drawn elsewhere in video memory by a rendering or decoding 

operation. We set our applications to perform rendering and 

decoding in software in order to capture these operations with a GDI 

screenshot. This also places the computational load for those 

operations on the CPU, thus making them subject to CPU frequency 

scaling. Ideally we would like to consider all the pixels present in 

the display while calculating the APC. Furthermore, the rate of APC 

calculation should be same as the rate of frame change in the 

system. However, both of these constraints introduce heavy 

computational overhead on the system. Therefore, it is necessary to 

reduce the size of the captured screen area so that the capturing 

process does not occupy too much of the computer’s resources. We 

decided to limit the overhead to less than 2% CPU utilization. The 

final captured area is 64 by 51 pixels, or a scaling down of each 

dimension of a 1280 by 1024 screen by a factor of 20. This area 

contained 3276 pixels and was fixed at the center of the screen. We 

chose to capture a contiguous rectangle of pixels rather than a 

disjoint grid of pixels because capturing the disjoint grid proved to 

be much more computationally intensive than capturing the 

contiguous rectangle, holding the number of pixels constant. 

Because blitting transfers contiguous blocks of data by design, 

fewer transfers are necessary to capture an area covered by a 

fraction of the blocks rather than a screen-size grid covered by all of 

the blocks.  

The sampling frequency for calculating APC was chosen to be 10 

Hz, the highest frequency with which our framework did not exceed 

the 2% CPU utilization threshold for the captured pixel area. There 

is a computational tradeoff between sampling frequency and capture 

area which we tuned through initial testing on applications 

including, but not limited to, the three tested applications. As we 

will show in Section 4, these sampling parameters do not prevent 

PICSEL from capturing the user-perceived performance for our 

target applications. Nevertheless, it is possible that applications will 

not use our focus area; hence it may be desirable to overcome these 

limitations for other application domains. There are two design 

alternatives to solve this problem. First, PICSEL can be 

implemented in hardware (either on the CPU or on the graphics 

card). The simplicity of the algorithm ensures relatively easy 

hardware implementation. Second, PICSEL can be executed as 

software on the graphics hardware. Although such implementations 

would be desirable, our goal in this work is to provide a proof-of-

concept, which is achieved with the current implementation of 

PICSEL.  

After a section of the screen has been captured, it is stored to a 

memory buffer. This buffer is compared to another buffer 

containing the previous screen capture, and the intensity differences 

for the red, green, and blue channels are calculated. Only two 

buffers are necessary, with each buffer toggling between old and 

new screen captures. All of the magnitude differences are averaged 

to obtain a single value for the first time derivative of pixel intensity 

over the sampling period (APC). 

It is important to understand that this method does not capture each 

frame and that there are unaccounted-for frames between the two 

frames used to calculate the intensity difference. This introduces 

noise into the APC metric. However, since we also measure the 

APR, we can detect trends in pixel intensity that would otherwise be 



obscured by the noise. This permits a sampling frequency below the 

frame rate of the screen.  

3.2 PICSEL Algorithm 
PICSEL decides on the frequency level by using three state 

variables: f, the current CPU frequency; µAPC, APC in the last time 

interval; and µAPR, APR in the last time interval. Pixel data are 

measured at fixed sampling frequency and stored to a file by a 

background process. Adaptation is controlled by three constant 

parameters: ρ, the APC change threshold; γ, the APR change 

threshold; and α, the threshold difficulty level corresponding to 

each frequency state.  

PICSEL can either be in the initialization or the control state. The 

idea in the initialization stage is to capture information about the 

APC and APR values observed at the highest frequency. These 

values will be used as a base case for comparison during the control 

stage to make throttling decisions. Therefore, during initialization, 

the CPU frequency is set at the highest value fmax for a time interval 

Tinit. The APC and APR values of the system over the time interval 

Tinit are obtained from the background process and initialized as 

APCinit and APRinit. PICSEL then enters the control state where at 

the end of each time interval Ti, the APC and APR of the system 

over the last interval are obtained from the background process. 

PICSEL then makes a decision as follows: 

IF (APC init - μAPC) < ρ ×(1- α) × APCinit  
  OR |APRinit - μAPR| < γ ×(1- α × APR init  

Reduce f by one level 
Re

ELSE 
set α of the last level to 0   

Increase f by one level 
Increment α 

 

The main idea in this pseudocode is to compare the last observed 

APC and APR against the APC and APR captured when the 

processor is executing at the highest frequency. Then, based on the 

threshold factors defined by ρ, γ, and α, we may conclude that the 

user-perceived performance is unchanged and try to reduce the 

frequency and power consumption. Otherwise, out-of-bound values 

of μAPC and μAPR suggest that user-perceived performance has 

suffered in the last interval due to low CPU frequency and it is 

increased accordingly to improve the user-perceived performance. 

Factor α introduces hysteresis to eliminate the possible ping-pong 

effect between two frequency states. If the processor has been at a 

state several times after which PICSEL had to increase the 

frequency, α makes it harder to return to that frequency level. 

Following every third (n=3) update to α, PICSEL reenters the 

initialization state. This feature of the algorithm ensures that 

PICSEL will gradually adjust to a new set of operating conditions. 

The constant parameters (Ti = 7 seconds, Tinit = 10 seconds) were set 

based on the experience of the authors using the system. α is 

initialized to zero for each of the frequency levels and is 

incremented by 0.1 for each frequency boost. We used two 

variations of the PICSEL algorithm by fixing the ρ = 0.05, γ= 0.15 and ρ = 0.10, γ= 0.30, which correspond to 

conservative PICSEL (cPICSEL) and aggressive PICSEL 
(aPICSEL), respectively.  

Ideally, we would like to empirically evaluate the sensitivity of 

PICSEL performance to these parameters. However, it is important 

to note that any such study would require having real users in the 

loop, and thus would be quite slow. Testing three values of five 

parameters on 20 users would require 243 days (based on 20 users 

per day and 25 minutes per user). For this reason, we decided to 

choose the parameters based on qualitative evaluation by the authors 

and then close the loop by evaluating the whole system with the 

choices. 

3.3 Current Implementation and Integration 
For our user studies, we disable the default DVFS policy and give 

control of the processor frequency to PICSEL. Once PICSEL is 

active, it executes client software that runs as a Windows toolbar 

task as well as an API that controls CPU frequency based on user 

perceived performance. In the client, we log the APC and APR at 

the background. The API uses these values to control CPU 

frequency. It is this implementation that we evaluate in the next 

section.  

In its current implementation, PICSEL has some limitations, which 

will be addressed once it is integrated with the OS. PICSEL should 

be activated only if the system is executing an application that 

modifies the display. We detect applications with display output 

through constant (but infrequent) monitoring of the device. For 

example, a running process can monitor the APC/APR values every 

10 seconds. Then, if this rate is above a threshold, we conclude that 

the current foreground application modifies the display and we 

activate PICSEL frequency control. If the APC/APR value drops 

below a threshold, PICSEL will conclude that the application is 

completed and give the control back to Windows DVFS. In 

scenarios when the display is static, PICSEL will detect that the rate 

of change in the display is below the threshold and give the control 

back to Windows DVFS. On the other hand, if the machine runs any 

application that changes a part of the screen, PICSEL will control 

the frequency. In such a case, the frequency will be reduced if there 

is no background job but will be kept high if a background job takes 

CPU resources away from the graphical application. In this way, the 

application that changes the screen is acting as a “canary in a coal 

mine” whose performance degradation is readily apparent to 

PICSEL.   

We must note that running background jobs does not cause any 

problem for PICSEL. In fact, one of our applications targeted in the 

next section includes a non-interactive background job to prove that 

our concept is applicable in such cases. If there is a CPU-intensive 

background job, a reduction in the frequency causes a significant 

reduction in the APC (even if the interactive application itself is not 

computationally intensive). Therefore, PICSEL will keep the 

frequency high. If, on the other hand, the background job is not 

CPU-intensive, the frequency can be safely reduced, which is 

exactly the action taken by PICSEL. 

4. Evaluation 
We now evaluate the cPICSEL and aPICSEL schemes. We compare 

against the native Windows XP DVFS scheme, displaying 

reductions in power consumption and temperature. In Section 4.4, 

we also present user satisfaction results. 

Our evaluations are based on user studies, as described in 

Section 4.1. We trace the user’s activity on the system during the 

use of the applications and monitor the responses of Windows 

DVFS, cPICSEL, and aPICSEL. For studies involving PICSEL, the 

cPICSEL and aPICSEL algorithms are used online to control the 



clock frequency in response to APC and APR values. In the rest of 

this section, we first describe a user study of PICSEL that provides 

both independent results and traces for later use. Next, we present 

dynamic CPU power consumption estimates, system power 

measurements, and temperature measurements.  

PICSEL estimates user-perceived performance via APC and APR 

values and customizes processor frequency to the individual user. 

This typically leads to significant power savings compared to 

existing dynamic frequency schemes that rely only on CPU 

utilization as feedback. The frame buffer readings and the 

corresponding calculations for measuring user-perceived 

performance are infrequent, and impose less than 2% computational 

overhead. We must note that PICSEL performs APC and APR 

readings during user studies, hence all the results presented for 

PICSEL (including power and user satisfaction) include this 

overhead and its potential impact on user satisfaction. A more 

efficient, GPU-based implementation could be used to further 

reduce this overhead. 

4.1 Experimental Setup 
Our experiments were done using an IBM Thinkpad T43p with a 

2.13 GHz Pentium M-770 CPU and 1 GB memory running 

Microsoft Windows XP Professional SP2. The Pentium M uses the 

second generation of Intel’s SpeedStep technology, in which six 

CPU frequency-voltage operating points are available. 

Our base case for comparison, the Windows XP Adaptive scheme, 

is Microsoft’s adaptive DVFS scheme for portables/laptops. 

Adaptive DVFS uses all of the frequency states in the Intel 

Speedstep technology. Performance needs are measured from 

heuristics “such as processor utilization, current battery level, use of 

processor idle states, and inrush current events” [17]. In our 

experimental setup, we ran the computer off AC power, the 

processor was always active, and we ran trials close enough together 

to prevent hard disk timeout in order to minimize inrush current 

events. This leaves processor utilization as the main input to the 

adaptive DVFS, which makes decisions according to the following 

algorithm. This evaluates either when in the idle loop or after 300 

ms have passed since the last evaluation, whichever comes first. 

IF   150 ms have passed since the last 
      frequency state adjustment  
 AND Performance has increased by 20% 
      since the last evaluation  

Increase f by one level within the next 10 
ms 

IF   500 ms have passed since the last 
 frequency state adjustment       

 AND Performance has decreased by 30% 
      since the last evaluation 
 AND  A decrease of frequency state by 
      one operating point will remain 
      above 50% of the maximum 
      frequency state  

Decrease f by one level within the next 10 
ms 
 

In all our studies, we make use of three application tasks, some of 

which are CPU intensive and some of which frequently block while 

waiting for user input:  

1. Watching a 3D Shockwave animation using the Microsoft 

Internet Explorer web browser. The animation was stored 

locally. Shockwave options were configured so that 

rendering was done entirely in software on the CPU. 

2. Playing the FIFA 2005 Soccer game. FIFA 2005 is a 

popular sports game. The game was stored locally. There 

were no constraints on user gameplay.  

3. Watching an HD quality movie trailer in Windows Media 

Player (WMP) while decoding another MPEG movie clip in 

the background. Both clips were stored locally and 

decoding was done in software on the CPU. 

We conducted a study with twenty users to evaluate PICSEL. We 

developed a user pool by advertising our studies within 

Northwestern University. Some participating users were computer 

science, computer engineering, or electrical engineering students 

and others were less experienced with computer use. The studies 

were double-blind and randomized (i.e., the order of schemes during 

the tests were randomized to eliminate any possible effect of “first-

time” execution impact). The studies included intervention by 

proctors between trials. Each user evaluation lasted about thirty 

minutes, and consisted of the user doing the following:  

• Filling out a questionnaire that asked the user to rate his or 

her level of experience in the use of PCs, Windows XP, 

DVD video, 3D animation, and FIFA 2005 from among the 

following set: “Power User”, “Typical User”, or 

“Beginner”. • Listening to an explanation of how to play FIFA 2005 and 

how to rate his or her satisfaction with each application 

instance. • Watching the 3D Shockwave animation three times using 

cPICSEL, aPICSEL, and Windows DVFS (2 minutes each). • Playing FIFA 2005 three times using cPICSEL, aPICSEL, 

and Windows DVFS (3.5 minutes each). • Watching the movie trailer three times using cPICSEL, 

aPICSEL, and Windows DVFS (2 minutes each). • After each application, the users were instructed to assign 

one of five levels of satisfaction to their experiences with 

the system performance for each instance of an application. 

The users were not asked to rank the instances against each 

other. 

4.2 Frequency Results  
Figure 3 illustrates the performance of the two algorithms for three 

applications in our study. Each graph shows the CPU frequency for 

a randomly selected user as a function of time. Notice that in all the 

applications both versions of PICSEL reduced processor frequency 

more than the Windows DVFS policy. The amount of frequency 

reduction varies across applications. PICSEL is most effective for 

the 3D animation application. As illustrated in Figure 2, this has the 

least variation in APC and APR values at lower frequencies. As a 

result, PICSEL was able to greatly reduce the CPU frequency 

without affecting user-perceived performance. Similar results were 

observed for the video application. For the game, we observe less 

processor throttling. This is also expected as the APC values in 

Figure 1 degrade very quickly for the game and PICSEL can throttle 

down the frequency to lower frequency states in few cases. Overall, 

these results show that PICSEL reduces frequency compared to 

Windows DVFS while maintaining user satisfaction. In Section 4.4, 

we also analyze user satisfaction with the default Windows DVFS 

and PICSEL algorithms and show that the user satisfaction is not 

adversely affected for any of our target applications. 
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(a) 3D Shockwave animation 
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(b) Video 
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(c) FIFA game 

Figure 3. Frequency vs. time for three user trials 

4.3 Power Measurements  
To analyze the effect of cPICSEL and aPICSEL on the power 

consumption of the system, we logged the frequency over time 

during the user studies described in the previous section. We then 

combine this frequency information with the offline profile to derive 

power savings for cPICSEL, aPICSEL, and the default Windows 

XP DVFS policy. In Section 4.3.1 we present the CPU dynamic 

power savings and in Section 4.3.2  we present the  total system 

power savings. Section 4.3.3 presents the changes in the operating 

temperatures. 

4.3.1 CPU Dynamic Power Reduction 
The dynamic power consumption of a processor is directly related 

to its frequency and supply voltage and can be expressed using the 

formula P = V2CF, which states that power is equal to the product of 

voltage squared, capacitance, and frequency. By using the 

frequency traces and the nominal voltage levels on our target 

processor [9], we calculated the relative dynamic power 

consumption. Figure 4 presents the CPU dynamic power reduction 

achieved by the PICSEL algorithms (cPICSEL and aPICSEL) for 

individual users. The rightmost bars correspond to the savings 

averaged across users. 
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(a) 3D Shockwave animation 
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(c) FIFA game 

Figure 4. CPU dynamic power reduction with cPICSEL and 

aPICSEL over Windows DVFS 

For the 3D Shockwave animation, we see mixed responses from the 

users,  although  on  average PICSEL reduces power by 21.8%. On 

average, cPICSEL and aPICSEL independently reduce the power 

consumption by 15.3% and 28.2%, respectively. aPICSEL performs 

better as it allows a larger threshold for APC values over each 

interval. The results show a considerable variation among different 

users. This can be explained by the fact that the control agent for 

APC calculation considers a sampling   window of roughly 64x51 

pixels at the center of the display window. The relative position of 

the shockwave player while the user watches the 3D animation 

plays a role in the calculation of APC and APR. It subsequently 

affects the decision taken by the PICSEL algorithm. Nevertheless, 



as we will show in Section 4.4, such variations do not have an 

impact on user satisfaction. 

For the Video application, cPICSEL and aPICSEL reduce power 

consumption by averages of 9.6% and 19.7%, respectively. This 

suggests that the Video application is less conducive to frequency 

throttling than the Shockwave application. User 19 is the only 
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(c) FIFA game 

Figure 5. System power reduction with cPICSEL and aPICSEL 

over Windows DVFS 

exception where aPICSEL results in a power savings of 45.8%, 

greater than those for the Shockwave application. For the FIFA 

game, the average power improvements of 2.6% for cPICSEL and 

6.7% for aPICSEL were lower than Video and Shockwave 

applications, suggesting that the FIFA game was the least conducive 

to frequency throttling. Note that PICSEL does not reduce the 

frequency for all the users while they play the FIFA game.  For 

example, cPICSEL does not reduce the frequency for user 19. 

Similarly, aPICSEL does not reduce the frequency for user 17. This 

is understandable since the game application has the most steeply 

sloped APC curve (Figure 1), meaning a change in frequency will 

have a larger effect on the game’s displayed output than on the other 

applications’ displayed output. 

For all three applications, we see that in all cases cPICSEL and 

aPICSEL lead to power savings compared to Windows DVFS. On 

average, aPICSEL reduces the dynamic power consumption by 

18.2% for all three applications. cPICSEL results in a 9.1% power 

reduction aggregated over three applications and 20 users. 

4.3.2 System power measurement 
To further measure the impact of our techniques, we replayed the 

traces from the user studies described in Section 4.3.1 on the laptop. 

The laptop was connected to a National Instruments 6034E data 

acquisition board attached to the PCI bus of a host workstation, 

which permitted us to measure the power consumption of the entire 

laptop (including other power consuming components such as 

memory, screen, hard disk, etc.). The sampling rate was set to 10 

Hz. Each of the user studies was replayed five times to average out 

any variation across trials. Figure 5 presents the system-level power 

savings of cPICSEL and aPICSEL relative to Windows DVFS. In 

general, the reduction in system-level power consumption is similar 

to the estimated processor dynamic power savings. cPICSEL and 

aPICSEL reduce power consumption by 16.8% and 25.7% on 

average for the 3D Shockwave animation, by 8.0% and 14.5% on 

average for the Video application, and by 2.6% and 6.2% on 

average for the FIFA game, respectively. On average, aPICSEL 

reduces system-level power consumption by 12.1%, aggregated 

over 20 users and three applications. cPICSEL reduces the system-

level power consumption by 7.1%. 

We must note that the dynamic CPU power savings presented in the 

previous section and the system-level power savings presented in 

this section cannot be directly compared because the previous 

section reports the dynamic power consumption of the CPU. This 

section, on the other hand, reports the measured power consumption 

of the laptop (which includes leakage power of the CPU as well as 

all the power consumption of other components in the laptop 

including memory, screen, hard disk, etc.). However, some 

conclusions can be drawn from the data in both sections. 

Applications that result in high CPU dynamic power consumption 

tend to also observe high system power savings. Clearly, part of the 

system power reduction comes from the decrease in the CPU 

dynamic power consumption. Leakage is also reduced due to the 

decrease in voltage and the decrease in temperature resulting from 

reduced dynamic power consumption. 

4.3.3 Changes in Peak Temperature 
We used CPUCool [18], a Windows-based tool that logs 

temperatures at processor cores, to measure CPU temperature in the 

system. Figure 6 shows the reductions in peak temperatures of the 

system when using the cPICSEL and aPICSEL schemes. In all 

cases, the cPICSEL and aPICSEL schemes lower the temperature 

compared to the Windows native DVFS scheme due to the power 

reductions we have reported in the previous sections. The maximum 

temperature reduction of 16°C is seen in the case of the aPICSEL 

scheme used for the Shockwave application. On average, for all  

three   applications,   cPICSEL   and   aPICSEL reduce the peak 

temperature of the system by 1.7°C and 4.3°C, respectively, 

aggregated over all 20 users. 
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(a) 3D Shockwave animation 

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20

M
ea

n

T
em

pe
ra

tu
re

 R
ed

uc
tio

n 
[°

C
]

Users

cPICSEL aPICSEL

 

(b) Video 

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Te
m

pe
ra

tu
re

 R
ed

uc
tio

n 
[°

C
]

Users

cPICSEL aPICSEL

 

 (c)   FIFA game 

Figure 6. Peak temperature reduction 

4.4 User Satisfaction 
We now discuss the satisfaction levels with the Windows DVFS and 

PICSEL algorithms for three applications as reported by individual 

users. During the user study, each participant was asked to give a 

satisfaction level from 1 to 5 (5 being the most satisfactory 

performance) for each application. Figure 7 illustrates the  ranks  

awarded  by  each user.  Compared to Windows DVFS, cPICSEL 

results in slightly better satisfaction levels for all three applications 

aggregated over 20 users. The student t-test analysis of the results 

reveals that the difference is not due to chance with 90% 

confidence. aPICSEL and Windows DVFS provide the same 

satisfaction (a student t-test analysis  identifies the two means  to be  

identical  with  over  99%  confidence). On  average, aPICSEL is 

rated highest for the game application (3.8) where it results in the 

least power reduction. For the Shockwave application, maximum 

power reduction for the aPICSEL scheme caused it to have the 

lowest average user satisfaction score (3.5). 
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 (c) FIFA game 

Figure 7. User ranking distribution 

We noticed cPICSEL was ranked higher than Windows DVFS 

although Windows DVFS runs the system at higher frequencies. 

The only time Windows DVFS will throttle the frequency below 

what CPU utilization would prescribe is in the case of the 

temperature crossing a thermal trip point [17], and this led to the 

hypothesis that user dissatisfaction caused by thermal emergencies 

was the main reason for the decreased user satisfaction with 

Windows DVFS. We ran an experiment in which FIFA 2005 was 

played under Windows DVFS until the user observed several 

distinct processor frequency reductions triggered by thermal 

emergencies. The results of this experiment are shown in Figure 8. 



This figure shows processor temperature and frequency when FIFA 

2005 is played until it triggers a thermal emergency (about 16 

minutes after starting the game). At that point, the frequency is 

reduced to the lowest value. This causes a perceivable slowdown in 

game play and lower instruction throughput. Windows DVFS 

continues to operate even though it has been over-ridden by the 

processor, and lowers its frequency to match the lower instruction 

throughput. Soon after the processor returns frequency control to 

Windows DVFS, the frequency is again set to the highest available 

frequency on the processor. This causes the temperature to rise 

again quickly, leading to consecutive emergencies. 

Both cPICSEL and aPICSEL reduced the occurrence of thermal 

emergencies. As a result, for processor-intensive applications, 

PICSEL may deliver better user-perceived performance by reducing 

the probability of thermal emergencies. The satisfaction results also 

support this claim: aPICSEL provides the highest satisfaction for the 

game on average, because for this highly compute-intensive 

application, aPICSEL allows the highest reduction in temperature, 

and resulting thermal emergencies. 
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Figure 8. Thermal emergency under Windows DVFS 

4.5 Related Work 
Dynamic voltage and frequency scaling (DVFS) is an effective 

technique for microprocessor energy and power control for most 

modern processors [9], [1]. Energy efficiency has been a major 

concern for mobile computers. Gurun and Krintz [13] have 

proposed a new model for estimating energy consumption using 

hardware and software counters. Fei, Zhong, and Jha [6] proposed 

an energy aware dynamic software management framework that 

improves battery utilization for mobile computers. However, this 

technique is only applicable to highly-adaptive mobile applications. 

Researchers have proposed algorithms based on workload 

decomposition [2], but these tend to provide power improvements 

only for memory-bound applications. Wu et al. [22] presented a 

design framework of a run-time DVFS optimizer in a general 

dynamic compilation system. The Razor [5] architecture 

dynamically finds the minimal reliable voltage level. Dhar, 

Maksimovic, and Kranzen [4] proposed adaptive voltage scaling 

that uses a closed-loop controller targeted towards standard-cell 

ASICs. Intel Foxton technology [20] provides a mechanism for 

certain Intel Itanium 2 processors to adjust core frequency during 

operation to boost application performance. However, unlike 

PICSEL it does not perform any dynamic voltage setting. To the 

best of our knowledge, no previous DVFS techniques consider user-

perceived performance.  

Other DVFS algorithms use task information, such as response 

times in interactive applications [15] and [24] as a proxy for the 

user. Vertigo [7] monitors application messages and could be used 

to perform the optimizations implemented in our study. However, 

compared to Vertigo, our approach uses a much easier 

metric/framework. Xu, Moss, and Melhem proposed novel 

schemes [23] to minimize energy consumption in certain real-time 

embedded systems. However, they try to adapt to the variability of 

the workload rather than to the users. Gupta, Lin, and Dinda [11] 

studied user satisfaction with resource borrowing and noted a high 

variation in user tolerance for any given level of system resources in 

desktop computing applications.  Lin and Dinda [14] developed a 

CPU scheduling system that used direct user feedback to exploit this 

variation. Mallik, Lin, Memik, Dinda, and Dick [16] showed that 

this variation also exists for power management, and presented a 

successful power management approach based on direct user 

feedback. 

Ranganathan, Geelhoed, Manahan, and Nicholas [19] explored 

using OS-level knowledge about screen content to reduce the power 

consumption of the screen itself, however no work has been done 

using knowledge of screen content to control the voltage and 

frequency of a processor.  Gurun and Krintz [12] looked at OS-level 

knowledge of user-generated events to control a DVFS scheme but 

did not use knowledge of screen content. Our work combines these 

two approaches and uses detailed screen information to control the 

CPU’s voltage and frequency levels. 

A study of user perception of audio/video quality found that the loss 

of video frames would decrease user satisfaction [21]. Frame rate 

also has a significant effect on user satisfaction, with satisfaction 

increasing logarithmically with the number of frames displayed per 

second [3]. Finally, Gulliver and Ghinea found that both video delay 

and jitter cause a significant reduction in users’ perception of the 

quality of a video [10]. However, none of these results were used to 

control processor resources.  

5. Conclusion 
Any architectural optimization ultimately aims to satisfy the user. Its 

success or failure rests on the accuracy of its performance metrics as 

proxies for user satisfaction. In this work, we argue that rather than 

using metrics that are “close to metal”, architectures should 

optimize for metrics that are “close to flesh”. To evaluate such an 

approach, we have developed a new power management technique: 
PICSEL (Perception-Informed CPU performance Scaling to 

Extend battery Life). This technique reduces CPU power 

consumption in comparison with existing DVFS techniques. 

Extensive user studies show that we can reduce system-level power 

consumption of our target laptop on average by 7.1% for a 

conservative approach (cPICSEL) and 12.1% for the aggressive 

version (aPICSEL) compared to the Windows XP DVFS scheme. 

Furthermore, CPU temperatures can be markedly decreased through 

the use of our techniques. User studies also revealed that the 

difference in overall user satisfaction between the more aggressive 

version of PICSEL and Windows DVFS were statistically 

insignificant, whereas the conservative version of PICSEL improved 

the users’ overall satisfaction when compared to Windows DVFS. 
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