
PICSEL: Measuring User-Perceived Performance to Control
Dynamic Frequency Scaling

Arindam Mallik Jack Cosgrove Robert P. Dick Gokhan Memik Peter Dinda
Department of Electrical Engineering and Computer Science, Northwestern University

Evanston, Illinois, USA

{arindam, i-cosgrove, dickrp, memik, pdinda}@northwestern.edu

Abstract
The ultimate goal of a computer system is to satisfy its users. The

success of architectural or system-level optimizations depends

largely on having accurate metrics for user satisfaction. We propose

to derive such metrics from information that is “close to flesh” and

apparent to the user rather than from information that is “close to

metal” and hidden from the user. We describe and evaluate

PICSEL, a dynamic voltage and frequency scaling (DVFS)

technique that uses measurements of variations in the rate of change

of a computer’s video output to estimate user-perceived

performance. Our adaptive algorithms, one conservative and one

aggressive, use these estimates to dramatically reduce operating

frequencies and voltages for graphically-intensive applications

while maintaining performance at a satisfactory level for the user.

We evaluate PICSEL through user studies conducted on a Pentium

M laptop running Windows XP. Experiments performed with 20

users executing three applications indicate that the measured laptop

power can be reduced by up to 12.1%, averaged across all of our

users and applications, compared to the default Windows XP DVFS

policy. User studies revealed that the difference in overall user

satisfaction between the more aggressive version of PICSEL and

Windows DVFS were statistically insignificant, whereas the

conservative version of PICSEL actually improved user satisfaction

when compared to Windows DVFS.

Categories and Subject Descriptors C.3 [Performance of
Systems]: Measurement Techniques, Performance Attributes; B.4.2

[Input/Output and Data Communications]: Input/Output Devices

- Image display

General Terms Algorithms, Management, Measurement,

Performance, Human Factors

Keywords User-perceived Performance, Dynamic Voltage and

Frequency Scaling, Power Management, Thermal Emergency

1. Introduction
Existing architectures and systems software typically optimize for

user satisfaction by employing metrics based largely on instruction

throughput (e.g., instructions-per-second). These metrics are used

because they are easy to access, easy to compare across platforms,

and are believed to reflect user demands for performance at a very

low level. However, in this paper, we will show that low-level

information is not as good a proxy for user satisfaction with

performance as is high-level information actually observed or

perceived by the user. We focus on interactive applications and

show that it is possible to infer information about user-perceived

performance by measuring changes in video output. This provides

better information about the performance level necessary to

maintain user satisfaction. We demonstrate the utility of this

information in on-line power management.

Processor frequency has a strong effect on power consumption and

temperature, directly and also indirectly through the need for higher

voltages at higher frequencies. Dynamic Voltage and Frequency

Scaling (DVFS) is one of the most commonly used power reduction

techniques in modern processors. DVFS varies the frequency and

voltage of a microprocessor at runtime to trade off power

consumption and processor performance. Specifically, existing

DVFS techniques in high-performance processors select an

operating point (CPU frequency and voltage) based on the

utilization of the processor and other information available to the

Operating System (OS) kernel. This approach is often pessimistic

regarding user satisfaction, setting the processor frequency higher

than necessary to ensure user satisfaction with performance. A high

level of CPU utilization or a burst of certain OS events leads

directly to a high frequency (and high voltage), regardless of the

user’s satisfaction with performance. This can produce unnecessary

increases in frequency, voltage, power consumption, and

temperature.

In response to this observation, we have developed a new power

management technique that relies upon a more accurate proxy for

user performance needs than CPU- or OS-level events, but that is

still inexpensive to measure. We estimate user satisfaction with

processor performance using information that is “close to flesh” and

apparent to the user rather than information that is “close to metal”

and hidden from the user. Interface devices are the logical locations

for these measurements since they sit between computation and user

perception. The display is particularly useful because it is the user’s

primary source of information regarding the performance of the

computer.

We must note that a user satisfaction-aware optimization policy

does not need an absolute metric for user-perceived performance to

make decisions. The policy will only make decisions for the

architecture on which it is implemented. Using this idea in the

context of DVFS, we can compare the displayed performance of

applications that change the display at lower frequencies to the

displayed performance at the processor’s highest available

frequency. If the two frequencies result in identical sequences and

timing of frames on the screen, then we can safely conclude that

these two processor states have the same displayed performance.

This maximum frequency satisfies user demands for displayed

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or republish, to post on servers

or to redistribute to lists, requires prior specific permission and/or a fee.

ASPLOS’08 March 1–5, 2008, Seattle, Washington, USA.

Copyright © 2008 ACM 978-1-59593-958-6/08/03…$5.00.

performance as well as the architecture can, marking a basis for

satisfying the user that is fixed for the architecture. Hence,

initializing a DVFS policy at the maximum frequency “seeds” the

policy with a meaningful level of displayed performance.

To bring this idea to life and evaluate it, we have developed a new

power management framework called PICSEL (Perception-
Informed CPU performance Scaling to Extend battery Life) that

monitors the rate of change of pixel intensities in the display. An

algorithm controlling the processor’s operating frequency then

makes decisions based upon these rates of change. The algorithm is

tested with two configurations: conservative PICSEL (cPICSEL)

and aggressive PICSEL (aPICSEL) (Section 3.2). We focus on the

DVFS technique implemented by a commercial OS and show that

runtime estimation of user-perceived performance using pixel

intensities can enhance the effectiveness of the power management

scheme. We also show that this approach can result in optimizations

that are not possible otherwise. Our work makes the following

contributions:

1. We show that traditional performance metrics do not

necessarily represent user-perceived performance,

2. We introduce new metrics that can successfully measure

user-perceived performance, and

3. We propose, implement, and evaluate PICSEL, a power

management scheme based on estimates of user-perceived

performance.

2. User-Perceived Performance
The motivation for including user-perceived performance in any

objective function is clear: an optimization ultimately aims to satisfy

the user. However, the difficulty in optimizing directly for user-

perceived performance is in finding a corresponding metric that can

be efficiently measured at runtime. For interactive applications, the

events occurring on the input/output devices are good candidates for

measuring user satisfaction with performance. However, input

events are rare compared to output events. Therefore, considering

output to the user is preferable for estimating the performance

experienced by the user. Of all the types of output supplied to the

user, graphics are used in the highest proportion of applications.

Therefore, exploiting properties of the display to estimate user-

perceived performance is a good alternative.

Given an application that only changes the display, it is plausible

that the frame sequence and frame rate are indications of the user-

perceived performance of that application. For example, if there are

two architectural alternatives that result in identical frame sequences

and frame rates, we can reasonably say that these architectures

provide the same user-perceived performance. Ghinea and Thomas

[8] have done a perceptual study showing that varying both the

color depth and the frame rate has a significant effect on user

satisfaction with performance. However, extracting the exact frame

rate and color depth information would require changes in the

application or OS. Hence, we decided to employ a metric that is

independent of the application and easily measurable: the rate of

pixel intensity change over time. This captures the combination of

these two metrics.

We have performed a set of experiments to understand the

relationships between instruction throughput, rate of pixel change,

and user-perceived performance. In these experiments, we measured

the number of instructions-per-second (IPS) on a 2.13 GHz Intel

Pentium M-based laptop (please see Section 4.1 for further details

on the experimental study environment) for three applications: a 3D

Shockwave animation, a DVD quality video, and a 3D video game.

We also measured the changes in intensity in the red, green, and

blue channels of some of the pixels being used to display these

applications using the method described in Section 3.1, and

averaged these changes together for each time instance to obtain the

Average Pixel Change (APC). The procedure to calculate APC is

presented in Table 1. We repeated these measurements at all six

available processor operating frequencies.

0.4

0.5

0.6

0.7

0.8

0.9

1

2.13 1.8 1.6 1.3 1 0.8
CPU Frequency [GHz]

R
el

at
iv

e
C

ha
ng

es

Game (APC) Game (IPS)

3D Anim (APC) 3D Anim (IPS)
Video (APC) Video (IPS)

Figure 1. IPS and APC curve

Table 1. User-Perceived Performance Metrics

Metrics Measurement Procedure

Average Pixel Change

(APC)

- Capture the Pixel intensities of the RGB

channels of all the pixels in a memory

buffer

- Calculate the relative changes for all the

sampled pixels

- The mean of relative changes is the APC

Rate of Average Pixel

Change (APR)
(APCTi – APCTi-1)/(Ti - Ti-1)

Figure 1 illustrates the results of this experiment, with the solid lines

representing the APC curve and dotted lines representing the IPS

curve. As depicted in the figure, the IPS of the system is closely

related to the operating frequency of the CPU and is fairly uniform

across the three applications. APC is also dependent on the

operating frequency, but this dependence is influenced by the

application more than IPS is influenced. For the Shockwave

application, the effect on APC due to frequency throttling is below

10% for the highest three frequencies. The Video application shows

similar properties. For this task, we could simply set the frequency

statically to a lower value without causing noticeable change in the

APC. For the game application, the highest two frequency states can

sustain the APC value within 10% of its maximum value. However,

the lower frequency states cause the APC value to drop suddenly.

Most importantly, we see a significant difference between the

reduction in IPS and APC. In other words, these results show that

the instruction throughput and user-perceived performance are not

linearly related. We observe that the APC value of a system can

quantify user perceived performance and can be used as a metric for

a power management scheme that implements DVFS based on user-

perceived performance.

The primary metric we use for user-perceived performance is APC

normalized to the total number of pixels in the display. As shown in

Figure 1, we observe considerable variation in the APC values

across different applications as well as different frequency states.

On the other hand, it is also possible that the reduction in the

frequency may result in discontinuities in the display. Previous

researchers [10] have found that jitter and latency are the main

sources of user discontent in networked multimedia applications.

For example, consider an application that starts skipping frames

when the computational power is reduced. In such a case, the APC

may not be affected significantly: in a sequence of frames, even if

some of the intermediate frames are skipped, the pixel difference

between the first and the last does not change.

To capture the occurrences of such discontinuities, we record the

Rate of Average Pixel Change (APR) normalized over the number

of pixels. In other words, we calculate the difference between the

APC values measured at each time instant. This roughly

corresponds to the derivative of the APC. Figure 2 illustrates the

APR trends observed in three applications used in this paper. When

there are glitches during display, the APR value tends to increase

rapidly. This is true for applications where video glitches are

observed at lower frequencies, namely the Video and 3D

Shockwave animation. For other applications (such as the game),

we simply observe an overall slowdown and APR values drop in

parallel to APC levels. Such applications reduce game jitter at the

price of reducing the frame rate. As a result, for this particular

application we actually observe a reduction in APR value at lower

frequencies as the game’s average frame rate is reduced.

0.4

0.8

1.2

1.6

2

2.4

2.13 1.8 1.6 1.3 1 0.8

CPU Frequency [GHz]

R
el

at
iv

e
C

ha
ng

es

Game (APR)

3D Anim (APR)

Video (APR)

Figure 2. APR curves for the three applications

APR reveals even more pronounced differential behavior across

applications than APC. This behavior can permit a DVFS algorithm

to differentiate between two applications with similar computational

loads and to assign them to different operating frequencies, one

potentially lower than would have otherwise been assigned by

existing pessimistic DVFS schemes.

3. PICSEL Framework
User-perceived performance-based frequency scaling has two

components. First, we have to measure the rate of change in the

pixels displayed on the screen. This measurement tool is described

in the next section. Then, we have to make a throttling decision

based on these measurements. The algorithm making this decision is

described in Section 3.2. In Section 3.3, we describe how PICSEL

interacts with the system.

3.1 PICSEL Display Access
PICSEL gathers screen information using the Windows GDI

screenshot method, which is simple to implement and can blit any

region of the screen to main memory. However, screen content may

be missing from sections of the blitted region if those sections were

drawn elsewhere in video memory by a rendering or decoding

operation. We set our applications to perform rendering and

decoding in software in order to capture these operations with a GDI

screenshot. This also places the computational load for those

operations on the CPU, thus making them subject to CPU frequency

scaling. Ideally we would like to consider all the pixels present in

the display while calculating the APC. Furthermore, the rate of APC

calculation should be same as the rate of frame change in the

system. However, both of these constraints introduce heavy

computational overhead on the system. Therefore, it is necessary to

reduce the size of the captured screen area so that the capturing

process does not occupy too much of the computer’s resources. We

decided to limit the overhead to less than 2% CPU utilization. The

final captured area is 64 by 51 pixels, or a scaling down of each

dimension of a 1280 by 1024 screen by a factor of 20. This area

contained 3276 pixels and was fixed at the center of the screen. We

chose to capture a contiguous rectangle of pixels rather than a

disjoint grid of pixels because capturing the disjoint grid proved to

be much more computationally intensive than capturing the

contiguous rectangle, holding the number of pixels constant.

Because blitting transfers contiguous blocks of data by design,

fewer transfers are necessary to capture an area covered by a

fraction of the blocks rather than a screen-size grid covered by all of

the blocks.

The sampling frequency for calculating APC was chosen to be 10

Hz, the highest frequency with which our framework did not exceed

the 2% CPU utilization threshold for the captured pixel area. There

is a computational tradeoff between sampling frequency and capture

area which we tuned through initial testing on applications

including, but not limited to, the three tested applications. As we

will show in Section 4, these sampling parameters do not prevent

PICSEL from capturing the user-perceived performance for our

target applications. Nevertheless, it is possible that applications will

not use our focus area; hence it may be desirable to overcome these

limitations for other application domains. There are two design

alternatives to solve this problem. First, PICSEL can be

implemented in hardware (either on the CPU or on the graphics

card). The simplicity of the algorithm ensures relatively easy

hardware implementation. Second, PICSEL can be executed as

software on the graphics hardware. Although such implementations

would be desirable, our goal in this work is to provide a proof-of-

concept, which is achieved with the current implementation of

PICSEL.

After a section of the screen has been captured, it is stored to a

memory buffer. This buffer is compared to another buffer

containing the previous screen capture, and the intensity differences

for the red, green, and blue channels are calculated. Only two

buffers are necessary, with each buffer toggling between old and

new screen captures. All of the magnitude differences are averaged

to obtain a single value for the first time derivative of pixel intensity

over the sampling period (APC).

It is important to understand that this method does not capture each

frame and that there are unaccounted-for frames between the two

frames used to calculate the intensity difference. This introduces

noise into the APC metric. However, since we also measure the

APR, we can detect trends in pixel intensity that would otherwise be

obscured by the noise. This permits a sampling frequency below the

frame rate of the screen.

3.2 PICSEL Algorithm
PICSEL decides on the frequency level by using three state

variables: f, the current CPU frequency; µAPC, APC in the last time

interval; and µAPR, APR in the last time interval. Pixel data are

measured at fixed sampling frequency and stored to a file by a

background process. Adaptation is controlled by three constant

parameters: ρ, the APC change threshold; γ, the APR change

threshold; and α, the threshold difficulty level corresponding to

each frequency state.

PICSEL can either be in the initialization or the control state. The

idea in the initialization stage is to capture information about the

APC and APR values observed at the highest frequency. These

values will be used as a base case for comparison during the control

stage to make throttling decisions. Therefore, during initialization,

the CPU frequency is set at the highest value fmax for a time interval

Tinit. The APC and APR values of the system over the time interval

Tinit are obtained from the background process and initialized as

APCinit and APRinit. PICSEL then enters the control state where at

the end of each time interval Ti, the APC and APR of the system

over the last interval are obtained from the background process.

PICSEL then makes a decision as follows:

IF (APC init - μAPC) < ρ ×(1- α) × APCinit
 OR |APRinit - μAPR| < γ ×(1- α × APR init

Reduce f by one level
Re

ELSE
set α of the last level to 0

Increase f by one level
Increment α

The main idea in this pseudocode is to compare the last observed

APC and APR against the APC and APR captured when the

processor is executing at the highest frequency. Then, based on the

threshold factors defined by ρ, γ, and α, we may conclude that the

user-perceived performance is unchanged and try to reduce the

frequency and power consumption. Otherwise, out-of-bound values

of μAPC and μAPR suggest that user-perceived performance has

suffered in the last interval due to low CPU frequency and it is

increased accordingly to improve the user-perceived performance.

Factor α introduces hysteresis to eliminate the possible ping-pong

effect between two frequency states. If the processor has been at a

state several times after which PICSEL had to increase the

frequency, α makes it harder to return to that frequency level.

Following every third (n=3) update to α, PICSEL reenters the

initialization state. This feature of the algorithm ensures that

PICSEL will gradually adjust to a new set of operating conditions.

The constant parameters (Ti = 7 seconds, Tinit = 10 seconds) were set

based on the experience of the authors using the system. α is

initialized to zero for each of the frequency levels and is

incremented by 0.1 for each frequency boost. We used two

variations of the PICSEL algorithm by fixing the ρ = 0.05, γ= 0.15 and ρ = 0.10, γ= 0.30, which correspond to

conservative PICSEL (cPICSEL) and aggressive PICSEL
(aPICSEL), respectively.

Ideally, we would like to empirically evaluate the sensitivity of

PICSEL performance to these parameters. However, it is important

to note that any such study would require having real users in the

loop, and thus would be quite slow. Testing three values of five

parameters on 20 users would require 243 days (based on 20 users

per day and 25 minutes per user). For this reason, we decided to

choose the parameters based on qualitative evaluation by the authors

and then close the loop by evaluating the whole system with the

choices.

3.3 Current Implementation and Integration
For our user studies, we disable the default DVFS policy and give

control of the processor frequency to PICSEL. Once PICSEL is

active, it executes client software that runs as a Windows toolbar

task as well as an API that controls CPU frequency based on user

perceived performance. In the client, we log the APC and APR at

the background. The API uses these values to control CPU

frequency. It is this implementation that we evaluate in the next

section.

In its current implementation, PICSEL has some limitations, which

will be addressed once it is integrated with the OS. PICSEL should

be activated only if the system is executing an application that

modifies the display. We detect applications with display output

through constant (but infrequent) monitoring of the device. For

example, a running process can monitor the APC/APR values every

10 seconds. Then, if this rate is above a threshold, we conclude that

the current foreground application modifies the display and we

activate PICSEL frequency control. If the APC/APR value drops

below a threshold, PICSEL will conclude that the application is

completed and give the control back to Windows DVFS. In

scenarios when the display is static, PICSEL will detect that the rate

of change in the display is below the threshold and give the control

back to Windows DVFS. On the other hand, if the machine runs any

application that changes a part of the screen, PICSEL will control

the frequency. In such a case, the frequency will be reduced if there

is no background job but will be kept high if a background job takes

CPU resources away from the graphical application. In this way, the

application that changes the screen is acting as a “canary in a coal

mine” whose performance degradation is readily apparent to

PICSEL.

We must note that running background jobs does not cause any

problem for PICSEL. In fact, one of our applications targeted in the

next section includes a non-interactive background job to prove that

our concept is applicable in such cases. If there is a CPU-intensive

background job, a reduction in the frequency causes a significant

reduction in the APC (even if the interactive application itself is not

computationally intensive). Therefore, PICSEL will keep the

frequency high. If, on the other hand, the background job is not

CPU-intensive, the frequency can be safely reduced, which is

exactly the action taken by PICSEL.

4. Evaluation
We now evaluate the cPICSEL and aPICSEL schemes. We compare

against the native Windows XP DVFS scheme, displaying

reductions in power consumption and temperature. In Section 4.4,

we also present user satisfaction results.

Our evaluations are based on user studies, as described in

Section 4.1. We trace the user’s activity on the system during the

use of the applications and monitor the responses of Windows

DVFS, cPICSEL, and aPICSEL. For studies involving PICSEL, the

cPICSEL and aPICSEL algorithms are used online to control the

clock frequency in response to APC and APR values. In the rest of

this section, we first describe a user study of PICSEL that provides

both independent results and traces for later use. Next, we present

dynamic CPU power consumption estimates, system power

measurements, and temperature measurements.

PICSEL estimates user-perceived performance via APC and APR

values and customizes processor frequency to the individual user.

This typically leads to significant power savings compared to

existing dynamic frequency schemes that rely only on CPU

utilization as feedback. The frame buffer readings and the

corresponding calculations for measuring user-perceived

performance are infrequent, and impose less than 2% computational

overhead. We must note that PICSEL performs APC and APR

readings during user studies, hence all the results presented for

PICSEL (including power and user satisfaction) include this

overhead and its potential impact on user satisfaction. A more

efficient, GPU-based implementation could be used to further

reduce this overhead.

4.1 Experimental Setup
Our experiments were done using an IBM Thinkpad T43p with a

2.13 GHz Pentium M-770 CPU and 1 GB memory running

Microsoft Windows XP Professional SP2. The Pentium M uses the

second generation of Intel’s SpeedStep technology, in which six

CPU frequency-voltage operating points are available.

Our base case for comparison, the Windows XP Adaptive scheme,

is Microsoft’s adaptive DVFS scheme for portables/laptops.

Adaptive DVFS uses all of the frequency states in the Intel

Speedstep technology. Performance needs are measured from

heuristics “such as processor utilization, current battery level, use of

processor idle states, and inrush current events” [17]. In our

experimental setup, we ran the computer off AC power, the

processor was always active, and we ran trials close enough together

to prevent hard disk timeout in order to minimize inrush current

events. This leaves processor utilization as the main input to the

adaptive DVFS, which makes decisions according to the following

algorithm. This evaluates either when in the idle loop or after 300

ms have passed since the last evaluation, whichever comes first.

IF 150 ms have passed since the last
 frequency state adjustment
 AND Performance has increased by 20%
 since the last evaluation

Increase f by one level within the next 10
ms

IF 500 ms have passed since the last
 frequency state adjustment

 AND Performance has decreased by 30%
 since the last evaluation
 AND A decrease of frequency state by
 one operating point will remain
 above 50% of the maximum
 frequency state

Decrease f by one level within the next 10
ms

In all our studies, we make use of three application tasks, some of

which are CPU intensive and some of which frequently block while

waiting for user input:

1. Watching a 3D Shockwave animation using the Microsoft

Internet Explorer web browser. The animation was stored

locally. Shockwave options were configured so that

rendering was done entirely in software on the CPU.

2. Playing the FIFA 2005 Soccer game. FIFA 2005 is a

popular sports game. The game was stored locally. There

were no constraints on user gameplay.

3. Watching an HD quality movie trailer in Windows Media

Player (WMP) while decoding another MPEG movie clip in

the background. Both clips were stored locally and

decoding was done in software on the CPU.

We conducted a study with twenty users to evaluate PICSEL. We

developed a user pool by advertising our studies within

Northwestern University. Some participating users were computer

science, computer engineering, or electrical engineering students

and others were less experienced with computer use. The studies

were double-blind and randomized (i.e., the order of schemes during

the tests were randomized to eliminate any possible effect of “first-

time” execution impact). The studies included intervention by

proctors between trials. Each user evaluation lasted about thirty

minutes, and consisted of the user doing the following:

• Filling out a questionnaire that asked the user to rate his or

her level of experience in the use of PCs, Windows XP,

DVD video, 3D animation, and FIFA 2005 from among the

following set: “Power User”, “Typical User”, or

“Beginner”. • Listening to an explanation of how to play FIFA 2005 and

how to rate his or her satisfaction with each application

instance. • Watching the 3D Shockwave animation three times using

cPICSEL, aPICSEL, and Windows DVFS (2 minutes each). • Playing FIFA 2005 three times using cPICSEL, aPICSEL,

and Windows DVFS (3.5 minutes each). • Watching the movie trailer three times using cPICSEL,

aPICSEL, and Windows DVFS (2 minutes each). • After each application, the users were instructed to assign

one of five levels of satisfaction to their experiences with

the system performance for each instance of an application.

The users were not asked to rank the instances against each

other.

4.2 Frequency Results
Figure 3 illustrates the performance of the two algorithms for three

applications in our study. Each graph shows the CPU frequency for

a randomly selected user as a function of time. Notice that in all the

applications both versions of PICSEL reduced processor frequency

more than the Windows DVFS policy. The amount of frequency

reduction varies across applications. PICSEL is most effective for

the 3D animation application. As illustrated in Figure 2, this has the

least variation in APC and APR values at lower frequencies. As a

result, PICSEL was able to greatly reduce the CPU frequency

without affecting user-perceived performance. Similar results were

observed for the video application. For the game, we observe less

processor throttling. This is also expected as the APC values in

Figure 1 degrade very quickly for the game and PICSEL can throttle

down the frequency to lower frequency states in few cases. Overall,

these results show that PICSEL reduces frequency compared to

Windows DVFS while maintaining user satisfaction. In Section 4.4,

we also analyze user satisfaction with the default Windows DVFS

and PICSEL algorithms and show that the user satisfaction is not

adversely affected for any of our target applications.

0

0.5

1

1.5

2

2.5

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

C
P

U
 F

re
qu

en
cy

 [
G

H
z]

Time [sec]

DVFS cPICSEL aPICSEL

(a) 3D Shockwave animation

0

0.5

1

1.5

2

2.5

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

C
P

U
 F

re
qu

en
cy

 [
G

H
z]

Time [sec]

DVFS cPICSEL aPICSEL

(b) Video

0

0.5

1

1.5

2

2.5

0 14 28 42 56 70 84 98 112 126 140 154 168 182 196 210

C
P

U
 F

re
qu

en
cy

 [
G

H
z]

Time [sec]

DVFS cPICSEL aPICSEL

(c) FIFA game

Figure 3. Frequency vs. time for three user trials

4.3 Power Measurements
To analyze the effect of cPICSEL and aPICSEL on the power

consumption of the system, we logged the frequency over time

during the user studies described in the previous section. We then

combine this frequency information with the offline profile to derive

power savings for cPICSEL, aPICSEL, and the default Windows

XP DVFS policy. In Section 4.3.1 we present the CPU dynamic

power savings and in Section 4.3.2 we present the total system

power savings. Section 4.3.3 presents the changes in the operating

temperatures.

4.3.1 CPU Dynamic Power Reduction
The dynamic power consumption of a processor is directly related

to its frequency and supply voltage and can be expressed using the

formula P = V2CF, which states that power is equal to the product of

voltage squared, capacitance, and frequency. By using the

frequency traces and the nominal voltage levels on our target

processor [9], we calculated the relative dynamic power

consumption. Figure 4 presents the CPU dynamic power reduction

achieved by the PICSEL algorithms (cPICSEL and aPICSEL) for

individual users. The rightmost bars correspond to the savings

averaged across users.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

P
ow

er
 I

m
pr

ov
em

en
t

[%
]

Users

cPICSEL aPICSEL

(a) 3D Shockwave animation

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

P
ow

er
 I

m
pr

ov
em

en
t

[%
]

Users

cPICSEL aPICSEL

(b) Video

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

P
ow

er
 I

m
pr

ov
em

en
t

[%
]

Users

cPICSEL aPICSEL

(c) FIFA game

Figure 4. CPU dynamic power reduction with cPICSEL and

aPICSEL over Windows DVFS

For the 3D Shockwave animation, we see mixed responses from the

users, although on average PICSEL reduces power by 21.8%. On

average, cPICSEL and aPICSEL independently reduce the power

consumption by 15.3% and 28.2%, respectively. aPICSEL performs

better as it allows a larger threshold for APC values over each

interval. The results show a considerable variation among different

users. This can be explained by the fact that the control agent for

APC calculation considers a sampling window of roughly 64x51

pixels at the center of the display window. The relative position of

the shockwave player while the user watches the 3D animation

plays a role in the calculation of APC and APR. It subsequently

affects the decision taken by the PICSEL algorithm. Nevertheless,

as we will show in Section 4.4, such variations do not have an

impact on user satisfaction.

For the Video application, cPICSEL and aPICSEL reduce power

consumption by averages of 9.6% and 19.7%, respectively. This

suggests that the Video application is less conducive to frequency

throttling than the Shockwave application. User 19 is the only

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

P
ow

er
 Im

pr
ov

em
en

t [
%

]

Users

cPICSEL aPICSEL

(a) 3D Shockwave animation

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Po
w

er
 Im

pr
ov

em
en

t [
%

]

Users

cPICSEL aPICSEL

(b) Video

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

P
ow

er
 Im

pr
ov

em
en

t [
%

]

Users

cPICSEL aPICSEL

(c) FIFA game

Figure 5. System power reduction with cPICSEL and aPICSEL

over Windows DVFS

exception where aPICSEL results in a power savings of 45.8%,

greater than those for the Shockwave application. For the FIFA

game, the average power improvements of 2.6% for cPICSEL and

6.7% for aPICSEL were lower than Video and Shockwave

applications, suggesting that the FIFA game was the least conducive

to frequency throttling. Note that PICSEL does not reduce the

frequency for all the users while they play the FIFA game. For

example, cPICSEL does not reduce the frequency for user 19.

Similarly, aPICSEL does not reduce the frequency for user 17. This

is understandable since the game application has the most steeply

sloped APC curve (Figure 1), meaning a change in frequency will

have a larger effect on the game’s displayed output than on the other

applications’ displayed output.

For all three applications, we see that in all cases cPICSEL and

aPICSEL lead to power savings compared to Windows DVFS. On

average, aPICSEL reduces the dynamic power consumption by

18.2% for all three applications. cPICSEL results in a 9.1% power

reduction aggregated over three applications and 20 users.

4.3.2 System power measurement
To further measure the impact of our techniques, we replayed the

traces from the user studies described in Section 4.3.1 on the laptop.

The laptop was connected to a National Instruments 6034E data

acquisition board attached to the PCI bus of a host workstation,

which permitted us to measure the power consumption of the entire

laptop (including other power consuming components such as

memory, screen, hard disk, etc.). The sampling rate was set to 10

Hz. Each of the user studies was replayed five times to average out

any variation across trials. Figure 5 presents the system-level power

savings of cPICSEL and aPICSEL relative to Windows DVFS. In

general, the reduction in system-level power consumption is similar

to the estimated processor dynamic power savings. cPICSEL and

aPICSEL reduce power consumption by 16.8% and 25.7% on

average for the 3D Shockwave animation, by 8.0% and 14.5% on

average for the Video application, and by 2.6% and 6.2% on

average for the FIFA game, respectively. On average, aPICSEL

reduces system-level power consumption by 12.1%, aggregated

over 20 users and three applications. cPICSEL reduces the system-

level power consumption by 7.1%.

We must note that the dynamic CPU power savings presented in the

previous section and the system-level power savings presented in

this section cannot be directly compared because the previous

section reports the dynamic power consumption of the CPU. This

section, on the other hand, reports the measured power consumption

of the laptop (which includes leakage power of the CPU as well as

all the power consumption of other components in the laptop

including memory, screen, hard disk, etc.). However, some

conclusions can be drawn from the data in both sections.

Applications that result in high CPU dynamic power consumption

tend to also observe high system power savings. Clearly, part of the

system power reduction comes from the decrease in the CPU

dynamic power consumption. Leakage is also reduced due to the

decrease in voltage and the decrease in temperature resulting from

reduced dynamic power consumption.

4.3.3 Changes in Peak Temperature
We used CPUCool [18], a Windows-based tool that logs

temperatures at processor cores, to measure CPU temperature in the

system. Figure 6 shows the reductions in peak temperatures of the

system when using the cPICSEL and aPICSEL schemes. In all

cases, the cPICSEL and aPICSEL schemes lower the temperature

compared to the Windows native DVFS scheme due to the power

reductions we have reported in the previous sections. The maximum

temperature reduction of 16°C is seen in the case of the aPICSEL

scheme used for the Shockwave application. On average, for all

three applications, cPICSEL and aPICSEL reduce the peak

temperature of the system by 1.7°C and 4.3°C, respectively,

aggregated over all 20 users.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Te
m

pe
ra

tu
re

 R
ed

uc
tio

n
[°

C
]

Users

cPICSEL aPICSEL

(a) 3D Shockwave animation

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20

M
ea

n

T
em

pe
ra

tu
re

 R
ed

uc
tio

n
[°

C
]

Users

cPICSEL aPICSEL

(b) Video

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Te
m

pe
ra

tu
re

 R
ed

uc
tio

n
[°

C
]

Users

cPICSEL aPICSEL

 (c) FIFA game

Figure 6. Peak temperature reduction

4.4 User Satisfaction
We now discuss the satisfaction levels with the Windows DVFS and

PICSEL algorithms for three applications as reported by individual

users. During the user study, each participant was asked to give a

satisfaction level from 1 to 5 (5 being the most satisfactory

performance) for each application. Figure 7 illustrates the ranks

awarded by each user. Compared to Windows DVFS, cPICSEL

results in slightly better satisfaction levels for all three applications

aggregated over 20 users. The student t-test analysis of the results

reveals that the difference is not due to chance with 90%

confidence. aPICSEL and Windows DVFS provide the same

satisfaction (a student t-test analysis identifies the two means to be

identical with over 99% confidence). On average, aPICSEL is

rated highest for the game application (3.8) where it results in the

least power reduction. For the Shockwave application, maximum

power reduction for the aPICSEL scheme caused it to have the

lowest average user satisfaction score (3.5).

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 M
…

R
an

ki
ng

Users

DVFS cPICSEL aPICSEL

(a) 3D Shockwave animation

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

R
an

ki
ng

Users

DVFS cPICSEL aPICSEL

(b) Video

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

R
an

ki
ng

Users

DVFS cPICSEL aPICSEL

 (c) FIFA game

Figure 7. User ranking distribution

We noticed cPICSEL was ranked higher than Windows DVFS

although Windows DVFS runs the system at higher frequencies.

The only time Windows DVFS will throttle the frequency below

what CPU utilization would prescribe is in the case of the

temperature crossing a thermal trip point [17], and this led to the

hypothesis that user dissatisfaction caused by thermal emergencies

was the main reason for the decreased user satisfaction with

Windows DVFS. We ran an experiment in which FIFA 2005 was

played under Windows DVFS until the user observed several

distinct processor frequency reductions triggered by thermal

emergencies. The results of this experiment are shown in Figure 8.

This figure shows processor temperature and frequency when FIFA

2005 is played until it triggers a thermal emergency (about 16

minutes after starting the game). At that point, the frequency is

reduced to the lowest value. This causes a perceivable slowdown in

game play and lower instruction throughput. Windows DVFS

continues to operate even though it has been over-ridden by the

processor, and lowers its frequency to match the lower instruction

throughput. Soon after the processor returns frequency control to

Windows DVFS, the frequency is again set to the highest available

frequency on the processor. This causes the temperature to rise

again quickly, leading to consecutive emergencies.

Both cPICSEL and aPICSEL reduced the occurrence of thermal

emergencies. As a result, for processor-intensive applications,

PICSEL may deliver better user-perceived performance by reducing

the probability of thermal emergencies. The satisfaction results also

support this claim: aPICSEL provides the highest satisfaction for the

game on average, because for this highly compute-intensive

application, aPICSEL allows the highest reduction in temperature,

and resulting thermal emergencies.

0.7

1.1

1.5

1.9

2.3

15 16 17 18 19 20 21 22 23

Time Elapsed [min]

C
P

U
 F

re
qu

en
cy

 [G
H

z]

50

60

70

80

90

100

110

C
P

U
 T

em
perature [°C

]

Frequency

Temperature

Figure 8. Thermal emergency under Windows DVFS

4.5 Related Work
Dynamic voltage and frequency scaling (DVFS) is an effective

technique for microprocessor energy and power control for most

modern processors [9], [1]. Energy efficiency has been a major

concern for mobile computers. Gurun and Krintz [13] have

proposed a new model for estimating energy consumption using

hardware and software counters. Fei, Zhong, and Jha [6] proposed

an energy aware dynamic software management framework that

improves battery utilization for mobile computers. However, this

technique is only applicable to highly-adaptive mobile applications.

Researchers have proposed algorithms based on workload

decomposition [2], but these tend to provide power improvements

only for memory-bound applications. Wu et al. [22] presented a

design framework of a run-time DVFS optimizer in a general

dynamic compilation system. The Razor [5] architecture

dynamically finds the minimal reliable voltage level. Dhar,

Maksimovic, and Kranzen [4] proposed adaptive voltage scaling

that uses a closed-loop controller targeted towards standard-cell

ASICs. Intel Foxton technology [20] provides a mechanism for

certain Intel Itanium 2 processors to adjust core frequency during

operation to boost application performance. However, unlike

PICSEL it does not perform any dynamic voltage setting. To the

best of our knowledge, no previous DVFS techniques consider user-

perceived performance.

Other DVFS algorithms use task information, such as response

times in interactive applications [15] and [24] as a proxy for the

user. Vertigo [7] monitors application messages and could be used

to perform the optimizations implemented in our study. However,

compared to Vertigo, our approach uses a much easier

metric/framework. Xu, Moss, and Melhem proposed novel

schemes [23] to minimize energy consumption in certain real-time

embedded systems. However, they try to adapt to the variability of

the workload rather than to the users. Gupta, Lin, and Dinda [11]

studied user satisfaction with resource borrowing and noted a high

variation in user tolerance for any given level of system resources in

desktop computing applications. Lin and Dinda [14] developed a

CPU scheduling system that used direct user feedback to exploit this

variation. Mallik, Lin, Memik, Dinda, and Dick [16] showed that

this variation also exists for power management, and presented a

successful power management approach based on direct user

feedback.

Ranganathan, Geelhoed, Manahan, and Nicholas [19] explored

using OS-level knowledge about screen content to reduce the power

consumption of the screen itself, however no work has been done

using knowledge of screen content to control the voltage and

frequency of a processor. Gurun and Krintz [12] looked at OS-level

knowledge of user-generated events to control a DVFS scheme but

did not use knowledge of screen content. Our work combines these

two approaches and uses detailed screen information to control the

CPU’s voltage and frequency levels.

A study of user perception of audio/video quality found that the loss

of video frames would decrease user satisfaction [21]. Frame rate

also has a significant effect on user satisfaction, with satisfaction

increasing logarithmically with the number of frames displayed per

second [3]. Finally, Gulliver and Ghinea found that both video delay

and jitter cause a significant reduction in users’ perception of the

quality of a video [10]. However, none of these results were used to

control processor resources.

5. Conclusion
Any architectural optimization ultimately aims to satisfy the user. Its

success or failure rests on the accuracy of its performance metrics as

proxies for user satisfaction. In this work, we argue that rather than

using metrics that are “close to metal”, architectures should

optimize for metrics that are “close to flesh”. To evaluate such an

approach, we have developed a new power management technique:
PICSEL (Perception-Informed CPU performance Scaling to

Extend battery Life). This technique reduces CPU power

consumption in comparison with existing DVFS techniques.

Extensive user studies show that we can reduce system-level power

consumption of our target laptop on average by 7.1% for a

conservative approach (cPICSEL) and 12.1% for the aggressive

version (aPICSEL) compared to the Windows XP DVFS scheme.

Furthermore, CPU temperatures can be markedly decreased through

the use of our techniques. User studies also revealed that the

difference in overall user satisfaction between the more aggressive

version of PICSEL and Windows DVFS were statistically

insignificant, whereas the conservative version of PICSEL improved

the users’ overall satisfaction when compared to Windows DVFS.

Acknowledgements
This work is in part supported by DOE Awards DE-FG02-

05ER25691 and DE-AC05-00OR22725 (via ORNL), NSF Awards

CNS-0720691, CNS-0721978, CNS-0715612, IIS-0613568, CNS-

0551639, CNS-0347941, CCF-0541337, IIS-0536994, CCF-

0444405, ANI-0093221, ANI-0301108, and EIA-0224449, by SRC

award 2007-HJ-1593, by Wissner-Slivka Chair funds, and by gifts

from Symantec, Dell, and VMware. The authors would like to thank

the anonymous reviewers for their helpful comments and

suggestions.

References
[1] Brock, B. and Rajamani, K. 2003. Dynamic Power

Management for Embedded Systems. In Proc. of the IEEE SOC

Conf. (SOC’03).

[2] Choi, K., Soma, R., and Pedram, M. 2004. Dynamic Voltage
and Frequency Scaling based on Workload Decomposition. In

Proc. of the 2004 Int. Symp. on Low Power Electronics and

Design (ISPLED’04), 174-179.

[3] Claypool, M., Claypool, K., and Damaa, F. 2006. The Effects
of Frame Rate and Resolution on Users Playing First-person
Shooter Games. In Proc. of ACM/SPIE Multimedia

Computing and Networking (MMCN’06).

[4] Dhar, S., Maksimovic, D., and Kranzen, B. 2002. Closed-Loop
Adaptive Voltage Scaling Controller for Standard Cell ASICs.

In Proc. of the 2005 Int. Symp. on Low Power Electronics and

Design (ISPLED’05.), 103-107.

[5] Ernst, D., Kim, N. S., Das, S., Pant, S., Rao, R., Pham, T.,

Ziesler, C., Blaauw, D., Austin, T., Flautner, K., and Mudge,

T. 2003. Razor: A Low-Power Pipeline Based on Circuit-Level
Timing Speculation. In Proc. of the 36th ACM/IEEE Int. Symp.

on Microarchitecture (MICRO-36), 7-18.

[6] Fei, Y., Zhong, L., and Jha, N. K. 2004. An Energy-aware
Framework for Coordinated Dynamic Software Management
in Mobile Computers. In Proc. of the IEEE Computer Society's

Int. Symp. on Modeling, Analysis, and Simulation of

Computer and Telecommunications Systems (MASCOTS’04),

306-317.

[7] Flautner, K. and Mudge, T. 2002. Vertigo: Automatic
Performance-Setting for Linux. ACM SIGOPS Operating

Systems Review 36, SI (Winter 2002), 105-116.

[8] Ghinea, G. and Thomas, J. P. 2005. Quality of Perception:
User Quality of Service in Multimedia Presentations. IEEE T.

Multimedia 7, 4 (Aug. 2005), 786-789.

[9] Gochman, S. Ronen, R., Anati, I., Berkovits, A., Kurts, T.,

Naveh, A., Saeed, A., Sperber, Z., and Valentine, R. C. 2003.

The Intel Pentium M Processor: Microarchitecture and
Performance. Intel Technology J. 7, 2 (May 2003), 21-36.

[10] Gulliver, S.R. and Ghinea, G. 2007. The Perceptual and
Attentive Impact of Delay and Jitter in Multimedia Delivery.

IEEE T. Broadcast 53, 2 (June 2007), 449-458.

[11] Gupta, A., Lin, B., and Dinda, P. A. 2004. Measuring and
Understanding User Comfort with Resource Borrowing. In

Proc. of the 13th IEEE Int. Symp. on High Performance

Distributed Computing (HPDC’04), 214-224.

[12] Gurun, S. and Krintz, C. 2005. AutoDVS: an Automatic,
General-purpose, Dynamic Clock Scheduling System for
Hand-held Devices. In Proc. of the 5th ACM Int. Conf. on

Embedded Software (EMSOFT’05), 218-226.

[13] Gurun, S. and Krintz, C. 2006. A Run-Time, Feedback-Based
Energy Estimation Model for Embedded Devices. In Proc. of

the Int. Conf. on Hardware/Software Codesign and System

Synthesis. (CODES+ISSS’06).

[14] Lin, B. and Dinda, P. A. 2006. Towards Scheduling Virtual
Machines Based on Direct User Input. In Proc. of the 1st Int.

Workshop on Virtualization Technology in Distributed

Computing (Tampa, FL, USA, November 17, 2006).

VTDC’06. See also technical report NWU-EECS-06-07,

Northwestern University, EECS.

[15] Lorch, J. and Smith, A. 2003. Using User Interface Event
Information in Dynamic Voltage Scaling Algorithms. In Proc.

of the IEEE Computer Society's Int. Symp. on Modeling,

Analysis, and Simulation of Computer and

Telecommunications Systems (MASCOTS’03), 46-55.

[16] Mallik, A., Lin, B. Memik, G., Dinda, P. A., and Dick, R. P.

2006. User-Driven Frequency Scaling. IEEE Computer

Architecture Letters 5, 2 (July 2006), 16. A summary of this

work also appeared in ACM SIGMETRICS 2007.

[17] Microsoft Corporation. 2003. Windows Native Processor
Performance Control. Windows Platform Design Notes (May

2003). Retrieved from

http://www.microsoft.com/whdc/system/pnppwr/powermgmt/P

rocPerfCtrl.mspx.

[18] Podien, W. CPUCool. Retrieved from http://www.cpu-

cool.de/index.html.

[19] Ranganathan, P., Geelhoed, E., Manahan, M, and Nicholas, K.

2006. Energy-Aware User Interfaces and Energy-Adaptive
Displays. Computer 39, 3 (March 2006), 31-38.

[20] Wei, J. Foxton Technology Pushes Processor Frequency,
Application Performance. Technology@Intel Mag. (July

2007). Retrieved from

http://www.intel.com/technology/magazine/computing/foxton-

technology-0905.htm.

[21] Wijesekera, D., Srivastava, J., Nerode, A., Forrsti, M. 1999.

Experimental Evaluation of Loss Perception in Continuous
Media. Multimedia Systems 7, 6 (Nov. 1999), 486-499.

[22] Wu, Q., Martonosi, M., Clark, D. W., Reddi, V. J., Connors,

D., Wu, Y., Lee, J., and Brooks, D. 2005. Dynamic
Compilation Framework for Controlling Microprocessor
Energy and Performance. In Proc. of the 38 IEEE/ACM Int.

Symp. on Microarchitecture (

th

MICRO-38), 271-282.

[23] Xu, R., Moss, D., and Melhem, R. 2005. Minimizing Expected
Energy in Real-time Embedded Systems. In Proc. of the 5th

ACM Int. Conf. on Embedded Software (EMSOFT’05), 251-

254.

[24] Yan, L., Zhong, L., and Jha, N. K. 2005. User-perceived
Latency-based Dynamic Voltage Scaling for Interactive
Applications. In Proc. of ACM/IEEE Design Automation Conf.

(DAC’05), 624-627.

	1. Introduction
	2. User-Perceived Performance
	3. PICSEL Framework
	3.1 PICSEL Display Access
	3.2 PICSEL Algorithm
	3.3 Current Implementation and Integration
	4. Evaluation
	4.1 Experimental Setup
	4.2 Frequency Results
	4.3 Power Measurements
	4.3.1 CPU Dynamic Power Reduction
	4.3.2 System power measurement
	4.3.3 Changes in Peak Temperature

	4.4 User Satisfaction
	4.5 Related Work

	5. Conclusion
	Acknowledgements
	References

