
1

User-Driven Frequency Scaling
Arindam Mallik, Student Member, IEEE, Bin Lin, Gokhan Memik, Member, IEEE, Peter Dinda, Member, IEEE,

and Robert P. Dick, Member, IEEE

Department of Electrical Engineering and Computer Science, Northwestern University

Abstract— We propose and evaluate User-Driven Fre-

quency Scaling (UDFS) for improved power management

on processors that support Dynamic Voltage and Fre-

quency Scaling (DVFS), e.g, those used in current laptop

and desktop computers. UDFS dynamically adapts CPU

frequency to the individual user and the workload through

a simple user feedback mechanism, unlike currently-used

DVFS methods which rely only on CPU utilization. Our

UDFS algorithms dramatically reduce typical operating

frequencies while maintaining performance at satisfactory

levels for each user. We evaluated our techniques through

user studies conducted on a Pentium M laptop running

Windows applications. The UDFS scheme reduces mea-

sured system power by 22.1%, averaged across all our

users and applications, compared to the Windows XP

DVFS scheme.

I. INTRODUCTION

Dynamic Voltage and Frequency Scaling (DVFS) is one

of the most commonly used power reduction techniques in

high-performance processors. DVFS varies the frequency and

voltage of a microprocessor in real-time according to process-

ing needs. Although there are different versions of DVFS, at

its core DVFS adapts power consumption and performance to

the current workload of the CPU. Specifically, existing DVFS

techniques in high-performance processors select an operating

point (CPU frequency and voltage) based on the utilization of

the processor. While this approach integrates OS-level control,

such control is pessimistic about the user. Indeed, it ignores

the user, assuming that CPU utilization is a sufficient proxy.

A high CPU utilization leads to a high frequency and high

voltage, regardless of the user’s satisfaction or expectation of

performance.

In response to this observation, on which we elaborate in

Section II-A, we introduce User-Driven Frequency Scaling

(UDFS). This technique uses direct user feedback to drive

an online control algorithm that determines the processor

frequency (Section II-B). We describe and evaluate two dif-

ferent frequency control algorithms. Previous work [5], [7]

has shown that there is variation among users with respect

Manuscript submitted: 24 Aug. 2006. Manuscript accepted: 8 Oct. 2006.
Final manuscript received: 15 Oct. 2006. This work is in part supported by
Department of Energy Award DE-FG02-05ER25691 and NSF Grants IIS-
0613568, CNS-0551639, CNS-0347941, CCF-0541337, IIS-0536994, CCF-
0444405, ANI-0093221, ANI-0301108, and EIA-0224449.

to the satisfactory performance level for a given workload.

We exploit this variation to dynamically customize frequency

control policies to the user. Unlike previous work, on which we

elaborate in Section IV, our approach employs direct feedback

from the user during ordinary use of the machine.

We evaluate our techniques through user studies conducted

on a modern Pentium M laptop running Windows applications.

Our studies, described in detail in Section III, include both

single task and multitasking scenarios. The UDFS scheme

reduces measured system power by 22.1%, averaged across

all our users and applications, compared to the Windows XP

DVFS scheme.

II. USER-DRIVEN FREQUENCY SCALING

Current DVFS techniques are pessimistic about the user,

which leads them to often use higher frequencies than neces-

sary for satisfactory performance. In this section, we elaborate

on this pessimism and then explain our response to it, User-

Driven Frequency Scaling (UDFS). Evaluations of UDFS

algorithms are given in Section III.

A. Pessimism About The User

Current software that drives DVFS does not consider the

individual user’s reaction to the slowdown that may occur

when CPU frequency is reduced. Typically, the frequency is

tightly tied to CPU usage. A burst of computation due to,

for example, a mouse or keyboard event brings utilization

quickly up to 100% and drives frequency, voltage, and power

consumption up along with it. CPU-intensive applications also

immediately cause an almost instant increase in operating

frequency and voltage.

In both cases, the CPU utilization is functioning as a proxy

for user comfort. Is it a good proxy? To find out, we con-

ducted a randomized user study of eight users, comparing four

processor frequency strategies including dynamic, static low

frequency (1.06 GHz), static medium frequency (1.33 GHz),

and static high frequency (1.86 GHz). The dynamic strategy is

the default DVFS used in Windows XP Professional. Note that

the maximum processor frequency is 2.13 GHz. We allowed

the users to acclimate to the full speed performance of the

machine and its applications for 4 minutes and then carried

out three different tasks with the following durations - (a)

PowerPoint (4 minutes in total, 1 minute per strategy); (b)

Shockwave (80 seconds in total, 20 seconds per strategy); (c)

FIFA (4 minutes in total, 1 minute per strategy).

IEEE Computer Architecture Letters Vol. 5, 2006

Posted to IEEE & CSDL on 11/09/2006
DOI 10.1109/L-CA.2006.16 1556-6056/06/$20.00 © 2006 Published by the IEEE Computer Society

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Comfort level

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

(a)

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Comfort Level

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

(b)
Fig. 1. User comfort for (a) Shockwave; (b) FIFA game.

Users verbally ranked their experiences after each

task/strategy pair on a scale of 1 (discomforted) to 10 (very

comfortable). Figure 1 illustrates the results of the study in the

form of overlapped histograms of the participants’ reported

comfort level for each of four strategies for the Shockwave

animation and the FIFA game (powerpoint is omitted). The

horizontal axis displays the range of comfort levels allowed

in the study and the vertical axis displays the count of the

number of times that level was reported. Not surprisingly, user

comfort with any given frequency is highly dependent on the

application, but, much less obviously, there is considerable

variation among users in the frequency that is acceptable

for any given application. It is this variation that we seek

to exploit. In addition, the comfort levels for the dynamic

frequency is practically indistinguishable from the static high

frequency, which uses a lower frequency than the dynamic

strategy.

B. Technique

Our implementation of user-driven frequency scaling con-

sists of client software that runs as a Windows toolbar task

as well as software that implements CPU frequency changes

and data recording. The client is a modified version of an

earlier tool used to understand user comfort with resource

borrowing [5] and implement user-driven scheduling [7]. In

the client, the user can express discomfort at any time by

pressing the F11 key. These events drive the UDFS algorithm

which then uses the Windows API to control CPU frequency.

We monitor the CPU frequency using Windows Performance

Count and Log [10]. We next describe the UDFS algorithms

and strategies.

1) Expectations: It is important to note that a simple strat-

egy that selects a static frequency for an application (and/or

for a user) is inadequate for three reasons. First, each user

will be satisfied with a different level of performance for each

application. Second, even when a user is working with an

application, the behavior of the application and the expected

performance varies over time. Applications go through phases,

each with potentially different computational requirements. Fi-

nally, the user’s expected performance is also likely to change

over time as the user’s priorities shift. For these reasons, a

frequency scaling algorithm should dynamically adjust to the

user’s needs.

2) UDFS1 Algorithm: UDFS1 is an adaptive algorithm that

can be viewed as an extension/variant of the TCP congestion

control algorithm [11], [2]. UDFS1 has two state variables:

f , the current control value (CPU frequency) and ft (the

current threshold). Adaptation is controlled by three constant

parameters: ρ, the rate of decrease, α = f(ρ), the slow start

speed, and β = g(ρ), the additive decrease speed. Like TCP,

UDFS1 operates in three modes, as described below.

• Slow Start (Exponential Decrease): If f > ft, we decrease

f exponentially with time (e.g., f ∝ 2αt).

• User event avoidance (Additive Decrease): If no user

feedback is received and f ≤ ft, f decreases linearly

with time, f ∝ βt.

• User event (Multiplicative Increase): When the user ex-

presses discomfort at level f we immediately set ft =
ft−1 and set f to the initial (highest) frequency.

This behavior is virtually identical to that of TCP Reno, except

for the more aggressive setting of the threshold. Additionally,

unlike TCP Reno, we also control ρ, the key parameter that

controls the rate of exponential and linear increase from button

press to button press. In particular, for every user event, we

update ρ as follows ρi+1 = ρi

(

1 + γ × Ti−TAV I

TAV I

)

where Ti is

the latest inter-arrival time between user events and TAV I is the

target mean inter-arrival time between user events, as currently

preset by us. γ controls the sensitivity to the feedback.

We set our constant parameters (TAV I = 120, α = 1.5, β =
0.8, γ = 1.5) based on the experience of two of the authors

using the system. These parameter values were subsequently

validated via user studies (Section III). Ideally, we would

empirically evaluate the sensitivity of UDFS1 performance to

these parameters. However, it is important to note that any

such study would require having real users in the loop, and

thus would be excessively slow. Testing five values of each

parameter on 20 users would require 312 days (based on 8

users/day and 45 minutes/user). For this reason, we decided to

choose the parameters based on qualitative evaluation by the

authors and then validate them by evaluating the whole system

with the choices. We observed that Windows DVFS causes

the system to run at the highest frequency during the whole

execution period except the first few seconds. On the other

hand, the UDFS1 scheme causes the processor frequency to

increase only when the user expresses discomfort. Otherwise,

it slowly decreases.

3) UDFS2 Algorithm: UDFS2 tries to find the lowest fre-

quency at which the user feels comfortable and then stabilize

there. For each frequency level possible in the processor, we

assign an interval ti, the time for the algorithm to stay at that

level. If no user feedback is received during the interval, the

algorithm reduces the frequency from fi to fi+1. The default

IEEE Computer Architecture Letters Vol. 5, 2006

interval is 10 seconds for all levels. If the user is irritated at

control level fi, we reset the frequency level to fi−1 and we

update all of our intervals via:

ti−1 = αti−1

tk = βtk,∀k.k �= i − 1

i = min(i − 1, 0)

Here α > 1 is the rate of interval increase and β < 1 is

rate of interval decrease. In our study, α = 2.5 and β = 0.8.

This strategy is motivated by the conjecture that the user was

comfortable with the previous level and the algorithm should

spend more time at that level. Again, because users would

have to be in the inner loop of any sensitivity study, we have

chosen the parameters qualitatively and evaluated the whole

system using that choice, as described in Section III.

III. EVALUATION

UDFS employs user feedback to customize processor fre-

quency to the individual user. The amount of feedback from

the user is reasonable, and declines quickly over time as an

application or set of applications is used.

Our experiments were done using an IBM Thinkpad T43P

with a 2.13 GHz Pentium M-770 CPU and 1 GB memory

running Microsoft Windows XP Professional SP2. Although

eight different frequency levels can be set on the Pentium M-

770 processor, only six can be used due to limitations in the

SpeedStep technology. We ran a study with 20 users. The user

study took around 45 minutes for each user. First, users fill out

a questionnaire stating level of experience in different O/S and

applications. It was followed by a brief period of acclimation to

the performance of our machine. Each user was asked perform

the following tasks for UDFS1: Microsoft PowerPoint plus

music (4 minutes); 3D Shockwave animation (4 minutes);and

FIFA game (8 minutes). The user repeated the same set of

tasks for UDFS2.

Figure 2 illustrates the performance of the UDFS2 algorithm

in our study (UDFS1 and PowerPoint are omitted for space

constraints, but are similar). Each graph shows, as a func-

tion of time, the minimum, average, maximum, and standard

deviation of user-driven CPU frequency, aggregated over our

20 users. Notice that there is large variation in acceptable

frequency among the users for the animation and game. For

both algorithms it is very rare to see the processor run at

the maximum CPU frequency. Even the most sophisticated

users were comfortable with running the tasks with lower

frequencies than those selected by the dynamic Windows

DVFS scheme.

A. CPU Dynamic Power Improvement

We used the system described in Section II-B, recording fre-

quency over time. We then combine this frequency information

to derive CPU power savings for UDFS. For reference, we used

the nominal core voltage given in the datasheet [6] at different

0

500

1000

1500

2000

2500

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222

Time (seconds)

F
re

q
u

e
n

c
y

Average Maximum Minimum STDEV

(a) UDFS2 - Shockwave

0

500

1000

1500

2000

2500

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451

Time (seconds)

F
re

q
u

e
n

c
y

Average Maximum Minimum STDEV

(b) UDFS2 - FIFA Game
Fig. 2. Frequency vs. time, UDFS2, aggregated, 20 users.

operating frequencies. The dynamic power consumption of a

processor is directly related to frequency and supply voltage

and can be expressed using the formula Pdyn = V 2CF , which

states that dynamic power is equal to the product of voltage

squared, capacitance, and frequency.

Figure 3 presents both individual user results and average

results for UDFS1 and UDFS2 for three different applications.

The vertical axis show the percentage improvement for power

over the Windows native DVFS scheme. For the Shockwave

animation, we see mixed responses from the users, although on

average UDFS1 and UDFS2 reduce the power consumption by

15.6% and 32.2%, respectively. UDFS2 performs better for this

application because the users can be satisfied by ramping up to

a higher frequency rather than the maximum frequency. Note

that UDFS1 immediately moves to the maximum frequency

on a button press. User 17 with UDFS1 is anomalous. This

user wanted the system to perform better than the hardware

permitted and thus pressed the button virtually continuously

even when it was running at the highest frequency.

The FIFA game also exhibits considerable variation among

users. Using conventional DVFS, the system always runs at

the highest frequency. The UDFS schemes try to throttle down

the frequency over the time. They therefore reduce the power

consumption even in the worst case (0.9% and 2.1% for

UDFS1 and UDFS2, respectively) while achieving better im-

provements, on average (16.1% and 25.5%, respectively). For

PowerPoint, UDFS1 and UDFS2 reduce power consumption

by an average of 18.4% and 17.0%, respectively. On average,

the power consumption can be reduced by 24.9% over existing

DVFS schemes for all three applications using the UDFS2

algorithm.

IEEE Computer Architecture Letters Vol. 5, 2006

-15

-10

-5

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

UDFS1 UDFS2

(a) PowerPoint Music

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

UDFS1 UDFS2

(b) 3D Shockwave Animation

-10

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

UDFS1 UDFS2

(c) FIFA Game
Fig. 3. UDFS power improvement over Windows DVFS.

B. System Power Measurement

To further measure the impact of our techniques, we re-

played the traces from the user study of the previous section on

our laptop. The laptop is connected to a National Instruments

6034E data acquisition board attached to the PCI bus of a host

workstation running Linux, which permits us to measure the

power consumption of the entire laptop. Note that during the

measurements, we have turned off the display of the laptop

to make our readings closer to the CPU power consumption.

Ideally, we would have preferred to measure CPU power

directly for comparison with results of the previous section,

but we do not have the surface mount rework equipment

needed to do so. For the Shockwave animation, UDFS1 and

UDFS2 reduce the power consumption by 17.2% and 33.6%,

respectively. In the FIFA game, UDFS1 and UDFS2 save

15.5% and 29.5% of the power consumption, respectively. On

average, the power consumption of the overall system can be

reduced by 22.1% for all three applications across all the users.

We have analyzed the experimental results further to in-

vestigate whether the UDFS schemes statistically reduce the

power consumption. We applied the student t-test on the power

readings observed during the simulations. For both UDFS1 and

UDFS2, the student t-test revealed that the mean of the power

consumption is reduced with over 0.999 confidence interval

for all the studied applications.

IV. RELATED WORK

Dynamic voltage and frequency scaling (DVFS) is an ef-

fective technique for microprocessor energy and power con-

trol [3]. Other DVFS algorithms use task information, such as

measured response times in interactive applications [8], [12]

as a proxy for the user. In Vertigo [4] the authors proposed

a latency-based voltage scaling technique. Unlike Vertigo, we

monitor the user instead of the application. Anand et al. [1]

discussed the concept of a control parameter that could be used

by the user. However, they focus on the wireless networking

domain, not the CPU. Second, they do not propose or evaluate

a user interface or direct user feedback. To the best of our

knowledge, the UDFS work is the first to employ direct user

feedback instead of a proxy for the user.

V. CONCLUSION

We have identified user pessimism as a key factor holding

back effective power management for processors with support

for DVFS. In response, we have developed and evaluated

User-Driven Frequency Scaling (UDFS). UDFS techniques

dramatically reduce CPU power consumption in comparison

with existing DVFS techniques. Extensive user studies show

that UDFS reduces the system power by 22.1% on average

compared to the Microsoft Windows XP DVFS scheme. More

detailed results can be found in our technical report [9].

REFERENCES

[1] ANAND, M., NIGHTINGALE, E. B., AND FLINN, J. Self-tuning Wireless
Network Power Management. In The Ninth Annual International Con-
ference on Mobile Computing and Networking (MobiCom’03) (2003).

[2] BRAKMO, L. S., O’MALLEY, S. W., AND PETERSON, L. L. TCP Vegas:
New Techniques for Congestion Detection and Avoidance. In Proceed-
ings of the Conference on Communications Architectures, Protocols and
Applications (1994).

[3] BROCK, B., AND RAJAMANI, K. Dynamic Power Management for
Embedded Systems. In Proceedings of the IEEE SOC Conference (2003).

[4] FLAUTNER, K., AND MUDGE, T. Vertigo: Automatic Performance-
setting for Linux. SIGOPS Oper. Syst. Rev. 36, SI (2002), 105–116.
http://doi.acm.org/10.1145/844128.844139.

[5] GUPTA, A., LIN, B., AND DINDA, P. A. Measuring and Understanding
User Comfort with Resource Borrowing. In Proceedings of the 13th
IEEE International Symposium on High Performance Distributed Com-
puting (HPDC 2004) (June 2004).

[6] INTEL CORPORATION. Intel Pentium M Processor Thermal
Management. http://www.intel.com/support/processors/mobile/pm/
sb/CS-007971.htm.

[7] LIN, B., AND DINDA, P. Putting the User in Direct Control of CPU
Scheduling. Tech. Rep. NWU-EECS-06-07, Department of Electrical
Engineering and Computer Science, Northwestern University, August
2006.

[8] LORCH, J. R., AND SMITH, A. J. Using User Interface
Event Information in Dynamic Voltage Scaling Algorithms. In
Technical Report UCB/CSD-02-1190, Computer Science Division,
EECS, University of California at Berkeley, August (2002). cite-
seer.ist.psu.edu/lorch03using.html.

[9] MALLIK, A., LIN, B., DINDA, P., MEMIK, G., AND DICK, R. Process
and User Driven Dynamic Voltage and Frequency Scaling. Tech. Rep.
NWU-EECS-06-11, Department of Electrical Engineering and Computer
Science, Northwestern University, August 2006.

[10] MICROSOFT CORPORATION. Performance Logs and Alerts Overview.
http://www.microsoft.com/windows2000/en/advanced/help/.

[11] STEVENS, W. R. TCP Slow Start, Congestion Avoidance, Fast Retrans-
mit and Fast Recovery Algorithms. In Internet RFC 2001 (1997).

[12] YAN, L., ZHONG, L., AND JHA, N. K. User-perceived Latency based
Dynamic Voltage Scaling for Interactive Applications. In Proceedings
of ACM/IEEE Design Automation Conference (2005).

IEEE Computer Architecture Letters Vol. 5, 2006

