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1 Introduction

This section presents the concepts and models associated with soft-error reliability
and lifetime reliability, and reviews the related work on these topics.

1.1 Background

Modern multi-processor systems on a chip (MPSoCs) may contain both multicore
processors and integrated GPUs, which are especially suitable for real-time embed-
ded applications requiring massively parallel processing capabilities. Since MPSoCs
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Fig. 1 Illustration of transient and permanent faults

offer good performance and power consumption, they have been widely used in
many real-time applications such as consumer electronics, automotive electronics,
industrial automation, and avionics [1]. For these applications, the MPSoC needs
to satisfy deadline, quality-of-service (e.g., resolution of video playback), and relia-
bility requirements. The reliability requirements include both soft-error reliability
(SER), influenced by transient faults, and lifetime reliability (LTR), influenced
by permanent faults. This chapter presents approaches to improving SER and/or
LTR while satisfying deadline and quality-of-service requirements for real-time
embedded systems.

Transient faults are mainly caused by high-energy particle strikes, e.g., resulting
from spallation from cosmic rays striking atoms in the upper atmosphere [2] (see
Fig. 1a). Transient faults may lead to errors that appear for a short time and then
disappear without damaging the device or shortening its lifetime; these are called
soft errors. They may prevent tasks from completing successfully. SER is used to
quantify the probability that tasks will complete successfully without errors due to
transient faults. SER can be increased by using reliability-aware techniques such
as replication, rollback recovery, and frequency elevation, which either tolerate
transient faults or decrease their rates.

Permanent faults are caused by wear in integrated circuits. An example is
illustrated in Fig. 1b. Permanent faults can lead to errors that persist until the faulty
hardware is repaired or replaced. Multiple wear-out effects such as electromigration
(EM), stress migration (SM), time-dependent dielectric breakdown (TDDB), and
thermal cycling (TC) can lead to permanent faults. The rates of these effect
depend exponentially on temperature. In addition, thermal cycling depends on the



Resource Management for Improving Overall Reliability of Multi-Processor. . . 235

ap
pli
ca
tio
n

SW
/O
S

ar
ch
ite
ctu
re

cir
cu
it/
ga
te

ph
ys
ics

application

SW/OS

architecture

circuit/gate

physics

Fig. 2 Main abstraction layers of embedded systems and this chapter’s major (green, solid) and
minor (yellow, dashed) cross-layer contributions

temperature range, maximum temperature, and cycle frequency. To improve LTR,
temperature peaks and variation must be limited.

To reduce the cost of repairing/replacing an MPSoC system and maintain some
desired level of quality-of-service, improving SER due to transient faults and LTR
due to permanent faults become an imperative design concern. In this chapter we
present two techniques that optimize SER and LTR separately and show how to
make appropriate trade-offs between them for improving overall system reliability.
Figure 2 illustrates the abstraction layers representing the main contribution of this
chapter.

1.2 Related Work

Considerable research has been done on improving SER. Haque et al. [3] present
an energy-efficient task replication method to achieve a high SER target for
periodic real-time applications running on a multicore system with minimum energy
consumption. Salehi et al. [4] propose a low-overhead checkpointing-based rollback
recovery scheme to increase system SER and reduce the number of checkpoints for
fault-tolerant real-time systems. Zhou et al. [5] improve system SER by judiciously
determining proper replication and speedup of tasks. Zhou and Wei [6] describe
a stochastic fault-tolerant task scheduling algorithm that specifically considers
uncertainty in task execution caused by transient fault occurrences to increase SER
under task deadline constraints. These work increase SER but do not consider
permanent faults.

Many studies have focused on increasing LTR. Huang et al. [7] describe an
analytical model to derive the LTR of multicore systems and a simulated annealing
algorithm to reduce core temperature and temperature variation to improve system
LTR. Chantem et al. [8] present a dynamic task assignment and scheduling scheme
to maximize system LTR by mitigating core wear due to thermal cycling. Ma et
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al. [1] optimize system LTR by establishing an online framework that dynamically
controls cores’ utilization. Das et al. [9, 10] improve the LTR of network-on-
chips (NoCs) and also solve the energy–reliability trade-off problem for multimedia
MPSoCs. However, these approaches neglect transient faults.

There is research on handling SER and LTR together. Zhou et al. [5] propose
a task frequency and replication selection strategy that balances SER and LTR
to maximize system availability. Ma et al. [11] establish an online framework
for increasing SER and LTR of real-time systems running on “big–little” type
MPSoCs. A genetic algorithm based approach [12] that determines task mappings
and frequencies is developed to jointly improve SER and LTR. Aliee et al. [13]
adopt mean time to failure (MTTF) as the common metric to evaluate SER and
LTR and design a success tree based scheme for reliability analysis for embedded
systems. Unlike work [5, 11–13] that ignore the variations in performance, power
consumption, and reliability parameters, Gupta et al. [14] explore the possibility of
constructing reliable systems to compensate for the variability effects in hardware
through software controls. These efforts consider CPU reliability but ignore the
reliability effects of GPUs.

1.3 Soft-Error Reliability Model

SER is the probability that no soft errors occur in a particular time interval [5], i.e.,

r = e−λ(f )×U×|Δt |, (1)

where f is the core frequency, |Δt | is the length of the time interval, U is the
core’s utilization within |Δt |, and λ(f ) is the average fault rate depending on f [5].
Specifically, we have

λ(f ) = λ0 × 10
d(fmax−f )
fmax−fmin , (2)

where λ0 is the average fault rate at the maximum core frequency. fmin and fmax are
the minimum and maximum core frequency, and d (d > 0) is a hardware-specific
constant indicating the sensitivity of fault rate to frequency scaling. Reducing
frequency leads to an exponential increase in fault rate because frequency is a
roughly linear function of supply voltage. As frequency reduces, supply voltage
decreases, decreasing the critical charge (i.e., the minimum amount of charge that
must be collected by a circuit to change its state) and exponentially increasing fault
rate [15].

Since CPU and GPU fabrication processes are similar, the device-level SER
model above applies to both. Let rG and ri (i = 1, 2, . . . , m) represent the SER
of the GPU and the ith CPU core, respectively. As the correct operation of an
MPSoC system-level depends on the successful execution of GPU and CPU cores,
the system-level SER is calculated as the product of reliabilities of all individual
cores, i.e.,
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R = rG ×
m∏

i=1

ri . (3)

1.4 Lifetime Reliability Model

MTTF is commonly used to quantify LTR. We focus on four main failure mech-
anisms: EM, TDDB, SM, and TC. EM refers to the dislocation of metal atoms
caused by momentum imparted by electrical current in wires and vias [16]. TDDB
refers to the deterioration of the gate oxide layer [17]. SM is caused by the
directionally biased motion of atoms in metal wires due to mechanical stress caused
by thermal mismatch between metal and dielectric materials [18]. TC is wear due to
thermal stress induced by mismatched coefficients of thermal expansion for adjacent
material layers [19].

The system-level MTTF modeling tool introduced by Xiang et al. [20] can be
used to estimate LTR when considering the above four failure mechanisms. This
tool integrates three levels of models, i.e., device-, component-, and system-level
models. At the device level, wear due to the above four mechanisms is modeled.
The modeling tool accounts for the effect of using multiple devices in a component
upon fault distributions, e.g., the effects of EM are most appropriately modeled
using a lognormal distribution at the device level, but with a Weibull distribution for
components containing many devices. Based on the device-level reliability models
and temporal failure distributions, component-level MTTF is calculated [20]. Then,
based on component-level reliability, the system-level MTTF is obtained by Monte
Carlo simulation.

2 LTR and SER Optimization

This section introduces two approaches for LTR and SER optimization, and
discusses the trade-off between them.

2.1 LTR Optimization

EM, SM, and TDDB wear rates depend exponentially on temperature. However,
wear due to thermal cycling depends on the amplitude (i.e., the difference between
the proximal peak and valley temperature), period, and maximum temperature of
thermal cycles. Figure 3 summarizes some system MTTF data obtained from the
system-level LTR modeling tool with default settings [20]. Figure 3a–c depicts
the MTTF of an example system as a function of the amplitude, period, and peak
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Fig. 3 System MTTF due to: (a) amplitude of thermal cycle; (b) period of thermal cycles; (c) peak
temperature of thermal cycles; and (d) temperature without thermal cycles

temperature of thermal cycles, respectively. As a comparison, Fig. 3d shows the
system MTTF due to temperature alone without thermal cycles. As can be seen
from Fig. 3, system MTTF generally increases for lower temperatures and smaller
thermal cycles.

A system’s LTR is determined by its operating temperature and thermal cycles.
Given that lower frequencies and voltages lead to higher utilization but lower
temperatures, one method to improve system MTTF is to control core utilization.
For example, we have developed a framework called Reliability-Aware Utilization
Control (RUC) [21] to mitigate the effects of both operating temperature and
thermal cycling. RUC consists of two controllers. The first controller reduces
the peak temperature by periodically reducing core frequencies subject to task
deadline requirements. Although frequent changes in core frequency helps to reduce
peak temperature, they may increase the frequency of thermal cycling and reduce
lifetime reliability. Hence, the second controller minimizes thermal cycling wear by
dynamically adjusting the period of the first controller to achieve longer thermal
cycles as well as lower peak temperature.

2.2 SER Optimization

Recovery allocation strategies and task execution orders can affect system-level
soft-error reliability (as shown in Fig. 4). In this example, there are four tasks that
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τ1 2 3 4
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(a) No recovery.

τ1 2 3 4

0 3 6 9 12 15

r2 r3

(b) Allocate recovery to specific tasks, regardless of whether these tasks fail.

τ1 2 3 4

0 3 6 9 12 15

for one task

(c) Recovery is only allocated to the first failed task.

τ1 2 3 4

0 3 6 9 12 15

for any task

(d) A failed task or more can be recovered if the slack is adequate enough.

τ1234

0 3 6 9 12 15

for any task

(e) A new execution order.

Fig. 4 Motivating examples illustrate different recovery allocation strategies and task execution
order affect system-level SER. (a) No recovery. (b) Statically allocate recovery to specific tasks,
regardless of whether these tasks fail. (c) Recovery is only allocated to the first failed task. (d) A
failed task or more can be recovered if the slack is adequate. (e) A new task execution order

share a common period of 15 s. We further suppose the worst-case execution times
of the tasks are 1, 2, 3, and 4 s. All tasks in the set execute at the highest core
frequency. As indicated by the reliability model presented in Sect. 1, the SERs of
the tasks are 0.904, 0.819, 0.741, and 0.670.

If no recovery is allowed as shown in Fig. 4a, the system-level SER, i.e., the
probability that all tasks can complete successfully, is 0.368. Allowing recovery
of some tasks increases SER. One method is to allocate recoveries to tasks offline
[5]. Figure 4b represents a better solution for maximizing the system-level SER, in
which tasks τ2 and τ3 have recoveries r2 and r3. In this case, the system-level SER is
0.547. Another approach allocates recovery online [22]. Figure 4c shows a scenario
where the first failed task has a recovery [22]. The system-level SER is 0.686, which
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is higher than that in Fig. 4b. However, although the slack is dynamically used in
Fig. 4c, only one task can be recovered.

In the above online recovery allocation example, a failed task is recovered if the
remaining slack is adequate, and tasks consume slack on a first-come, first-served
basis (see Fig. 4d). For example, task τ2 can recover even if τ1 fails. However, task
τ3 cannot recover if both τ1 and τ2 fail because the remaining slack for τ3 is only
2 s. Task τ4 can recover only when all tasks succeed or only τ1 fails. Hence, the
probabilities of recovering τ3 and τ4 are 0.983 and 0.607, and the system-level SER
is 0.716. Now, consider the impact of task scheduling on the system-level SER.
Figure 4e represents a new schedule where the task’s priority is the inverse of its
execution time. In this case, the probabilities of recovering τ1, τ2, τ3, and τ4 are
0.792, 0.670, 0.670, and 1.000. In contrast with Fig. 4d, the task with the lowest
SER, τ4, can always be recovered, but the system-level SER is 0.692. Hence, a
scheduling algorithm that simply improves the probability of recovery for some
specific tasks may not be a good solution.

Based on these observations, we design an SER improvement framework [23]
that statically schedules tasks and dynamically allocates recoveries. The framework
is composed of a simple and fast scheduling algorithm for special task sets and a
powerful scheduling algorithm for general task sets. For more details of the two
scheduling algorithms, readers can refer to [23].

3 Trade-Off Between LTR and SER

Certain design decisions (e.g., task mapping and voltage scaling) may increase LTR
but decrease SER, and vice versa. In other words, improving overall reliability
requires trade-offs between LTR and SER. Recently, several efforts have focused
on these trade-offs. Below, we describe two case studies in LTR and SER trade-off:
(1) “big–little” type MPSoCs and (2) CPU–GPU integrated MPSoCs.

3.1 “Big–Little” MPSoCs

To address power/energy concerns, various heterogeneous MPSoCs have been
introduced. A popular MPSoC architecture often used in power/energy-conscious
real-time embedded applications is composed of pairs of high-performance (HP)
cores and low-power (LP) cores. Such HP and LP cores present unique performance,
power/energy, and reliability trade-offs. Following the terminology introduced by
ARM, we refer to this as the “big–little” architecture. Nvidia’s variable symmetric
multiprocessing architecture is such an example [24].

Executing tasks on an LP core improves LTR by reducing temperature and
improves SER through a higher core frequency. Although the primary goal of “big–
little” MPSoCs is to reduce power consumption by executing a light workload on
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Fig. 5 The measured power consumptions of HP (Denver) core and LP (ARM) core on Nvidia’s
TX2 chip as functions of utilization and frequency

the LP cores, there are circumstances in which an LP core consumes more power
than an HP core. Carefully characterizing the power consumption behavior of HP
and LP cores is necessary. For example, the power consumption of the HP core and
LP core on Nvidia’s TX21 is shown in Fig. 5. The LP core consumes less power
than the HP core only when the core frequency is low and the workload is light.
One possible reason for this phenomenon is that the HP and LP cores have different
microarchitectures, as is the case with the TX2. Another possible reason is that the
transistors in the HP core and LP core have different threshold voltages. The LP core
has low leakage power but requires high voltage to operate at higher frequencies. On
the other hand, the HP core can work at high frequency with a low voltage.

The above observations reveal that in order to reduce power consumption of
MPSoCs and improve reliability, it is necessary to fully account for the power

1Note that TX2 is composed of ARM Cortex A57 cores that support multithreading, and Nvidia’
Denver cores for high single-thread performance with dynamic code optimization. Denver cores
can be treated as HP cores and ARM cores can be treated as LP cores when running single-threaded
applications.
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features of heterogeneous cores and carefully map tasks to the most appropriate
cores. A good guideline is to run tasks having short execution times on LP cores
with low frequencies and tasks having long execution times on HP cores with high
frequencies. The execution models of HP and LP cores must also be considered.
For example, HP and LP cores on Nvidia’s TK1 cannot execute at the same time.
However, on Nvidia’s TX2, HP and LP cores can work simultaneously. Although an
HP core and an LP core can execute at different frequencies, all HP cores must share
one frequency, as must LP cores. Hence, a strategy to improve reliability should
migrate tasks dynamically and consider both the power features and execution
models of HP and LP cores. Using this guideline, we have developed frameworks
for different hardware platforms to improve soft-error reliability under lifetime
reliability, power consumption, and deadline constraints [1, 11].

3.2 CPU–GPU Integrated MPSoCs

Thanks to the massively parallel computing capability offered by GPUs and the
general computing capability of CPUs, MPSoCs with integrated GPUs and CPUs
have been widely used in many soft real-time embedded applications, including
mobile devices [25] and intelligent video analytics. For many such applications,
SER due to transient faults and LTR due to permanent faults are major design
concerns. A common reliability improvement objective is to maximize SER under
an LTR constraint.

An application task set is used to illustrate how a task’s execution time depends
on whether it executes on the same core as the operating system. The varying
execution times of tasks change the overall workload and operating temperature,
influencing LTR and SER. Experiments were performed on Nvidia’s TK1 chip (with
CUDA 6.5) with default settings to measure task execution times. Six tasks from
different benchmark suites were executed (see Table 1). Each task’s increase in
CPU time resulting from executing on a different core than the operating system
is shown in Fig. 6 and the averages of additional GPU times are shown in Table 2.
For all tasks, the additional CPU times can be significant and are input dependent.
In contrast to the additional CPU time, the additional GPU time is negligible: the
additional GPU times of all measured application tasks are less than 1% of the tasks’
execution times. This increase can be ignored in most soft real-time applications.
Similar phenomena can be observed for other platforms. On Nvidia’s TX2 chip, the
additional CPU times of application tasks are illustrated in Fig. 7.

The above observations imply that a task’s CPU time increases if executed on
a different core than the operating system, but its GPU time does not change.
Since both LTR and SER increase with a lighter workloads, this observation reveals
that we should consider what resources tasks use when assigning them to cores.
Generally, the primary core, on which the operating system runs, should be reserved
for application tasks that require GPU resources to complete.
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Table 1 Application tasks used to measure additional execution times

Name Description Source

VectorAdd Vector addition CUDA samples [26]

SimpleTexture Texture use

MatrixMul Matrix multiplication

Gaussian Gaussian elimination Rodinia [27]

BFS Breadth-first search

Backprop Back propagation

Fig. 6 Measured additional CPU times on TK1 for tasks executing on non-OS CPU cores

Table 2 Observed additional GPU time on TK1

Additional GPU time

Tasks (ms) (%)

VectorAdd 0.38 0.01

SimpleTexture 0.09 0.00

MatrixMul 0.22 0.11

Gaussian 0.38 0.00

BFS 0.003 0.20

Backprop 0.31 0.68
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Fig. 7 Measured additional CPU times on TX2 for tasks executing on CPU cores that are different
from the core where the operating system runs

4 Conclusion

Real-time embedded system soft-error and lifetime reliabilities are important.
Generally, increasing a core’s frequency, allocating recoveries and allowing replica-
tions improve soft-error reliability, but may increase operating temperature thereby
reducing lifetime reliability. MPSoCs used in many applications are heterogeneous
and integrate high-performance cores, low-power cores, and even GPUs. System
designers should model the task-dependent power consumptions and execution
times of the cores available to them, and use these models to solve the SER and
LTR trade-off problem.
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