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ABSTRACT

In-sensor energy-efficient deep learning accelerators have
the potential to enable the use of deep neural networks in em-
bedded vision applications. However, their negative impact
on accuracy has been severely underestimated. The inference
pipeline used in prior in-sensor deep learning accelerators by-
passes the image signal processor (ISP), thereby disrupting
the conventional vision pipeline and undermining accuracy of
machine learning algorithms trained on conventional, post-
ISP datasets. For example, the detection accuracy of an off-
the-shelf Faster RCNN algorithm in a vehicle detection sce-
nario reduces by 60%. To make in-sensor accelerators prac-
tical, we describe energy-efficient operations that yield most
of the benefits of an ISP and reduce covariate shift between
the training (ISP processed images) and target (RAW images)
distributions. For the vehicle detection problem, our approach
improves accuracy by 25-60%. Relative to the conventional
ISP pipeline, energy consumption and response time improve
by 30% and 34%, respectively.

Index Terms— Deep learning accelerators, Image signal
processor, RAW images, Covariate shift

1. INTRODUCTION

Deep learning, the current paradigm in machine learning al-
gorithms, has achieved state-of-the-art performance in several
application domains. However, the high energy, computa-
tion, and memory demands of deep neural networks (DNNs)
limits their deployment in embedded applications. Vision
applications provide fertile ground for achieving energy ef-
ficiency by allowing parallel execution of primitive analy-
sis operations. These abilities are exploited by several in-
sensor and near-sensor accelerators that use image sensor par-
allel readout capabilities to enable efficient convolution oper-
ations [1, 2, 3, 4].

The conventional (energy-intensive but accurate) imaging
pipeline uses an image signal processor (ISP) to perform sev-
eral non-linear transformation operations on an image before
further analysis. However, existing in-sensor accelerators by-
pass the ISP, thereby disrupting the imaging pipeline and un-
dermining accuracy (see Figure 1). In this paper, we consider
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Fig. 1: A comparison of the conventional machine vision
pipeline (black arrows) and in-sensor accelerators’ pipeline
(pink arrows). In-sensor accelerators bypass the ISP.

the impact of this dataflow design choice and describe an al-
ternative.

In particular, we observe that augmenting an image sensor
with a pre-ISP deep learning accelerator introduces a deploy-
ment challenge. Since DNNs are typically trained on images
already processed by the ISP, they learn distributions that dif-
fer from those of the RAW images produced by the image
sensor. This issue of disparity in training (ISP processed im-
ages) and target (RAW images) data distributions' is typically
known as covariate shift, and greatly reduces application ac-
curacy for in-sensor accelerator pipelines; we observed 60%
accuracy reduction for the cases we studied. A possible so-
Iution would be training networks on pre-ISP data (RAW im-
ages). However, that would either require developing new,
large datasets of RAW images (an expensive task; see Sec-
tion 4) or making do with limited training data, thus reduc-
ing accuracy. In contrast, our proposed approach allows in-
sensor accelerators to directly use off-the-shelf DNNs trained
on ISP-processed images or train with large existing data sets,
without degrading accuracy.

This paper makes the following contributions. It describes
a minimalistic image signal processing pipeline that improves
the accuracy of in-sensor accelerators using DNNSs trained on

I'The probability distribution of the intensity of a pixel is defined as its
data distribution.
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Fig. 2: (a) The RAW image has a tiled pattern. (b) Demo-
saicing gives a smooth image. (c) Binning renders a smooth
image too. (d) The difference in demosaiced and binned im-
age is minimal (for the given 400x400 image, MSE = 4.68).

conventional, ISP-processed datasets by performing gamma
compression and pixel binning on the acquired image. These
operations can be easily integrated within an image sensor,
eliminating the need for an ISP, and making in-sensor accel-
erators feasible by performing the necessary local transforma-
tions. Using our approach, it is possible to maintain accuracy
while eliminating the ISP, thereby improving detection accu-
racy by 25-60% and reducing system response time by 34%
and system energy 30% in ISP retaining near-sensor acceler-
ators [4].

Please note that our findings do not diminish the contri-
butions of in-sensor accelerators: this paper finds flaws in the
pipeline used in prior research and describes methods allow-
ing in-sensor accelerators to reach their potential.

2. THE MACHINE VISION PIPELINE

The conventional machine vision pipeline involves the fol-
lowing three stages.

Sensing: The image sensor is responsible for sampling
and uses photodiodes to convert incoming photons to propor-
tional voltage levels. Images outputted by the image sensor
are known as RAW images and are discontinuous as a result
of using color filter arrays to capture the red, green, and blue
intensities separately (see Figure 2(a)). Please note that our
proposed methods can be extended to other color filter array
patterns with minimal changes at the readout stage.

Preprocessing: Preprocessing takes place at the ISP.
Conventionally, these operations aim at improving image
aesthetics and are proprietary to manufacturers. However, the
pipelines are generally similar and include several operations
such as demosaicing, the conversion of the discontinuous,
single-channel RAW image to a continuous, multi-channel
(e.g., RGB) image. Finally, the RAW images are converted
into a standard format such as JPEG or PNG.

Inference: A host processor executes application-specific
algorithms for detection, classification, or other tasks.

In-sensor accelerators modify this pipeline by executing
convolutional operations within the image sensor itself. The
resulting features are then processed by the host processor
(see Figure 1). This pipeline caries out feature extraction be-

fore ISP operations. As a result, the features are quite dif-
ferent from those of conventional, post-ISP training datasets.
This results in covariate shift between the training (ISP pro-
cessed images) and target (RAW images) data, significantly
reducing application accuracy (see Section 5).

3. PRIOR WORK

Conventional machine vision systems are based on the
pipeline described in Section 2, in which the ISP influences
both accuracy and energy efficiency. Buckler et al. studied
the impact of individual ISP operations on task efficiency [5].
They used a software tool to convert ISP processed images
to RAW images, and found that demosaicing, denoising, and
gamma compression are crucial for maintaining high ap-
plication accuracy. However, since several of the operations
involved in the ISP pipeline are non-linear and non-invertible,
the RAW images can only be approximately reconstructed—
for ex., noise needs to be explicitly added to the image signal.
It is possible that their approximate reconstruction of RAW
images might have led Buckler et al. to overestimate the
impact of demosaicing and denoising operations on task effi-
ciency. In actuality, we find that any smoothing algorithm that
removes the tiling effects of the color filter array and has par-
tial denoising effects is sufficient to produce high application
accuracy. Buckler found this plausible in an email corre-
spondence. Pixel binning has denoising effects and smooths
the discontinuous RAW images to produce continuous im-
ages (see Figure 2), achieving continuity similar to that of
demosaicing. Further, pixel binning can be performed within
image sensors by using their parallel readout architecture,
making it suitable for in-sensor deep learning accelerators.
Therefore, we propose a two-step preprocessing pipeline that
involves gamma compression and pixel binning only.

4. FINDING THE NECESSARY PIPELINE
OPERATIONS

Since a RAW and ISP-processed image correspond to the
same scene, they both capture the scene structure and geom-
etry. Their major differences are due to local transformation
operations such as gamma compression, which alter the data
distributions of pixels. Since machine vision algorithms are
trained on ISP-processed images, they learn representations
based on the transformed data distributions. While an argu-
ment can be made for training networks on RAW images,
there are several hindrances: (1) RAW image datasets are
not publicly available (which this paper partially addresses
through publication of such a dataset); (2) the RAW image
format is not standardized, and conversion to and from other
formats such as JPEG and PNG is proprietary; and (3) RAW
images have large sizes, impeding ease of transfer.

In this section, we propose a minimalistic image sig-
nal processing pipeline that uses gamma compression and
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Fig. 3: The intensity distributions for ISP-processed and RAW images are dramatically different. Use of gamma compression
produces a non-linear transformation of (b), which, upon denoising using binning, gives an approximation of (a).

Time (sec)

0 0.2 0.4 0.6 0.8 1 1.2
Resolution (in MP)

Fig. 4: Faster RCNN processing time increases linearly with
resolution.

pixel binning to approximate the data distribution of ISP
processed images. This reduces the amount of covariate
shift between the ISP processed (training) and RAW images
(target), thereby enabling the use of off-the-shelf DNNs in
in-sensor and near-sensor accelerators. We analyze the effect
of our proposed pipeline on pixel intensity distribution as an
analog for the data distribution.

4.1. Gamma Compression

Human vision has a logarithmic response to incident illumi-
nation energy, in contrast to the linear response of image sen-
sors. ISPs focus on rendering aesthetically appealing images.
As aresult, RAW image intensity distributions are starkly dif-
ferent from those of the post-ISP images (see Figure 3).

Gamma compression is a local, non-linear transforma-
tion that exponentiates individual pixels with an exponent less
than 1. We observe that using gamma compression, a noisy
approximation of the ISP-processed intensity distribution can
be achieved (see Figure 3(c)). We’ll be using the Adobe 1998
standard for gamma compression in our work [6].

Pgamma = (an“m),y (l)

4.2. Pixel Binning

Pixel binning is a well known subsampling scheme that in-
volves averaging followed by decimation. Since averaging
removes gaussian noise, binning also reduces noise [7]. As
shown in Figure 3(d), binning the gamma compressed im-
age results in denoising and produces a smooth intensity dis-
tribution. Pixel binning also has another benefit: it reduces

the image size by subsampling, thus enabling more efficient
analysis. Since DNN-based object detection algorithms use
small convolutional kernels, high-resolution images propor-
tionately increase processing time and energy (see Figure 4).
Even on a 6 GiB NVIDIA GTX 1060 GPU, images larger
than 1,000x 1,000 exceed available memory. Prior work on
in-sensor accelerators has neglected the impact of image size
because evaluations were on images too small for realistic ob-
ject detection.

The binning operation for subsampling an s x s image
using a w x w binning window can be formulated as follows:

1
Y Plsxi+ksxj+k). (2

=—w

szn(zvj) =

2w+1

4.3. Hardware Implementation

The operations described above are sufficient to approximate
the data distributions of ISP-processed images (see Figure 3).
Since our goal is to achieve high accuracy and enable use of
off-the-shelf DNNs for in-sensor deep learning accelerators,
we must incorporate gamma compression and pixel binning
before image sensor readout. To this end, we propose the
following modifications to image sensors.

Logarithmic pixels: Image sensors use linear photodi-
odes to proportionately convert illumination energy into volt-
age. In logarithmic pixels, the source follower transistor in the
active pixel sensor functions in the sub-threshold region, re-
sulting in logarithmic output voltage response with respect to
incident illumination energy [8]. It is known that the logarith-
mic function can well approximate gamma compression [9].
Therefore, using logarithmic pixels, gamma compression can
be integrated within the sensor itself.

Pixel binning: Binning can be performed via an analog
averaging circuit at the readout stage. Specifically, the par-
allel readout pipeline ends in a chain of accumulating ca-
pacitors, which can be shorted for charge sharing and av-
eraging. Pixel binning is supported by almost all modern
image sensors. While it requires the use of additional cir-
cuitry for averaging, increasing sensor power consumption,
the increase is negligible [10]. Further, since readout time
decreases quadratically with the binning window length, net
sensing energy is decreased.
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5. EVALUATION

We simulate our proposed sensing framework’s effects by
performing gamma compression and pixel binning on RAW
images. As mentioned before, prior work on in-sensor ac-
celerators shows evaluation results on ISP-processed images,
thereby underestimating the impact of dataflow choice on
accuracy. However, we use RAW images acquired from a
commercial camera for our evaluation, as would be seen by
an in-sensor accelerator. The dataset we gathered for test-
ing consists of 225 RAW images, which have 1,215 vehicle
instances in total. This dataset has been made publicly avail-
able?. These images have not been processed by the ISP
and are essentially just the digital versions of the raw analog
image.

Impact on accuracy: We use TensorFlow’s model
zoo [11], which includes several state-of-the-art object de-
tection networks, as our benchmark for evaluating object
detection accuracy under various considerations. Figure 5
shows the detection accuracy of the RAW images, images
processed via the proposed pipeline, and corresponding ISP
processed images in a vehicle-detection scenario. We de-
fine an object to have been detected when the determined
bounding box has greater than 40% overlap with the ground
truth bounding box (see Figure 6). The detection accuracy
improves by 25-60% over RAW images, which in-sensor
accelerators would otherwise encounter. Table 1 enumerates
the mean average precision (mAP) values for the different
networks and processing pipelines. Note that use of strong

Zhttps://github.com/EkdeepSLubana/raw_dataset

Table 1: Mean average precision for different networks.

Pipeline | RAW | Proposed | ISP
Faster RCNN | 0.07 1 0.87
Mask RCNN 0.66 0.85 | 0.84

SSD+InceptionV2 | 0.62 0.76 1
SSD+MobileNet | 0.6 1 0.8

feature extractors in the Faster RCNN and MobileNet imple-
mentations results in a higher amount of false positives in ISP
processed images, reducing net mAP values.

Impact on energy and response time: In order to eval-
uate the impact of the ISP on an embedded vision system’s
response time and energy, we use a Raspberry Pi 3 microcon-
troller to calculate the net time consumed by a conventional
ISP pipeline. The Raspberry Pi allows easy control of the
ISP and supports TensorFlow-lite, a low-level API for Ten-
sorFlow. To fit within available memory, a quantized version
of SSD MobileNet V2 is used. The energy evaluation model
used is as described by Lubana and Dick [12]. Our results
show 34% reduction in system latency and 30% reduction in
system energy relative to the conventional ISP pipeline for
the vehicle-detection problem. These results imply that using
our proposed pipeline, near-sensor accelerators that retain the
ISP [4] can further reduce analysis latency and system energy
consumption by bypassing the ISP altogether.

6. CONCLUSION

This paper explains why in-/near-sensor deep learning ac-
celerators cannot use off-the-shelf DNNs without running a
minimal but carefully designed preprocessing pipeline. The
necessary operations, gamma compression and pixel binning,
approximate the data generating distribution of the ISP pro-
cessed images and can be easily incorporated within an im-
age sensor by using logarithmic pixels and binned readouts.
The proposed method enables the use of off-the-shelf DNNs
in in-sensor and near-sensor accelerators, reduces their error
rate by 25-60%, and decreases system energy consumption
by 30% and analysis latency by 34%.
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