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ABSTRACT

Self-stabilizing systems are systems that automatically re-
cover from any transient fault. Proving the correctness of
a parameterized self-stabilizing system, i.e., a system com-
posed of an arbitrary number of processes, is a challeng-
ing task. For the verification of parameterized systems the
method of control abstraction has been developed. However,
control abstraction can only be applied to systems in which
each process has a fixed number of observable variables. In
this article, we propose a technique to abstract a parameter-
ized self-stabilizing system, whose processes have a param-
eterized number of observable variables, to a system with
fixed number of observable variables. This enables the use
of control abstraction for verification. The proposed tech-
nique targets low-atomicity, shared-memory, asynchronous
systems. We establish the completeness of the method un-
der reasonable conditions and demonstrate its effectiveness
by applying it on a number of self-stabilizing distributed
systems.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems ;
F.3.1 [Theory of Computation]: Logics and Meanings
of Programs—Specifying and Verifying and Reasoning about
Programs

General Terms

Reliability, Verification
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1. INTRODUCTION

Distributed embedded systems are widely used in many
applications, e.g., control systems in cars, airplanes, or houses.
There are cases in which reliability is the most important
requirement of those systems. One way to guarantee that
these systems tolerate transient faults is by making them
self-stabilizing systems, which automatically recover from
any transient fault [7]. This type of fault-tolerance is desir-
able in many distributed embedded systems [3, 15, 21]. Ver-
ifying the correctness of those systems is a challenging task
while testing them is intractable. The main reason is that
distributed self-stabilizing systems are designed to work for
an arbitrary number of components, i.e., the number of com-
ponents is given as a parameter to the specification of the
system. One way to enable the usage of automated verifica-
tion techniques, like model checking, on parameterized sys-
tems is by using abstraction. However, manual abstraction
requires deep knowledge of the embedded application, for-
mal specification, and model checking. Few designers have
the required knowledge of both the application and model
checking. Therefore, we propose a general abstraction tech-
nique for enabling automatic verification tools to check the
correctness of self-stabilizing parameterized systems.

We distinguish two types of self-stabilizing systems; “strict-
stabilizing” and “pseudo-stabilizing” systems [5]. After the
last fault, a strict-stabilizing system will eventually enter a
state in which it satisfies and will maintain the correctness
property. Formally, let φ denote the correctness property, a
strict-stabilizing system satisfies the LTL (Linear Temporal
Logic) property ✸φ and ✷(φ → ✷φ), starting from any fault
state. A pseudo-stabilizing system will eventually get into
states where the correctness property will never be violated.
Pseudo-stabilization does not require that the system can-
not enter a faulty state after reaching a correct state. How-
ever, eventually the system will be in correct states only.
The LTL property for pseudo-stabilizing systems is given as
✸✷φ. Although pseudo-stabilization is weaker, it is suffi-
cient for many practical applications.

The way system designers reason about the correctness
of self-stabilizing systems is by considering all states in the
state space to be initial states. The assumption is that the
initial state is the first state after a transient fault. There-
fore, the system can start from any state and must even-
tually recover, if no more faults occur. Convergence stairs
is a common proof method for self-stabilizing systems [7,



11]. A finite sequence of predicates p0, ..., pm is defined
with p0 = True and pm = φ being the correctness prop-
erty of the system. The designer proves that if eventually
always pi is satisfied, then eventually always pi+1 is satis-
fied for all i ∈ 0..m − 1. In LTL, it is ✸✷pi → ✸✷pi+1.
By this method, the pseudo-stabilization ✸✷pm (or persis-
tence property) can be proved, and by showing that the
safety property ✷(pm → ✷pm) also holds, strict-stabilization
can also be established. Proving the liveness properties
✸✷pi → ✸✷pi+1 is the hardest step in this method and,
therefore, we focus on this type of properties in this paper.
Most self-stabilizing systems are complicated and proving
their correctness manually is not an easy task. Therefore,
there is a need for automatic verification techniques for these
systems.

There are two kinds of methods that are used for the veri-
fication of asynchronous systems: deductive verification and
model checking. Deductive verification is an interactive ver-
ification method; the user is required to provide properties
to facilitate the proof by the tool. Model checking is an au-
tomatic method. However, it is efficient only when applied
to relatively small finite state systems. Therefore, abstrac-
tion is required to transform infinite or large state systems
to smaller finite state systems for model checkers [12].

A parameterized system is built by parallel composition
of N processes, where N can be any natural number. In
many cases it is necessary to prove the correctness of a pa-
rameterized system independent of the number of processes.
Since the number of those systems is infinite, abstraction
techniques are needed. The parameterized system is first
abstracted to a finite state system such that any predicate
that holds for the finite state system will hold for the original
system with any number of processes. Then model checking
can be used to check the finite state system.

A number of abstraction techniques for parameterized sys-
tems has been developed for high-atomicity systems [6, 20,
4, 9]. High-atomicity systems are those in which a process
can read the values of many neighbors in one atomic step.
Since the implementation of such an atomic step is expen-
sive, we target low-atomicity distributed systems. Moreover,
since the correctness property is a liveness property, we fo-
cus on abstraction techniques for the verification of liveness
properties on low-atomicity systems.

There are two abstraction techniques for proving liveness
properties of low-atomicity parameterized systems: control
abstraction [16, 12] and invisible invariants [10]. The idea
behind control abstraction is to abstract away an arbitrary
number of symmetric processes by using a network invari-
ant I. Then the correctness property can be proved for the
abstract system, which is composed of a finite number of
processes and the network invariant [12]. A difficulty with
this approach is that the network invariant must have the
same set of observable variables as the system of symmet-
ric processes abstracted by it. Therefore, if each of the N

abstracted processes has one observable variable, the net-
work invariant must have N observable variables. This diffi-
culty has restricted the applicability of control abstraction.
Control abstraction has been successfully applied on ring
topologies of processes [14], in which every process has only
two neighbors and, therefore, the number of input/output

variables for each process is independent of N . It has also
been successfully applied to systems for which the number
of shared variables does not increase with the number of
processes. An example is a mutual exclusion algorithm, in
which all processes share only one semaphore [12].

The other approach is the method of invisible invariants [10].
The method can be used to bound the number of processes
needed to prove a correctness property for a class of param-
eterized systems. The approach can be used for the verifi-
cation of safety properties and response liveness properties,
which are of the form ✷(p → ✸r), i.e., for every state satis-
fying assertion p there is a future state satisfying assertion r.
It is not known how other liveness properties can be checked
using this method. Moreover, the method imposes a num-
ber of restrictions on the structure of the next state relation
and the initial condition of the system. In some cases the
number of required processes is large (e.g. 128 for the dining
philosophers problem).

In this paper we present an abstraction technique that
builds on the theory of control abstraction. We target sys-
tems in which the number of observable variables is a pa-
rameter. Such systems are very common in practice. One
example is a networking system connected in a graph of ar-
bitrary topology, where the number of neighbors of a process
is a parameter. The system with a parameterized number of
observable variables is abstracted to a system with a fixed
number of observable variables, making it amenable to con-
trol abstraction.The proposed abstraction technique can be
applied to non-self-stabilizing systems as well.

There is no other approach for applying the network in-
variant method to distributed systems with N observable
variables in each process. The proposed technique enables
the application of this method to self-stabilizing systems.
Moreover, case studies demonstrate that our abstraction
technique can be applied to distributed systems to which no
other abstraction technique has been successfully applied.
Furthermore, sufficient conditions under which the abstrac-
tion technique is complete are provided.

In addition to handling low-atomicity constraints, the pro-
posed abstraction technique does not generate an abstract
system whose size is exponential in the number of local states
of each process, as it is the case in other works [20]. It also
handles the weak fairness constraints for the abstracted pro-
cesses, in contrast with existing abstraction techniques [4].
Finally, because it uses syntax manipulation, the complex-
ity of building the transition relation is low compared to
approaches that use decision procedures (MONA) [20, 4].

In Section 2 we describe our notation and the systems we
consider. Section 3 gives an overview of a 3-step abstrac-
tion methodology and shows how the proposed abstraction
technique can be used as part of the methodology. Section 4
explains the technique in detail. We demonstrate the ef-
fectiveness of the technique on a number of case studies in
Section 5. For some theorems we include only proof sketches
due to space limitations.

2. SYSTEMS AND NOTATIONS

We deal with the verification of closed parameterized sys-
tems. A closed parameterized system can be defined as

Q(N) = (P (1, N) ‖P (2, N)‖...‖P (N, N))
R

(1)



In the above formula P (1, N), P (2, N), ..., P (N, N) are iden-
tical processes up to renaming. The first argument denotes
the id1 and the second the number of observable variables of
each process. The operator ‖ denotes parallel asynchronous
composition and ()R restriction. Parallel asynchronous com-
position is equivalent to the interleaving semantics. This
composition allows only one process to execute one atomic
action in each step [12]. A restricted system is a closed sys-
tem. There is no interaction between the system and its
environment [12]. We are interested in proving the correct-
ness of a parameterized systems described by (1).

In this paper we follow a similar notation to that used
by Abadi and Lamport [1] for describing systems. Each
system, which can be composed of one or more processes,
is represented by its specification Q(N) = 〈Σ, F,N , L〉. Σ
is the state space of the specification, F ⊆ Σ is the set of
initial states, N ⊆ Σ × Σ is the next state relation, and L

is the liveness property defined over Σ. Property L can be
evaluated only on infinite sequences of states.

The state space Σ is defined by the domains of the vari-
ables in the system. The set V of the system variables is
given by Vg ∪

⋃
i∈1..N

VL(i) ∪ {sv[i] | i ∈ 1..N}. The set Vg

of global variables is a fixed set of variables observable to
all processes. Set VL(i) are the local variables of process i,
which only process i can read or modify. Finally, sv[i] is the
shared variable of process i that any process in the system
can read but only process i can modify.

The next state relation is defined using a set of atomic
actions A. Each action α is described as the conjunction
of its precondition and its effect α = prec(α) ∧ eff(α). The
precondition (or enable condition) prec(α) is a proposition
over the system variables. The effect part eff(α) describes
the values of all system variables in the next state s′, as a
function of the current state s. More specifically, it can be
considered the conjunct of ǫ(α)∧unch(α). In the last formula
ǫ(α) is a boolean combination of predicates of the form m′ =
g(s), and unch(α) is the conjunction of predicates of the
form m′ = m. A predicate m′ = m of unch(α) specifies that
variable m never changes value when α is executed. We
say that an action “reads” a variable n, when n appears in
expression g(s) of a predicate m′ = g(s) of ǫ(α). An action
“modifies”or“writes”a variable m, when there is a predicate
m′ = g(s) in ǫ(α) and g(s) 6= m. This classification is based
on the syntax and can be performed by static analysis.

A state pair 〈s, s′〉 ∈ N , if and only if there exists α ∈ A,
such that prec(α) is true for s and the pair of states 〈s, s′〉
satisfies eff(α). We assume there is a stuttering step τ ∈ A

and for all states s ∈ Σ, 〈s, s〉 belongs to N .
The liveness property L is a restriction imposed on the

infinite behaviors of the system. It may include the con-
junction of strong and weak fairness properties specified on
some of the actions in A. We use W and S to represent
the sets of actions with weak and strong fairness properties

respectively. Then L
∆

=
∧

α∈W wf(α) ∧
∧

α∈S sf(α). The

1The ids of the processes are used only for naming conve-
nience. No comparison is allowed between the ids. If a
system uses relations on ids, we can abstract the result of
the relation during the preprocessing step (Section 3).

weak and strong fairness properties are defined as

wf(α)
∆

= (✷✸¬prec(α)) ∨ (✷✸ (〈eff(α)〉))

sf(α)
∆

= (✸✷¬prec(α)) ∨ (✷✸ (〈eff(α)〉))

The expression 〈eff(α)〉 evaluates to true when action α is
executed and the system’s state changes [17]. Therefore, for
a pair of states 〈s, s′〉, it holds 〈s, s′〉 |= 〈eff(α)〉 ⇔ 〈s, s′〉 |=
eff(α) ∧ s′ 6= s.

A sequence σ = s0, s1, ... of states, with σ ∈ Σω, is a
behavior (or computation) of Q(N) if σ satisfies the specifi-
cation Q(N) = 〈Σ, F,N , L〉. More specifically, it must hold
that s0 ∈ F , ∀i ≥ 0 : 〈si, si+1〉 ∈ N , and σ |= L.

We use this operator |= to denote that a predicate is valid
for a state or a set of states. We extend its usage to tempo-
ral properties and sequences or sets of sequences. When a
specification is used at the LHS and a temporal formula at
the RHS, the temporal formula is valid for all behaviors of
the specification.

Each variable of the set {sv[j]|j ∈ 1..N} is called a“shared
variable”. We use FS to denote the domain of each shared
variable, which is a finite set. The expression [1..N → FS]
represents the domain of all shared variables. We denote the
set of all variables other than the shared variables as Vnsv,

i.e., Vnsv
∆

= Vg ∪
⋃

i∈1..N
VL(i). Besides the set of shared

variables, the system can have a finite set Vg of variables
that are observable to all processes. The cardinality of this
set must be independent of N . Therefore, the variables in Vg

are not preventing the application of the network invariant
method and do not need to be abstracted. We consider
these variables as elements of Vnsv and we restrict the usage
of the term “shared variable” only for an element of the set
{sv[j]|j ∈ 1..N}.

If one action α can be obtained from another action β by
replacing any appearance of one shared variable sv[k] with
another shared variable sv[j], then α and β are called syn-
tactically equivalent. A formal description of this relation is
given in Section 4.2.

We now present the assumptions on the systems we con-
sider and then elaborate on the reasons for making these
assumptions and their implications.

Λ1. Actions can either read or write at most one shared
variable in each atomic step.

Λ2. Each shared variable is a single-writer multi-reader
variable. More specifically,

∀j ∈ 1..N : sv[j] can be written only by process j

Λ3. The preconditions of the actions do not depend on the
values of the shared variables. Therefore, reading or
writing a shared variable can only be done by the effect
part of an action.

Λ4. There is no pair of actions that are not syntactically
equivalent and have the same effect at same state.
More specifically, if α ∈ W ∪ S, then for any action β

with β 6= α:

∀〈s, s′〉 ∈ N : 〈s, s′〉 6|= ( 〈eff(α)〉 ∧ 〈eff(β)〉 )



Symbol Definition

cf(α) constant fairness condition of action α

eff(α) the effect of an action α; it defines the next state values of the system variables

F set of initial states of a system

FS the finite set which is the domain of each shared variable, i.e., ∀i ∈ 1..N : sv[i] ∈ FS

H a state predicate expressed over the variables in Vg ∪
⋃

i∈1..N
VL(i) ∪ {sv[i]|i ∈ 1..N}; the correctness

property we target is of the form ✸✷H → ✸✷J

I the network invariant generated during control abstraction

J a state predicate expressed over the variables in Vg ∪VL(1) ∪{sv[1]}; the correctness property we target
is of the form ✸✷H → ✸✷J

L liveness condition of a system; evaluated only on infinite sequences

N number of processes in the system

N next state relation of a system; 〈s1, s2〉 ∈ N ⇔ (∃a ∈ A : 〈s1, s2〉 |= a), where A is the set of actions

P (j, N) a process with id = j and N observable shared variables

prec(α) the precondition or enable condition of an action α

Q(N) parameterized system which is the input to our abstraction technique

Qa(N) the system obtained after applying the abstraction technique; it has N process and two observable
shared variables

S set of actions with strong fairness conditions

sf(α) strong fairness condition of action α

sv[j] one shared variable of the system; only process j can modify this variable but all processes can read it

Vg the set of global variables that any process can read and modify. This set has a fixed size.

VL(i) the set of local variables of process i, which all processes other than i cannot read or modify

Vnsv the set of all variables of the system excluding the shared variables, i.e, Vnsv
∆

= Vg ∪
⋃

i∈1..N
VL(i)

Vsv

∆

= {sv[j]|j ∈ 2..N} the shared variables which are not modified by process 1; all the variables in this
set are not present in the abstract system

W set of actions with weak fairness conditions

wf(α) weak fairness condition of action α

ΠV (s) projection of the state s on the set of variables (or variable) V

Σ state space of a system

ϕ the correctness property after the application of the preprocessing step; for self-stabilizing systems it
is equal to ✸✷J

Table 1: Definition of Commonly Used Symbols

We believe that the above constraints are common among
many applications. Restriction Λ1 specifies the low-atomicity
constraint. Restriction Λ2 specifies ownership of the vari-
ables by the processes. Restriction Λ3 has been used in other
works ([18], Chapter 9). This restriction is based on the fact
that reading a non-local variable is a more expensive oper-
ation than reading a local variable and, therefore, should
be an atomic action. The decision of a process to execute
an action should be based on local variables only. Conse-
quently, shared variables should be copied to local variables
before their value is used in the precondition of an action.
Note that process j can maintain a local copy of sv[j] and
because of restriction Λ2 the copy can be always equal to
the value of the shared variable. The intuition behind Λ4
is that any transition other than the stuttering step can be
caused by only one action. However, syntactically equiva-
lent actions are not restricted by Λ4. Most systems with a
program counter for each process satisfy the Λ4 restriction.
More specifically, if each instruction has a different succes-
sor, the effect of each action of one process is distinct. Since
the program counter is a local variable of each process, the
effect of each action cannot be simulated by an action of
a different process. The restrictions Λ1-Λ4 do not need to

hold for the fixed set of global variables in Vg. Therefore,
we can have a fixed finite set of multi-writer variables.

We assume that the correctness property is given in the
form ✸✷H → ✸✷J . This type of condition is very common
as a subgoal for self-stabilizing systems. For these systems it
usually states that once the environment of a process satis-
fies a specific persistence condition (✸✷H), the process must
satisfy a persistence condition (✸✷J). We consider process 1
to be the special process that must satisfy ✸✷J . Therefore,
J is expressed over the variables in Vg ∪ VL(1) ∪ {sv[1]}.

3. OVERVIEW OF OUR APPROACH

In this section we provide a general methodology for prov-
ing the correctness of parameterized self-stabilizing systems.
It consists of three main steps.

1. Preprocessing: Transform the system to a closed sys-
tem of N processes, in which the domains of all vari-
ables are finite. Simplify the correctness property from
✸✷H → ✸✷J to ✸✷J , by transforming the system to
a system that satisfies ✷H.

2. Enabling control abstraction: Reduce the observable
state space to a finite number of variables (Section 4).



3. Applying control abstraction: Develop process I that
can be used as a network invariant. Use model-checking
to verify that I is a correct network invariant for the
system.

During the preprocessing step, data abstraction [13] can be
used to reduce the domains of the variables to finite do-
mains. Moreover, we proved that the correctness property of
a self-stabilizing system can be simplified to ✸✷J by trans-
forming the parameterized system to a system that always
satisfies H. This is because ✸✷H → ✸✷J is equivalent to
✷H → ✸✷J for systems whose set of initial states is a su-
perset of the states that satisfy H. Self-stabilizing systems
satisfy this condition, as their set of initial states is the set
of reachable states (Section 1). Moreover, we can transform
the system to always satisfy H by restricting its set of initial
states to the set of states that satisfy H and its next state

relation N to N̆
∆

= {〈s, s′〉 ∈ N | s′ |= H}. The correctness
property of the new system is the persistence property ✸✷J ,
which is expressed over the variables in Vg ∪ VL(1) ∪ {sv[1]}
(Section 2). Moreover, the system maintains the property
that all reachable states are initial states.

During the control abstraction step, the network invariant
I needs to satisfy the following properties

P (id, 2) ⊑M I (2)

(I||I) ⊑M I (3)

where the operator ⊑M stands for modular abstraction2.
In (2) P (id, 2) is a generic process, i.e., a process with a
symbolic value (id) as an id. This check is equivalent to
∀j ∈ 2..N : (P (j, 2) ⊑M I). Note that after the enabling
control abstraction step the observable state space is finite
and verifying (2) and (3) can be done automatically (by
using model checking). More on this abstraction method
can be found in the literature [16, 12, 14]. After the step
of control abstraction we verify that (P (1, 2)‖I) |= ϕ using
model-checking. If (P (1, 2)‖I) satisfies ϕ, then Q(N) |= ϕ

for all N .
In this paper we focus on the second step that enables

control abstraction. In the next section we describe the pro-
posed abstraction technique in detail.

4. REDUCINGOBSERVABLE STATE SPACE

In this section we describe the technique for reducing ob-
servable state space to a fixed finite set. This reduction
enables the method of network invariants, i.e., control ab-
straction, to abstract the state space of N processes.

The correctness property ϕ does not have to be a persis-
tence property. However, ϕ must be an LTL property that
is expressed over variables in Vg ∪ VL(1) ∪ {sv[1]} and in
which the only temporal operators are ✷ and ✸. Note that
for self-stabilizing systems the preprocessing step produces
this type of correctness property and, therefore, enables the
application of the method described in this section.

Let Vsv be the set of the shared variables, whose owners

2If A ⊑M B, then for any environment all observable com-
putations of A are observable computations of B. The en-
vironment can change any of the variables A and B do not
own [12].

are the processes P (2, N) to P (N, N), i.e.,

Vsv

∆

= {sv[j]|j ∈ 2..N}

The purpose of this step is to replace these variables with
an abstract variable sva[2] (Figure 1). The idea behind
this transformation is that because of the low-atomicity con-
straint (Λ1) only one variable of Vsv can be read or written
by any action. Therefore, before the action is executed only
one shared variable and its value are important. Hence, in-
stead of N−1 shared variables, we need only one (sva[2]) by
giving the system the ability to write the value of any local
copy of the variables Vsv to it. In Figure 2 an example of
the application of the transformation is shown. In the next
section we formally define the transformation and prove its
soundness.

4.1 Obtaining Abstract System

We denote the specification of the abstract system pro-
duced as Qa(N) = 〈Σa, Fa,Na, La〉 and the concrete system
as Q(N) = 〈Σ, F,N , L〉. Below, we describe how each of the
components of Qa(N) can be obtained from the correspond-
ing components of Q(N).

State space: The only change in the state space is that
the shared variables sv ∈ [1..N → FS] are replaced by sva ∈
[1..2 → FS]. Let Σ be expressed as Σ = Σnsv× [1..N → FS],
where Σnsv is the state space of all variables except sv. Then
we can formally define Σa as Σa = Σnsv × [1..2 → FS]. We
denote sva the variables in [1..2 → FS].

Next state relation: The next state relation Na of Qa(N)
is defined by a new set of actions Ã. We derive Ã from some
newly defined actions and the Q(N) actions. The following
steps describe how we obtain Ã, which initially is an empty
set.

T0 For each value j ∈ 2..N , we define and add to Ã an
action αj of the form

αj
∆

= ∧ sva[2]′ = l[j]
∧ UNCHANGED〈all other variables〉

where l[j] is the local copy of the shared variable sv[j]
that process P (j, N) maintains. The precondition of
αj is True in all states and its effect is to change sva[2]
to a new value in FS. All other variables remain un-
changed. Each αj action is owned by process P (j, N).

T1 For any action α ∈ A that does not read or write any
of the variables in Vsv, we create α̃ by replacing all
conjuncts sv[j]′ = sv[j] for all j ∈ 2..N with sva[2]′ =
sva[2]. Then Ã := Ã ∪ {α̃}.

T2 For any action α ∈ A that reads variable sv[j], with
sv[j] ∈ Vsv, we replace all occurrences of sv[j] with
sva[2]. Moreover, we replace all conjuncts of the form
sv[j]′ = sv[j] with sva[2]′ = sva[2] and obtain α̃. Then
we add α̃ to the set of actions Ã, i.e., Ã := Ã ∪ {α̃}.

T3 For any action α ∈ A that writes to variable sv[j],
with sv[j] ∈ Vsv, we replace all occurrences of sv[j]′

with sva[2]′. In addition, we remove all conjuncts of
the form sv[k]′ = sv[k] for all k 6= j and obtain α̃.
Then we add α̃ to Ã, i.e., Ã := Ã ∪ {α̃}.
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Figure 1: Left is the process graph before the transformation. Each process writes to its own shared variable

and reads the shared variables of all other processes. For clarity the read edges of only P (1, N) and P (k, N)
are shown. The processes do not need to read their own shared variable as they maintain a local copy of its

value. The right part represents the system after the transformation. Only two shared variables exist in the

system sva[1] and sva[2].

Steps T1–T3 are executed for P (1, N) and P (id, N)3 sepa-
rately. The owners of the actions created by rules T1–T3 are
the owners of the original actions. Note that there are no
actions in A that read more than one element of Vsv or read
and modify elements of Vsv because of restriction Λ1. Con-
sequently, any action in A is handled by one of the T1–T3
cases.

Initial states: The set of initial states Fa is formally de-
fined by4

Fa
∆

= { t0 | ∃s0 ∈ Fc : ∧ ΠVnsv∪{sv[1]}(s0) = ΠVnsv∪{sva[1]}(t0)

∧ ∃j ∈ 2..N : Πl[j](s0) = Πsva[2](t0) }

Set Fa is given by the projection of the initial states in Fc

on the variables Vnsv ∪ {sv[1]} and the variable sva[2] set
equal to one of the local copies of the variables in Vsv.

Liveness conditions: Based on the rule and actions used to
define an action α̃, its weak or strong fairness properties are
specified. In some cases the same action α̃ can be generated
by more than one Q(N)-actions using rule T2. Therefore,
we consider each α̃ to be constructed from a set of actions
As ⊂ A. For any action α̃ the fairness property added to
La is the strongest property specified for any action in As.
More formally, if α̃ can be constructed from any α ∈ As

using one of the rules T1–T3, then

As ∩ S 6= ∅ ⇔ α̃ ∈ S̃

(As ∩W 6= ∅) ∧ (As ∩ S = ∅) ⇔ α̃ ∈ W̃

Besides the strong and weak fairness conditions on actions,
we specify some liveness conditions related to constants. Let
Nl be the minimum number of neighbors of process 1 and
FS the domain of the shared variables. Then suppose that
for any N ≥ Nl and for all behaviors of Q(N), there exists
k ∈ 2..N and vk ∈ FS, such that it holds ✷(sv[k] = vk). If
there exists an action α ∈ W, reading sv[k], then we define
condition c(e, e′, vk) obtained from 〈eff(α)〉 by replacing each
occurrence of sv[k] with the value vk. We define constraint

cf(α)
∆

= ✷✸¬prec(α) ∨ ✷✸c(e, e′, vk)

3Process P (id, N) is a generic process representing all pro-
cesses P (j, N) with j ∈ 2..N .
4Operator ΠV (s) denotes projection of state s on the vari-
ables in V (Table 1).

For an action α ∈ S accessing sv[k], the corresponding con-
straint will be

cf(α)
∆

= ✸✷¬prec(α) ∨ ✷✸c(e, e′, vk)

Note that index k does not need to be the same for all be-
haviors. If the fairness properties are specified on a set of
syntactically equivalent read actions that are defined for all
i ∈ 2..N , the existence of a constant value in Vsv for all
behaviors of Q(N) is sufficient for creating the constraint.
We denote as C the set of the actions from which constant
fairness conditions are generated. Then La can be expressed
as

La =
∧

α̃∈W̃

wf(α̃) ∧
∧

α̃∈S̃

sf(α̃) ∧
∧

α∈C

cf(α)

The property ϕ is not changed, because it is expressed
over the variables in Vg ∪ VL(1) ∪ {sv[1]}, which are present
in both systems.

The following theorem states that the abstraction tech-
nique is sound.

Theorem 1. For any N ≥ 2, if Qa(N) |= ϕ, then Q(N) |=
ϕ.

Proof sketch: The proof is based on the theory of re-
finement mappings [1]. We augment system Q(N) with a
prophecy variable5 π ∈ 2..N to obtain system Q(N)π. The
prophecy variable π holds the index of the next shared vari-
able in Vsv that will be read or written. The initial value of
π can be any element of 2..N . We add one more action απ

that is always enabled and changes π to any of the values
in 2..N . Action απ leaves all other variables of the sys-
tem unchanged. All other actions of the new system do not
modify π. Actions that read or modify variable sv[j] ∈ Vsv

are guarded by condition π = j. The new system Q(N)π

has equivalent liveness conditions to the liveness conditions

5A history variable is a variable that records past informa-
tion and does not affect the behavior of the system. A
prophecy variable is similar to a history variable, but in-
stead of recording past information, it predicts future infor-
mation. The system with the prophecy variables has at least
as many behaviors as the original system. However, some
non-deterministic decisions are made earlier and their result
is recorded in the prophecy variable.



Actions of P (i, N) for all i ∈ 1..N

There are N − 1 syntactically

equivalent x actions for each process,

one for each neighbor.

∃j ∈ {1..N} − {i} : x(j)
∆

= lc[i]′ = sv[j]
The y action writes to sv[i] and maintains

a copy of the value in l[i].

y
∆

=∧ lc[i] 6= 1
∧ sv[i]′ = lc[i]
∧ l[i]′ = lc[i]

Actions of P (1, 2)

x
∆

= lc[1]′ = sva[2]

y
∆

=∧ lc[1] 6= 1
∧ sva[1]′ = lc[1]
∧ l[1]′ = lc[1]

Actions of P (i, 2) for all i ∈ 2..N

∃j ∈ 1..2 : x(j)
∆

= lc[i]′ = sva[j]

y
∆

=∧ lc[i] 6= 1
∧ sva[2]′ = lc[i]
∧ l[i]′ = lc[i]

αi
∆

= sva[2]′ = l[i]

[Initial state ]
Process.action

−→ New value(s)








l[1] = sv[1] = 1
l[2] = sv[2] = 1
l[3] = sv[3] = 0
l[4] = sv[4] = 1









P (1).x(4)
−→ lc[1] = 1

P (2).x(3)
−→ lc[2] = 0

P (2).y
−→ sv[2] = 0

P (1).x(2)
−→ lc[1] = 0

P (1).y
−→ sv[1] = 0

[

sva[1] = 1
sva[2] = 1

] α4−→ sva[2] = 1
P (1).x
−→ lc[1] = 1

α3−→ sva[2] = 0
P (2).x(2)

−→ lc[2] = 0
P (2).y
−→ sva[2] = 0

P (1).x
−→

lc[1] = 0
P (1).y
−→ sva[1] = 0

Figure 2: This is an example of the application of the transformation. Upper left figure shows the actions of

Q(N). Upper right figure shows the actions of Qa(N). For simplicity the part of each action specifying the

variables left unchanged is not shown. For P (id, N) actions x are transformed by rule T2, actions y by rule

T3, and actions αi are added because of rule T0. The upper sequence is a behavior segment of the original

system. The bottom sequence is the corresponding behavior segment of the abstract system. The projections

of two behavior segments over the variables in Vnsv ∪{sv[1]} are stuttering equivalent. Only the relevant values

are displayed in the figure.

of Q(N). It is easy to prove then that Q(N)π is a system
obtained from Q(N) by adding a prophecy variable.

Then we define a refinement mapping f from the state
space of Q(N)π to the state space of Qa(N). Let

sc = (e, sv[1], sv[2], ..., sv[N ], π)

be a state of Q(N)π, where e is the projection of the state
on Vnsv. Then

f(sc) = (e, sva[1], sva[2])

where sva[1] = sv[1] and sva[2] = sv[π]. In order for f to
be a valid refinement mapping the following conditions need
to be satisfied [1]:

R1. For each state sc of Q(N)π : ΠVnsv∪{sva[1]}(f(sc)) =
ΠVnsv∪{sv[1]}(sc).

R2. f(F π) ⊆ Fa, where F π is the set of initial states of
Q(N)π.

R3. If 〈sc, tc〉 ∈ N π then 〈f(sc), f(tc)〉 ∈ Na or f(sc) =
f(tc), where N π is the next state relation of Q(N)π.

R4. f(X π) ⊆ La, where X π is the set of computations
specified by Q(N)π.

Properties R1 and R2 hold by construction of Q(N)π and
Qa(N). For R3 we can show that the transition caused
by an action β of Q(N)π, which originated from an ac-
tion α of the original system, can be simulated in the ab-
stract system by a transition using α̃, which is the action
created from α by rules (T1–T3). A transition caused by
απ can be simulated by the transition of an action αj (T0

rule) in the abstract system. Property R4 is the hard-
est to prove. Let f(σπ) 6|= La be a sequence, such that
σπ |= Q(N)π. We show that this can lead to a contra-
diction. Sequence f(σπ) must violate a weak, strong, or
constant fairness property of La. Assume f(σπ) violates the
weak fairness property of action α̃, then there exists action
α in the original system, from which α̃ is obtained, such
that σπ |= ✷✸¬prec(α)∨✷✸〈eff(α)〉. If σπ |= ✷✸¬prec(α),
then we know f(σπ) |= ✷✸¬prec(α̃), since α and α̃ have
the same precondition which is expressed over variables in
Vnsv only (assumption Λ3). Therefore, it must hold that
σπ |= ✷✸〈eff(α)〉. If action α does not read or modify a
variable in Vsv, we know that f(σπ) |= ✷✸〈eff(α̃)〉. Con-
sequently, α must read or modify a shared variable. Then
using assumption Λ4, we can show that 〈eff(α)〉 is infinitely
often satisfied because α or a syntactically equivalent ac-
tion is executed infinitely often. In either case we have that
f(σπ) |= ✷✸〈eff(α̃)〉, which leads to a contradiction. Sim-
ilarly, we can prove that strong and constant fairness con-
ditions of La are satisfied by any sequence f(σπ) with σπ a
behavior of Q(N)π. �

Next section describes sufficient conditions for the com-
pleteness of the abstraction technique.

4.2 Completeness Conditions

In this subsection we present the conditions under which
the proposed abstraction technique is complete.

An important concept is that of syntactically equivalent
actions. Suppose we have two actions α and β of Q(N), then
α ≡se β if and only if α and β belong to the same process



and β can be obtained from α by replacing every instance of
sv[j] with sv[k], where j and k are constants in 2..N . The
relation ≡se is an equivalence relation. All actions of the
same equivalence class are transformed to one action by our
technique.

The following conditions are sufficient for completeness:

C1 Every reachable state of the system is an initial state.

C2 The read actions of the system form equivalence classes,
such that the size of each equivalence class is not bounded
from above as N increases.

C3 The number of processes in the system is not bounded
from above.

C4 For all N1 and N2 with 2 ≤ N1 < N2, the systems
Q(N1) and Q(N2) have the same formula as liveness
constraint, i.e., the liveness constraint is independent
of N .

C5 No read action has a fairness constraint.

If Q(N) is a self-stabilizing system, then C1 is always true.
Conditions C2 and C3 are commonly satisfied by uniform
parameterized systems, in which no process distinguishes a
finite number of its neighbors as special processes. Many
distributed algorithms that read the values of all neighbors
in a loop, which is not an atomic action, satisfy condition
C5. Finally, in many cases condition C4 is satisfied as well.
This is because the environment of process 1 is normally not
constrained by fairness conditions. A fairness constraint on
the environment, i.e., an expectation that the environment
at some point in the future will make a move if some condi-
tions are satisfied, can sometimes be added to the condition
✸✷H of the original condition property (✸✷H → ✸✷J).
Therefore, by increasing the convergence steps we can re-
move some fairness requirements for the environment.

Theorem 2. If C1–C5 hold and Qa(N) 6|= ✸✷J , then
∃K ≥ N : Q(K) 6|= ✸✷J .

Proof. The idea of the proof is to construct a counterex-
ample for some instance of the concrete system using the
counterexample of the abstract system. Since the correct-
ness property is a liveness property, the abstract counterex-
ample is a lasso-shaped sequence, i.e., a cycle and a path
leading from an initial state to a state in the cycle. This cy-
cle represents the infinite part of the counterexample. How-
ever, in our case the correctness property is ✸✷J , and every
state is an initial state (C1). Therefore, we can consider
only the cycle in the counterexample, which satisfies ✷✸¬J .
Using this cycle we can produce a cycle in the concrete state
space, which is a behavior of Q(K) for some K ≥ N .

First, we determine the number of processes K in the
concrete system. Then using induction we show how we can
create a concrete counterexample from the abstract coun-
terexample.

To determine the number K of processes we consider the
reads in the cycle of the abstract counterexample. There
could be a read action α̃ performed by a process j in the ab-
stract counterexample, such that for any k in the equivalence
class of that action α in the concrete system sva[2] 6= sv[k],

i.e., the value, which sva[2] has, is not equal to any value
of the shared variables that process j could read by exe-
cuting action α. Because of condition C3 we can add more
processes in the system; and due to C2, we know that by
increasing the number of processes, we can add at least one
new process m to the equivalence class of the read action of
j. Since any reachable state is an initial state and because
the processes are uniform, we choose sv[m] = sva[2] and a
corresponding valid local state for m. Consequently, we start
from a state s0 in the abstract cycle and for each transition
(si, si+1), we determine whether the action α̃ that caused
the transition is a read action. In case α̃ is a read action, let
[α]se be the equivalence class of actions from which α̃ was
obtained. We make sure that there is at least one process j

with l[j] = sva[2] in si, where l[j] is the local copy of sv[j],
and one action of [α]se reading sv[j]. We repeat this process
until we check all transitions of the cycle. We denote the
number of processes in the system after the procedure as K.
The added processes do not perform any action and, there-
fore, their local states and owned shared variables maintain
the same values. Consequently, we still have a cycle in the
extended state space. Moreover, because of C4 there are no
fairness constraints added that could be violated.

The second step of the proof is to build the concrete coun-
terexample for system Q(K) from the abstract counterex-
ample. We start again from state s0. We create state t0 by
assigning to the local variables, i.e.,

⋃
i∈1..K

VL(i), of the K

processes the same values as in s0. We do the same for the
global variables in Vg. For the shared variables we assign
the values of the local copies, i.e., ∀j ∈ 1..N : sv[j] = l[j].
For every transition (si, si+1) of the abstract system caused
by α̃, we create transition (ti, ti+1) in the concrete system
by executing action α from which α̃ is obtained by rules
T1–T36. If α̃ is obtained from rule T0, we execute the stut-
tering step. The action α determined this way has the same
effect on the local and global variables as α̃. For the shared
variables the effect is the same as the effect on the local
copies. The preconditions of the actions do not depend on
the shared variables and, therefore, if α̃ is enabled in si, α

is enabled in ti.
Since property J is expressed over the variables in Vnsv ∪

{sv[1]} and the projections of the two counterexamples on
these variables are stuttering equivalent sequences, the con-
crete cycle satisfies ✷✸¬J . Actions used in rules T1 and T3
have single corresponding actions in abstract system that
have the same fairness conditions. Therefore, their fairness
conditions are satisfied. Moreover, because of condition C5
the fairness conditions of the read actions cannot be vio-
lated.

Conditions C1–C5 are sufficient to prove completeness,
but not all of them are necessary. For example, C2–C4 are
not needed if the equivalent classes of the read actions in-
clude all elements of sv[1], ..., sv[N ]. In such a case we do
not need to extend the number of processes of the system.

6If α̃ can be obtained from multiple syntactically equivalent
read actions, we choose one of them such that the shared
variable sv[j] read by the chosen action is equal to the sva[2]
value in state si. Because of the extension of the system from
N to K processes such an action always exists.



5. CASE STUDIES

In this section we demonstrate the effectiveness of our
technique on 3 self-stabilizing algorithms: leader-election,
coloring, and spanning-tree construction. These three prob-
lems are often encountered during the design of distributed
embedded systems [3, 19, 15]. We specify the algorithms
and apply our technique using TLA+ [17]. Then we use
the TLC model checker [17], which is based on explicit state
enumeration, to prove the correctness of the algorithm. All
3 examples satisfy the conditions for soundness after the pre-
processing step. The conditions for completeness (C1–C5)
are not necessary, but sufficient for the automated creation
of the concrete counterexample. The examples presented in
the paper do not satisfy C4–C5. Therefore, we cannot ex-
clude the possibility of a spurious counterexample. However,
no counterexample was produced in any of the case studies.
Proving correctness in all 3 examples demonstrates the effec-
tiveness of our approach as a sound abstraction technique.

5.1 Leader Election

For the leader election algorithm ([7],p35) a number of
processes form an arbitrary connected graph. The purpose
of the algorithm is that eventually all processes will agree
that the process with the minimum id in the graph is the
leader. In order to achieve that, each process stores a candi-
date leader and its distance from the leader. Then it reads
the values of all its neighbors. If there is a candidate with id
smaller than its own leader or with the same id and smaller
distance, the process updates its candidate with that value
and its distance by incrementing the read distance by 1. The
update happens only if the distance of the neighbor’s candi-
date is less than a prespecified constant M , which represents
the maximum number of nodes in the graph.

If one of the processes i is initialized with a candidate id
v in variable leader which is smaller than any of the ids
in the graph and any of the other nodes’ candidates, then
v is stored in other neighbors’ leader variable and from
them again to i. However, each time this “floating” id moves
from one node to another, the value of distance increases.
Therefore, eventually distance becomes greater than M for
all nodes and the value v does not appear in the leader

variables of the graph.
For this algorithm we assume that min_id is the smallest

floating id and min_dist is its minimum distance value in
the graph and we prove that eventually always if a node
has min_id as a candidate, the distance will be greater than
min_dist. We use P (1, N) as the special process, but due
to symmetry the proof can be generalized.

This system is not a finite state system because variables
storing candidate leaders and distances take values from an
infinite domain. Therefore, we abstract those variables to
a few values of interest, i.e., {min_id, other_id} for the
candidates and {min_dist, gt_min_dist, any_dist} for the
distance, where gt_min_dist denotes greater than min dis-
tance. We abstract the part of the graph that does not
belong to process 1 and its neighbors and the loop structure
that reads the values of all neighbors. Moreover, we simplify
the correctness condition to ✸✷J , where

J = ∧ candidate[1] = min_id ⇒ distance[1] = gt_min_dist

∧ leader[1] = min_id ⇒ dis[1] = gt_min_dist

After the preprocessing step we are left with a param-
eterized system that is amenable to our technique. The
domain for each process is finite. Each process executes
a low-atomicity algorithm with single-writer, multi-reader
shared variables. Moreover, the preconditions of the actions
depend on the program counter or on local variables. The
usage of the program counter makes the system satisfy Λ4,
as discussed in Section 2. The shared variable for this algo-
rithm is sv[j] = (leader[j], dis[j]). After the application of
our technique the system has a fixed number of observable
variables and is amenable to control abstraction. By per-
forming control abstraction we obtain a finite-state system
with 500,000 states. It took TLC 22 minutes to prove the
correctness of ✷✸J .

5.2 Coloring

We apply our technique on the self-stabilizing coloring
algorithm ([7],p162). The purpose of this algorithm is to
assign a color to each process, such that no two neighbor
processes have the same color. Each process keeps reading
the values of all its neighbors, stores the values of the neigh-
bors with an id greater than its id, and assigns to its color

variable a color that none of the neighbors with a higher id
have.

We want to prove that eventually always a process will
have a color that none of its neighbors with higher ids have,
if eventually always the neighbors with higher ids are silent
processes, i.e., the values of their shared variables are con-
stant. After the preprocessing step we apply our technique
and then control abstraction. TLC requires 1 minute to
prove the desired property with the total number of states
being 26,496.

In one of the actions of the program, a process makes
a call to a function choose() with arguments the set of all
colors except the colors of its neighbors with higher ids. If no
fault occurs or after a process has completed its first actions,
it is guaranteed that the argument passed to choose() has
at least one element. This is because the number of colors
is always greater than the number of neighbors of a node.
However, if we start in a state in which the two sets are
equal, the argument passed to choose() is the empty set.
Therefore, it is important that choose() is able to return
a color if called with the empty set and not crash. In the
paper [8] from which the paragraph in [7] is motivated, the
authors mention that.

5.3 Spanning-Tree Construction

The last example to which we applied our abstraction
technique is Arora’s and Gouda’s low-atomicity spanning-
tree algorithm [2]. In this algorithm, each node stores the
root of the tree and its distance from the root. We assume
that floating root ids have been eliminated, the nodes that
are in distance l − 1 from the root have stabilized, and all
other nodes that have identified the root have distance val-
ues greater or equal to l. Then, using our abstraction tech-
nique and control abstraction, we prove with TLC that the



node P (1, N) at distance l stabilizes. Due to symmetry we
can conclude that all nodes in distance l stabilize. It takes 2
minutes for TLC to prove the property and the total number
of states of the final abstract system is 32,000.

6. CONCLUSIONS

In this paper we have presented an abstraction technique
that enables the use of control abstraction for low-atomicity,
shared-memory self-stabilizing systems that do not have a
fixed number of observable variables for each process. The
technique can be used as part of an abstraction methodology
that includes a preprocessing step and control abstraction.
Although we have developed abstraction techniques that
facilitate the preprocessing and control abstraction steps
for self-stabilizing systems, these techniques are beyond the
scope of this paper. We consider the proposed abstraction
technique to be a critical step in an abstraction methodology
for the verification of parameterized self-stabilizing systems,
because it is required if control abstraction is to be applied
to the examples we have studied in this paper.
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