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Abstract—In the past, dynamic voltage and frequency scaling (DVFS)
has been widely used for power and energy optimization in embedded
system design. As thermal issues become increasingly prominent, we pro-
pose design-time thermal optimization techniques for embedded systems.
By carefully planning DVFS at design time, our techniques proactively
optimize system thermal profile, prevent run-time thermal emergencies,
minimize cooling costs, and optimize system performance. To the best of
our knowledge, this is the first work addressing embedded system design-
time thermal optimization using DVFS. We formulate minimization of
application peak temperature in the presence of real-time constraints as
a nonlinear programming problem. This provides a powerful framework
for system designers to determine a proper thermal solution and
provide a lower bound on the minimum temperature achievable by
DVES. Furthermore, we examine the differences between optimal energy
solutions and optimal peak temperature solutions. Experimental results
indicate that optimizing energy consumption can lead to unnecessarily
high temperature. Finally, we propose a thermal-constrained energy
optimization procedure to minimize system energy consumption under a
constraint on peak temperature.

I. INTRODUCTION

Multiprocessor or multi-core architectures are popular in complex
embedded systems, which range from mobile consumer electronics
to high-performance game consoles. With the technology evolution,
the demand for increased performance and reduced size leads to
increasing power density and temperature [1]. Chip temperature has
significant impact on performance, reliability, power consumption,
as well as cooling and packaging costs. Thermal-aware design is
difficult. Designing a chip and package for the worst-case power
consumption scenario may be prohibitively expensive. Therefore,
most real cooling solutions are designed for the Thermal Design
Power (TDP), which is usually less than 15% of the worst case power
consumption [2]. Thanks to material heat capacity, the processor can
safely consume more power than the TDP for a brief period of time.
However, if the TDP is exceeded for an extended period of time, the
chip temperature may reach a dangerous level, triggering a sensor-
driven hardware mechanism to reduce power consumption. These
techniques are known as Dynamic Thermal Management (DTM),
which mainly consists of fetch toggling [3], DVFES [4], and activity
migration [5]. In the future, the discrepancy between TDP and the
worst case value will increase and DTM will be widely used.

Although DTM techniques can bound chip temperature at the cost
of some run-time performance degradation, there is not yet a clear
way to choose a proper TDP for an embedded system at design time,
even though application execution patterns and real-time constraints
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are already known. The TDP of a DVFS-enabled processor for
worst-case general-purpose applications may be too pessimistic for
a specific embedded system design, leading to unnecessarily-high
cooling costs. If the thermal solution is fixed, design-time thermal
optimization can be used to reduce the operating temperature. Most
failure processes, e.g., electro-migration, thermal cycling, time depen-
dent dielectric breakdown, and stress migration depend exponentially
on temperature [6]. Hence, embedded system reliability can also
benefit from reduced operating temperature. Run-time DTM and
design time optimization techniques should be combined to optimize
embedded system performance and reliability.

There is a large body of work on using DVFS in single and
multiple processor systems to minimize energy consumption [7]-
[9]. However, previous work adopted temperature-independent power
models, which will result in large leakage energy estimation errors
in future deep submicron processors. Minimizing energy is the
primary objective in previous work. Several temperature-dependent
leakage power and thermal modeling approaches have been proposed
at the micro-architecture level [10],[11]. However, neither thermal
optimization issues nor voltage selection under real-time constraints
were considered. Recently, Hung et al. proposed a thermal-aware
embedded system synthesis framework by task mapping and schedul-
ing [12]. Paci et al. demonstrated that temperature-aware design is not
critical for ultra low power (less than 3 W) multiprocessor systems-
on-a-chip [13] although it is important for systems with high power
consumptions.

We consider the problem of task voltage selection under real-
time constraints with a number of optimizing objectives: energy op-
timization (EO), thermal optimization (TO), and thermal constrained
energy optimization (TCEO). Our optimization framework is shown
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in Figure 1. To our best knowledge, this is the first article to
present a design-time optimization technique for real-time embedded
systems that makes use of dynamic voltage and frequency scaling
(DVFS) to minimize peak temperature. It should be noted that our
method is general and can be used for high-performance as well
as low-power systems. The problem can be solved by nonlinear
programming [14]. The solution to this problem provides a lower
bound on the minimum peak temperature that can be achieved by
DVEFS. Hence, it provides a reference for designers when determining
a temperature constraint for use in optimization, e.g., temperature
constrained energy minimization. We compare the proposed method
with traditional energy optimization method and show that the
results differ, i.e., the optimal energy solution does not generally
have optimal temperature. However, the optimal temperature solution
can be achieved with little energy overhead. When both energy
and thermal metrics are considered in specific embedded systems,
designers must choose a tradeoff between them. Finally, we present
a temperature-constrained energy optimization formulation that may
be used to avoid unnecessarily high temperature resulting from
traditional energy optimizing procedures.

The paper is organized as follows. First, thermal-conscious system-
level models are described in Section II. Thermal, energy, and
temperature-constrained energy optimizing problems are formulated
in Section III. Finally, experimental results are reported in Sec-
tion IV.

II. MODELING METHODOLOGY

This section presents a modeling methodology for system-level
energy and temperature analysis.

ILA. System Model

Multiprocessor system models can be placed in two categories:
hardware and software. In this paper, hardware models specify
multiprocessor systems consisting of various processing elements
(PEs) such as microprocessors, DSPs, field programmable gate arrays
(FPGAs), and application-specific integrated circuits (ASICs). PEs
may support DVFS and are typically connected by communication
units (CUs). When PEs exchange data, the CU in use consumes
energy and introduces delay. We denote the set of PE with ¥ and
the set of CUs with I'. We assume that a PE consists of m functional
units, F'U;, j € 1,2,---,m. The switched capacitance and leakage
current for a functional unit in the presence of a particular input
pattern, voltage, and temperature are cp; and ip,;. VP € P, six
PE-related parameters are known:

o fmax is the peak operating frequency,

o Vmax 1s the maximal operating voltage,

o Vmin is the minimal operating voltage,

o Cpg = [Cusy *+ »Cfun|" is the capacitance vector,

o Ipg = [ifu;, " »ifu,]" is the leakage current vector, and

e Rppg is the thermal resistance matrix.

In software models, real-time applications on multiprocessor
systems are often represented by task graphs, G = (V,E),
which are directed acyclic graphs composed of sets of N
vertices V. = (vs,ve,...vn) and sets of edges, E =
{(vi, v;)|an edge exists between v; and v;}. As Figure 1 shows,
each vertex, v;, denotes a specific task, and each edge, (v;,v;),
represents a precedence relationship between two tasks. A deadline,
dl?, is associated with each leaf node, v;. We denote the set or all

TABLE 1
LEAKAGE MODEL PARAMETERS FOR LOGIC AND MEMORY CIRCUITS

Benchmark A (x10~%) el B — B (x107%) i
c5315 5.406 1127.0 1669.5 2223.7 6.597 5.691
c6288 5.447 1122.7 1670.1 22229 6.770 5.692
c7552 5.467 11225 1671.0 22238 6.769 5.692
16Kx32 2.867 11774 1593.1 2162.7 20.037 5.687

64Kx32 2.835 1177.6  1592.0 2161.5 20.325 5.687
2Mx32 2.824 11777 1591.6 2161.2 20.422 5.687

leaf nodes as A. The communication between tasks is modeled as a
special task executed by a CU. Communication volumes are provided
by the system-level synthesis framework. It should be noted that
another type of precedence relationship may be introduced by task
mapping and scheduling. Those constraints are recorded in the edge

set, E':
E = {(ui,uj) } (1)

The set of all edges is denoted with ¥ = E U E’. A functional
unit’s switching probability for a given task is 8, which indicates
the average percentage of transistors switching per cycle. The effect
of the input vector effect on leakage current is represented by wys; .
Vv; € V, three technology parameters are defined:

v; and v; use the same PE or

v; and v; use the same CU

e EC is the task duration in cycles,
o« ® = [0, ,07,]" is the switching probability vector, and
o Q= [W,, W] is the leakage factor vector.

II.B. Power and Delay Model

In this section we derive the temperature dependent power model
for DVFS-enabled PEs. The functional unit F'U;’s dynamic power
consumption, p s, ;> can be calculated using the following formula [7]:

Pdfu; = 0fu], Cfu, dedf (2)

where f is the processor operating frequency and V4 is the supply
voltage.

In the near future, subthreshold leakage and gate leakage will be
the dominant types of leakage current [1]. The fundamental leakage
current formulas for CMOS devices [10],[15],[16] can be used to
derive an expression for functional unit leakage power:

aVya+BVys+v
T

Pipy; = Vaawruife, (AT e +BeVi)y  (3)

where A, B, «, 3,7, and p are curve-fitting constants that depend
on circuit type, process, and design. Using HSPICE, we simulate
leakage currents for combinational logic circuits [17] and SRAM [18]
benchmarks under different supply voltages, bias voltages, and tem-
peratures in order to extract the leakage constants, which are shown
in Table I. Temperature ranges from 25 °C to 110 °C; supply voltage
ranges from 0.9V to 1.4V; and body bias voltage ranges from 0.0 V
to -0.4 V. Using Equation 3, the average and worst-case leakage
modeling errors are 1.3% and 6%, respectively, i.e., the leakage power
for each functional unit can be accurately estimated. Experimental
results show that leakage constants for different circuits synthesized
using the same standard-cell library are quite similar. Therefore, we
can use general constants to predict leakage for a particular library
and process.

The dependence of a circuit’s delay ¢, and thus operating frequency
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£, upon supply voltage is determined using the following formula [7]:
K

(Vaa — Vin)?

where the constant K is decided by logic depth and process and o

is a measure of velocity saturation.

ffl=t= “

11.C. Thermal Model

According to heat transfer theory, heat flow can be modeled as

follows:
e _ A - pur) ©)

where

o C is an n X n diagonal thermal capacitance matrix,

e A is an n X n thermal conductance matrix,

o« T(t)=[T1 —Ta,To —Ta, - ,Tn — TA]T is the temperature
vector in which T4 is the ambient temperature,

o p=[p1,p2,--- ,pa]" is the power vector, and

o U(t) is a step function.

Note that solving this equation is analogous to RC' circuit analysis.
In steady-state thermal analysis, one estimates the thermal profile as
time proceeds to infinity. Therefore, we can denote lim;_,is T(t) as
T, allowing Equation 5 to be simplified as follows:

ail a2 Q1n

a1 a2 a2n
P=AxT= x T

an1 an?2 Ann

We denote the inversion of thermal conductance matrix A as R, the
thermal resistance matrix. In multiprocessor systems, each PE may
have a different cooling configuration and there are no direct heat
transfer channels among PEs. The thermal resistance matrix Rpg
for each PE can be extracted automatically [19],[20]. In system-
level optimization, estimation accuracy and speed are both essential.
In the proposed approach, one thermal element is used for each
functional unit. Therefore, it is straightforward to obtain the power
vector p = [(pifu; +Pdfu)s s (Pifu, + Pasu,)]” - However, if more
accurate thermal profiles are needed, fine-grained thermal analysis
can be used [19],[20].

II.D. Iterative Modeling

Given initial dynamic and static power consumptions, each pro-
cessor converges to a steady-state temperature under specific cooling
and leakage model conditions. The temperature of a PE varies greatly
depending on the currently-executing task. Therefore, traditional
approaches lead to large estimation errors, which may result in sub-
optimal voltage selection. We propose an accurate iterative algorithm
to calculate the steady-state temperature and power consumption.
Lines 2-11 of Algorithm 1 show the iterative power and temperature
calculation algorithm. Lines 3-6 calculate the dynamic and leakage
power for each functional unit. Lines 7-10 do thermal analysis and
update the steady-state temperature vector. The constant, 7, is a user-
defined integer specifying iteration count. In our experiments, the
processor power vector p” and steady-state temperature vector T
converged with less than 0.1% iteration-to-iteration variation after
four iterations.

Algorithm 1 power_thermal_iter(p°, T° )

1: Set initial temperature vector T?

2: for j =0 ton do

3:  for each functional unit F'U, in a PE do

4: pf#% = calculate_dyn(0f.,, , Cfu, » Vaa) .
5: pffu" = calculate_leak(wpy, , ifu, > Vads Vbs:T;u")
6: end for

7:  for each functional unit F'U, in a PE do

8: TJZJZI = calculate_temp(p? ,Rpg)

9: Update temperature for functional unit ¥'U,
10:  end for
11: end for

12: Output temperature T" and power consumption p”

III. FORMULATION

This section describes three voltage selection formulations based
on thermal-conscious system models.

III.A. Problem Formulation

We have developed a system-level synthesis infrastructure [21] and
use it to generate assignments and schedules. In this section we will
focus on the voltage selection problem. The supply voltage vector,
v, for the task set should be optimized. Hence, the voltage selection
problem can be expressed as follows:

Minimize Eio:(v) of Tmax(v)

fpower,delay,temp (V) = 0

Gtiming,temp (V) S 0

subject to

and

The objective is to minimize either total energy, Eto:(v), or max-
imum temperature, Tmax(v), during the execution of a task set on
the embedded system, subject to constraints on other functions of
voltages v. The non-linear equality constraints are derived from
the power, thermal, and delay models in Section II. The inequality
constraints describe the linear real-time constraints and an optional
temperature constraint. Therefore, the problem may be formulated as
a nonlinear programming problem and solved by either interior-point
or active-set methods [14].

II1.B. Thermal Optimization (TO)

The formulation of the temperature optimization problem under
real-time constraints follows:

Minimize max(T"()

cl ezec' = ECY/f

c2 p", T" = power_thermal_iter (p°, T°)
c3 start’ + exec’ < start’, I(vi,v;) € Y
c4 start® + ezect < dli, dv; € A

c5 start’ >0

c6 Vig™ < Vig < Vg

The optimization variables for this problem are the task execution
times exec’, the task start times start’, and the operating voltages
V},;. The optimization objective is to minimize the maximum tem-
perature of all tasks. For each task, constraint ¢/ is based on the
delay model, which indicates the relationship between execution time
and supply voltage. Constraint c2 describes the iterative relationship
between power and temperature. It is determined with Algorithm 1.
Constraint ¢3 gives the task set’s precedence relationships, which are
introduced by data dependencies and resource conflicts. Constraint
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¢4 enforces task deadlines. Constraint ¢5 and ¢6 bound the ranges of
start times and voltages.

II1.C. Energy Optimization (EO)

In this problem variant, the goal is to minimize the total execution
energy of all tasks by controlling processor voltages subject to the
same constraints (c1—c6) described in the previous section.

Minimize 31V Eilm

cl-c6 same as TO in Section III-B

II1.D. Thermal-constrained Energy Optimization (TCEO)

We formulate the temperature-constrained energy optimization
problem under real-time constraints as follows:

Minimize 31V Eim
cl-c6 same as TO in Section III-B
c7 T S Tthres

In this formulation, temperature is used as constraint c¢7 in the nonlin-
ear programming procedure thereby permitting energy consumption
to be minimized while guaranteeing that the threshold temperature is
not violated.

IV. EXPERIMENTS

In this section, we first explain our experimental setups and
then compare the results of embedded system energy optimization
and thermal optimization. Finally, results for temperature-constrained
energy optimization are reported.

IVA. Experimental Setup

A system-level synthesis framework [21] was developed for task
mapping and scheduling of embedded systems. In this work, the
maximum operating voltage and frequency are used. Starting from
these performance-optimized solutions, our nonlinear programming
procedures choose appropriate voltage settings for each task to
optimize energy or temperature metrics under real-time constraints.
The software model is represented by a task graph, which indicates
the data dependencies and real-time constraints of tasks. We use
TGFF [22] to generate task graph sets. All benchmarks are solved
on a 1.4Ghz Centrino™laptop with 768 MB RAM running Linux.
In our experiments, the largest problem can be solved in less than
600 s.

Processor dynamic and leakage power values are taken from
a product datasheet [23]. The technology constants for power
models are extracted based on 65nm predictive technology model
(PTM) [24]. The leakage ratio is approximately 0.3 for a 65nm
process [7]. Different cooling conditions are modeled by the cor-
responding thermal resistances [25], which range from 0.4 °C/W to
1.4°C/W. The thermal resistance matrix, Rpg, is extracted using
thermal analysis tools [19]. According to our HSPICE simulation,
changes in input patterns may result in up to 3x change to leakage
current. Therefore, we set switching probability 67, and leakage
impact factor wy,; for random benchmark to real numbers having
uniform distributions in the ranges (0,1) and (0, 3), respectively. It
should be noted that our formulation is general and independent of
the processor model described in Table II. The processor model used
here is most appropriate for high power density cases, for which
thermal-aware design is important.
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Fig. 2. Energy and power of taskl and task2 as functions of supply voltage.

TABLE 11
EXPERIMENTAL SETUP
Variable Value Variable Value Variable Value
Voltage 0.9-1.4 (V) Cepr 15 (nF) K 0.344 x 1077
Vin 0.244 (V) fmaz 3.46 (Ghz) ipE 2.599 (A)
o 1.2 R 0.8 (°C/W) DL 2 (s)
0 0.6/0.7 w 2.0/0.4 EC 3/3 x10°

1V.B. Energy vs Temperature Optimization

In this section, we will first show that the results of energy
optimization (EO) and temperature optimization (TO) are inconsistent
using a two-task benchmark. Random large-scale benchmarks are
optimally solved to show the generality of the proposed technique.

Considering a special benchmark consisted of two tasks, taskl
and task2, executed in sequence. Task2 has deadline DL. Table II
indicates the execution cycles EC, switching probability #, and
leakage factor w for each task. The energy and power consumption
of each task is given in the following formulas, which are used
iteratively until convergence.

E(V)=P(V)x EC/f

V4BV t+y
T

6)
@)

Based on the real-time deadline, we can obtain the optimal voltage
relationship between taskl and task2.
ECiK ECK — DL
(Vi—=Vw) (Vo —Vu)°

Formulas 6-8 are used to calculate the total energy and power curves
of taskl and task2 as functions of the supply voltage of taskl vi, as
shown in Figure 2. The total energy curve is fairly flat for taskl
supply voltages ranging from 1.1V to 1.26V, the lower and upper
voltage bounds shown in the figure. In this range, the total energy
is within 5% of optimality. In Table III, energy consumption, peak
temperature, peak power, and energy overhead are listed for the
voltages in this range.

As we can see from Figure 2 and Table III the voltages resulting
in minimal energy and minimal peak temperature differ. Explicitly
optimizing peak temperature reduced it by 6 °C with 0.8% energy
overhead.

P(V)=0C.4V>f + Vwi(AT e + Be"V)

(®)

Figure 3 illustrates temperature inconsistency and energy overhead
as functions of thermal resistance between the silicon active layer
and the ambient environment. The inconsistencies increase with
resistance to ambient. The largest temperature difference (up to 15 °C)
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Fig. 3. Energy and thermal optimization inconsistency as a function of
thermal resistance to ambient.
TABLE III
EXPERIMENTAL RESULTS
Optimization Energy | Tpeak | Ppear | Overhead
objective ) X | W (%)
Thermal optimal | 111.7 355 52.1 0.8
Energy minimal 110.8 361 60.2 0.0
Lower bound 115.4 380 83.5 4.2
Upper bound 115.9 366 66.2 4.6

is observed in the poorest cooling conditions (1.4 °C/W) with 1.8%
energy overhead; the same power difference between optimal peak
temperature and optimal energy voltage settings can result in higher
temperature differences under poor cooling conditions.

Figure 4 illustrates the relationship between inconsistency in
temperature and energy optimization and task power profile. The
parameters of Task2 are held constant and the parameters of taskl
are adjusted to change relative contribution of leakage to the total
power consumption. In the high leakage case, the largest temperature
difference (up to 9.2°C) is observed for the case with 0.6% energy
overhead. This can be explained by the fact that higher leakage makes
the power curve change more dramatically as a function of supply
voltage due to stronger power—temperature dependence. Therefore,
the peak power difference and temperature difference become larger
in the high leakage ratio case.

Table III indicates that a voltage assignment consuming nearly
optimal energy can lead to an unnecessarily-high peak temperature.
For example, the lower bound case can result in up to a 25°C
increase in temperature. However, the energy overhead for that case is
only 4.2%. It is well known that the optimal energy-efficient voltage
selection problem in real processors with discrete voltage levels
is NP-hard [9]. Therefore, heuristics are used. However, existing
techniques only optimize energy consumption without considering
temperature. Therefore, they can produce solutions with poor thermal
characteristics, especially for embedded systems with high power
density or poor cooling.

The two-task benchmark demonstrates that the results of thermal
optimization and energy optimization are inconsistent and these
inconsistencies depend on both the thermal resistance to the ambient
and the leakage ratio. We will now determine whether these observa-
tions hold for large benchmarks. Each graph contains between 2 to 66
tasks, which are mapped on a dual-processor platform. The processor
model and task parameters are decided based on the method described
in Section I'V-A.

—&— Energy overhead

—+— Thermal difference )
: &
Q 0,=0.67, ©,=0.54 ;
m @
e 6,20.63, 0,=1.10 e
o 6,=0.60, »,=1.60 1
e 0,=0.56, 0,=2.10 g
T 5r ¢.-0.80, »,=0.90 -
g ) . E
: g
S B
9] >
E | o
© , /B g
[ / Task Parameters E

) R=1.0 C%W, EC=3¢+9, DL=2.1s
lL/ |
5

10 15 20
Leakage ratio in total power of task1 (%)

Fig. 4. Energy and thermal optimization inconsistency as functions of leakage
ratio.

TABLE IV
ENERGY CONSUMPTION UNDER DIFFERENT VS APPROACHES NODES
Energy Trnaz
Benchmark EO TO Overhead | EO TO  Reduction

(J) () (%) (K) (K) (K)

TG1 408 416 2.0 389 375 14
TG2 243655 267737 9.0 365 361 4
TG3 279389 311949 10.4 398 390 8

TG4 747530 845558 11.6 397 379 18.0
Average 8.3 11

As indicated in Table IV, there is a 4-18 °C temperature difference
and a 2%-11.6% energy difference between optimal energy and
optimal temperature solutions; our observations for the two-task case
hold for these large benchmarks. The variation in difference among
benchmarks is due to the randomly-selected task parameters, which
affect the total power consumption and leakage ratio.

We can conclude that optimizing energy without temperature
constraints may result in unnecessarily high temperatures, cooling
costs, and reliability problems. Peak temperature should be explicitly
constrained or optimized when cooling cost or temperature are
important. The simultaneous optimization of energy and temperature
based on a temperature-aware power model will be increasingly
useful in the future as power density increases.

1IV.C. Tradeoff Between Energy and Temperature

In this section, we describe the results of our temperature-
constrained energy optimization method. When temperature-
constrained energy optimization is used, it is important to choose an
appropriate temperature bound. If the bound is too loose, the system
may operate at an unnecessary-high temperature. If it is too tight, it
may not be possible to find a feasible solution or the energy consump-
tion might be increased. In Figure 5 the results of optimizing energy,
optimizing temperature, and optimizing energy under temperature
constraints for benchmark TG1 are shown. The minimal energy point
is determined by the energy optimization procedure. This provides
a lower-bound on the energy consumption for use in temperature-
constrained energy optimization. The lower bound on temperature
point is determined by the temperature optimization procedure. Dif-
ferent solutions between the optimal energy and optimal temperature
solutions are produced by providing different temperature bounds to
the temperature-constrained energy optimization procedure. If 381 K
is the temperature threshold, the optimal energy value 409.1J, which
implies a 8 °C temperature reduction and 0.27% energy overhead
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Fig. 5. Energy vs. peak temperature tradeoffs for the benchmark TGI.
compared with the minimal energy point. Energy increases when
peak temperature is reduced. Therefore, the energy optimization and
peak temperature optimization results provide useful bounds on the
tradeoffs available between energy and temperature.

V. CONCLUSIONS

Design-time thermal optimization is an effective method of re-
ducing the cooling costs and improving the reliability of embedded
systems. This paper has proposed a novel design-time thermal op-
timization framework based on a temperature-aware power model.
Experimental results show that the results of the proposed technique
are inconsistent with traditional energy optimization. We observed
average 11 °C temperature reduction with 8.3% energy overhead. This
underscores the importance of integrating temperature constraints into
energy optimization algorithms. Finally, we proposed a design-time
procedure to optimize energy under a constraint on peak temperature.
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