
Latency Criticality Aware On-Chip Communication

Zheng Li∗, Jie Wu∗, Li Shang†, Robert P. Dick‡, and Yihe Sun∗

∗ Tsinghua National Laboratory for Information Science and Technology, Inst. of Microelectronics,

Tsinghua University, Beijing 100084, China {zheng-li, wujie07}@mails.tsinghua.edu.cn sunyh@tsinghua.edu.cn
† Dept. of Electrical and Computer Engineering, University of Colorado, Boulder, CO 80309, U.S.A li.shang@colorado.edu

‡ Dept. of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, U.S.A dickrp@eecs.umich.edu

Abstract—Packet-switched interconnect fabric is a promising
on-chip communication solution for many-core architectures. It
offers high throughput and excellent scalability for on-chip data
and protocol transactions. The main problem posed by this com-
munication fabric is the potentially-high and nondeterministic
network latency caused by router data buffering and resource
arbitration. This paper describes a new method to minimize on-
chip network latency, which is motivated by the observation that
only a small percentage of on-chip data and protocol traffic is
latency-critical. Existing work focusing on minimizing average
network latency is thus suboptimal. Such techniques expend
most of the design, area, and power overhead accelerating
latency-noncritical traffic for which there is no corresponding
application-level speedup.

We propose run-time techniques that identify latency-critical
traffic by leveraging network data-transaction and protocol
information. Latency-critical traffic is permitted to bypass router
pipeline stages and latency-noncritical traffic. These techniques
are evaluated via a router design that has been implemented using
TSMC 65 nm technology. Detailed network latency simulation
and hardware characterization demonstrate that, for latency-
critical traffic, the proposed solution closely approximates the
ideal interconnect even under heavy load while preserving
throughput for both latency-critical and noncritical traffic.

1. INTRODUCTION AND MOTIVATION

In the past few years, packet-switched interconnect fab-

ric has been adopted in multi-core and many-core archi-

tectures. Several designs, such as TRIPS [1], TILE64 [2],

Larrabee [3], the Cell processor [4], and Intel’s 80-core

prototype chip [5], have used packet-switched interconnect

fabric for global on-chip communication. Leveraging router-

by-router data buffering and resource arbitration, packet-

switched interconnect fabric is capable of flexibly sharing

communication resources among on-chip concurrent traffic

flows, providing high throughput and excellent scalability.

A primary performance concern of packet-switched on-

chip interconnect fabric is its significant and non-deterministic

latency, which has two sources, complex router pipeline and

run-time contention among concurrent traffic flows. A modern

on-chip network is composed of a number of router modules,

which perform functions such as data buffering, resource shar-

ing and arbitration. A canonical input-buffer virtual-channel

router [6] consists of five pipeline stages, including buffer

write and routing (BW and RC), virtual channel allocation

(VA), switch allocation (SA), and switch traversal (ST). In

addition, a link traversal (LT) stage is required to relay

data between two neighboring routers. Furthermore, on-chip

communication resources, i.e., buffers and links, are shared

This paper was supported in part by the National Natural Science Founda-
tion of China (NSFC) under grant #60236020 and the Specialized Research
Fund for the Doctoral Program of Higher Education (SRFDP) #20050003083,
in part by the NSF under awards CCF-0829950, CCF-0702761, CNS-
0347941, and CNS-0720691.

by concurrent traffic flows. Packets belonged to different

traffic flows may compete for these resources, thus introducing

additional and non-deterministic latency. Our study shows that,

in a tiled shared-memory CMP design in which the network

is used to relay L2 cache data traffic, network latency can

account for 73.3% on-chip data access latency (see Section 2).
Researchers have recently proposed a number of high-

throughput low-latency interconnect fabric designs. Kumar et

al. proposed Express Virtual Channel, a flow-control method,

to statically and dynamically bypass router pipeline stages [7].

Lu, Liu, and Jantsch proposed Layered Switching which com-

bines virtual cut-through and worm whole switching. Grouped

flits are created as flow control unit to optimize the utilization

of wiring and switching resources [8]. Mullins, West, and

Moore proposed a speculative single-cycle router that uses pre-

computed arbitration results to save router pipeline stages [9].

Kumar et al. proposed a network-on-chip router using advance

bundle signals to set up the network and prioritize arbitration

techniques to improve throughput [10]. Jerger, Lipasti, and

Peh proposed circuit switch coherence, a hybrid on-chip

network design with a prediction-based coherence protocol,

enabling significant latency reduction [11]. These techniques

are capable of reducing average network latency. Some recent

work began to consider coherence protocol information for

NoC design. Eisley, Peh, and Shang proposed in-network

cache coherence, moving part of the directory into routers,

which minimizes network hop counts but increases router

area significantly and complicates the coherence protocol [12].

Bolotin et al. proposed an NoC prioritization policy to speed

up short cache access requests [13].
In this work, we aim to reduce the latency of on-chip

networks without introducing area, throughput, or power over-

head. Most past work focuses on optimizing the average

network traffic latency and does not explicitly consider and

differentiate the timing characteristics of high-level data and

protocol transactions. In contrast, we argue that knowledge

of high-level network traffic transactions should be used to

optimize network performance. Our work is motivated by the

following timing characteristics of on-chip network traffic in

multi-core/many-core designs.

1) Heterogeneous latency requirements: The on-chip net-

work relays cache and coherence protocol traffic in a shard-

memory CMP. Not every packet in on-chip network traffic is

latency-critical. Protocol requests, acknowledgment packets,

and critical word packets in read and write transactions are

latency-critical – the processor might be stalled for data or

write ownership during data transfer. On the other hand,

packets in write-back and eviction transactions, as well as the

remainder of transferred cache lines, are less time critical. We

also find that latency-critical traffic only accounts for a small

 0

 20

 40

 60

 80

 100

radix
cholesky

lu waternsq

ocean
mpgenc

average

%
 o

f
to

ta
l
fl
it
s

read-request

critical-word

write-request

write-ack

non-critical-data

write-invalidation

writeback

eviction

Fig. 1. Network traffic composition.

portion of the overall network traffic (see Section 2).

2) Predictable network resource usage: Run-time data usage

typically shows strong temporal and spatial locality, i.e., a

processor core repeatedly accesses data from a particular L2

cache within a small time interval. As a consequence, on-chip

network traffic also exhibits locality, e.g., the same routing

path is repeatedly used. The temporal and spatial locality of

network traffic can be utilized to better pre-plan the network

resource usage for latency-critical traffic.

In this work, we leverage the information of high-level net-

work data and protocol transactions to identify latency-critical

network traffic. Aggressive prediction techniques are then

proposed to speed up latency-critical traffic with little hard-

ware overhead. The proposed techniques, including locality-

aware resource planning, latency-critical virtual channels, and

prioritized switch arbitration, can reduce the latencies to values

comparable to those of ideal interconnect fabric (i.e., intrinsic

interconnect delay) even under heavy network traffic workload.

In contrast, existing work targeting all network traffic yields

suboptimal results – the small portion of latency-critical traffic

can be delayed by the remaining noncritical traffic. In addition,

speeding up the non-critical traffic may require great effort

with little system-level impact.

We have designed a 65 nm on-chip router to evaluate these

techniques. Detailed hardware characterization and network-

level simulation show that the proposed design achieves net-

work latency within 6.3% (on average) of ideal interconnect,

while preserving excellent network throughput for both latency

critical and non-critical traffic.

2. TRAFFIC CHARACTERIZATION

This section characterizes on-chip network traffic. We first

analyze the timing properties of on-chip data and protocol

transactions in order to identify latency-critical transactions.

We then evaluate the temporal and spatial locality of latency-

critical traffic. This study demonstrates a performance gap be-

tween the state-of-the-art solutions and ideal interconnect, and

motivates the optimization techniques proposed in Section 3.

2.A. LATENCY-CRITICAL TRAFFIC ANALYSIS

In a shared-memory multi-core/many-core on-chip system,

the network is used for cache data and protocol transactions,

including read, write, clean eviction, and dirty data write back.

Among these transactions, read and write transactions impact

cache miss latency, and thus system-level performance. We

therefore identify read and write miss request packets, critical

words, and write acknowledgment packets to be latency-

critical. On the other hand, network traffic transactions, in-

cluding write invalidation (if relaxed consistency), eviction, the

remainder of the cache lines (excluding the critical word), and

write back packets are latency-noncritical traffic. Fig. 1 shows

a categorization of the network traffic of six SPLASH2 and

ALPBench multithreaded benchmarks for the baseline network

configuration described in Section 4. On average, only 17.8%

of the traffic is latency-critical (with a range of 10.3%–20.3%).

2.B. CHARACTERIZATION OF CRITICAL TRAFFIC

Next, we investigate the characteristics of latency-critical

traffic. Consider a latency-critical cache read. This transaction

starts with an L1 cache miss request, which is forwarded to the

corresponding home directory node. If a clean copy of the data

exists on chip, the home directory node forwards the request

to the corresponding L2 cache node, which then forwards the

data to the requesting node. In the event of an L2 cache miss,

the request is forwarded to off-chip memory. A well-designed

on-chip cache architecture usually has a high L2 cache clean

hit rate. The latency of an on-chip read transaction can thus

be decomposed into the following components.

1) Trequest : Network latency to transfer the request to the

corresponding L2 cache node via the home directory node.

Request packets are small, typically one flit long (flit is the

basic unit of flow-control. In this paper it is also the basic

physical unit, i.e. data transferred per cycle).

Trequest =
∑

req.→air.→L

(d/v + Trouter + Tcontention) (1)

where d is length of wires per hop, v is the propagation

velocity, Trouter is the delay through a single zero-load

router, and Tcontention characterizes the average extra resource

contention delay per router.

2) Tcache : L2 access latency, which is typically in the range

of eight to ten clock cycles using current technology [14].

3) Tdata : Network latency to transfer the data, e.g., a cache

line, back to the requesting node. A cache line consists of the

critical (causing the cache miss) and non-critical words. The

arrival of the critical words satisfies time-critical requests.

Tdata =
∑

L→req.

(d/v + Trouter + Tcontention) (2)

Using the setup described in Section 4, network latency,

Trequest + Tdata , accounts for 73.3% of on-chip data access

latency. Minimizing the latency of critical traffic therefore

optimizes system-level performance.

2.C. TOWARDS IDEAL NETWORK LATENCY

For a latency-critical flit, the latency of each router hop can

be decomposed as follows.

Thop = d/v + Tcrossbar
︸ ︷︷ ︸

Tideal

+TBW + TV A + TSA + Tcontention
︸ ︷︷ ︸

Tgap

(3)

 0

 20

 40

 60

 80

 100

cholesky lu mpgenc ocean radix waternsq average

%
 o

f
c
ri
ti
c
a
l
tr

a
ff

ic

no-locality locality

Fig. 2. Locality analysis for critical traffic.

where TBW is the time the flit spends in buffers. TV A and TSA

are the times the flit spends in arbitrating buffer and switching

resources. Tcrossbar is the time to actually traverse the router.

Tideal = d/v +Tcrossbar indicates the intrinsic network delay,

i.e., the ideal network latency. Tgap = TBW + TV A + TSA +
Tcontention indicates the extra router pipeline and resource

contention latency in state-of-the-art network design, i.e., the

performance gap compared to the ideal network latency.

To optimize the latency-critical traffic, it is critical to

minimize Tgap . To this end, we make the following obser-

vations, which drive the latency criticality aware router design

described in the next section.

1) As shown in Fig. 1, latency-critical flits only account

for a small portion of the overall network traffic. As a result,

Tcontention is mainly due to run-time resource contention with

non-critical traffic. Therefore, to optimize the performance

of latency-critical traffic, it is crucial to minimize run-time

resource contention with non-critical traffic. Existing work,

which seeks to minimize average network latency, fails to

consider the performance impact of non-critical traffic on

critical traffic, leaving substantial room for improvement.

2) Run-time traffic also exhibits strong temporal and spatial

locality, mainly resulting from data access locality in program

behavior. We measure the percentage of flits with the same

input–output port pairs as the previous flit. Fig. 2 shows that

82.1% critical flits have this property. Deterministic routing

further strengthens the traffic locality. Locality can thus be

used to preplan the network resource for latency-critical traffic

to minimize Tgap .

3. LATENCY CRITICALITY AWARE ROUTER DESIGN

This section presents the proposed latency criticality aware

router design. As shown in Section 4, the proposed design

is capable of bringing the performance of latency-critical

traffic near that of ideal interconnect, while maintaining high

throughput for both critical and non-critical traffic. In this

section, we first describe a locality-aware resource planning

technique that leverages the temporal and spatial locality of

network traffic and performs resource planning and reservation

for latency-critical traffic. We then describe resource prioriti-

zation polices appropriate in the absence of traffic locality.

This section also discusses the timing characteristics of the

proposed 65 nm router design. Detailed hardware characteri-

zation is presented in Section 4.

3.A. LOCALITY-AWARE RESOURCE PLANNING

Network traffic during program execution often exhibits

temporal and spatial locality. When a processor core repeatedly

accesses a particular cache block, the underlying network data

transactions also have strong locality. This locality can be used

to allow consecutive network data transactions to reserve the

Input VC
Input VC

Input VC
Input
port Input VC M

U
X

M
U

X

M
U

X

M
U

X

o
u
tp

u
t

p
o
rt

locality
register

Virtual Channel
Allocation

Switch Allocation

&

Next Hop Routing

Buffer Write Switch Traversal

AND
OR

from other
input VCs from other

input ports

locality hit

VC avail

classical pipeline bypassing

SA result emptyOR

to 2:1 MUX
select signal

Encode

next hop VC
information

D
E

M
U

X

locality
bypassing VC

Data Path

Bypassing

Control

assign VC to
bypassing flit

Fig. 3. Router microarchitecture and locality-aware resource planning

corresponding network resources, reusing them many times

without repeatedly requesting access via run-time arbitration.

More specifically, at each router hop, TSA, TV A, and TBW

can be bypassed. Run-time resource contention, Tcontention ,

due to noncritical traffic can also be avoided.

Supporting locality-aware resource planning requires minor

modification of the control logic of crossbar and buffers.

The following sections describe the proposed technique and

implementation in detail.

3.A.1) Crossbar-Supported Locality Bypassing: Fig. 3

shows the locality-aware bypassing logic design, which is

essentially a crossbar design that selects incoming flits from

two sets of inputs: input virtual channels or directly from

router input ports (avoiding BW, VA, and SA). This enables

latency-critical flits to move directly from router input to

output without data buffering. The datapath portion of the

proposed crossbar design is similar to the recently-proposed

pipeline bypassing router design [7], [10]. These previous de-

signs allow an incoming flit to enter the ST stage speculatively

if no other flit resides in the input port. However, this situation

will be rare under heavy workload, which is also generally the

situation in which network latency is of greatest importance. In

contrast, the proposed approach exploits traffic locality, which

is common under heavy workload, enabling it to speed up

latency-critical traffic.

The proposed locality-aware crossbar design is equipped

with a locality register at each crossbar output port, which

records the input channel information of the latest bypassed

latency-critical flit. The locality register is updated once a

new critical flit travels through the output port. Its content

allows prediction of the outcome of switch allocation for the

corresponding output port. A locality hit occurs when two

consecutive incoming latency-critical flits arriving at the same

input ports target the same output port. The second latency-

critical flit can then be directly forwarded from the router

input to the crossbar output. In other words, the preceding

latency-critical flit reserves the router switching resource for

succeeding flits. When a locality hit occurs, the latency-critical

flit traverses through the router with only one pipeline stage

ST, bypassing the BW, SA, and VA stages and avoiding

possible resource contention. Any other flits requesting the

same output port during the same clock cycle arbitrate for the

crossbar resource in the next clock cycle.

3.A.2) Inter-Router Virtual Channel Management: When

a locality miss occurs, the latency-critical flit needs to re-

quest a virtual channel for temporary data buffering. Lack

of available virtual channels can potentially block following

latency-critical packets. To rapidly detect such hazards, each

switch output port is equipped with a locality bypassing VC

register that maintains the available virtual channel in the

corresponding input buffer of the successor router, thereby

avoiding virtual channel allocation.
Traditional, load balancing based virtual channel allocation

is based on the buffer usage among virtual channels, i.e., the

virtual channel with the maximum credit count is chosen. This

design requires comparator tree logic with significant area

and timing overhead. Latency-critical packets are typically

short. Therefore, load balancing is not necessary. The logic to

generate the locality bypassing VC value is simplified: select

the first virtual channel with non-zero credit. In addition, a

VC avail signal based on the availability of virtual channels

of the successor router serves as the enable signal for crossbar

bypassing. Note that a non-critical packet may also be allo-

cated to the same virtual channel as the locality bypassing VC.

Since latency-critical flits have higher priority, such double

assignment will not cause resource conflict.

3.B. LATENCY-CRITICAL VIRTUAL CHANNEL

As described in the previous section, a latency-critical flit

will be assigned to a virtual channel upon a locality miss.

Under heavy workload, virtual channels may be occupied by

non-critical traffic, which would delay latency-critical traffic.

To avoid this, the proposed router design is equipped with

a special latency-critical virtual channel for each physical

port reserved for latency-critical traffic. During virtual channel

allocation, latency-critical packets are allowed to arbitrate for

all the available virtual channels of the successor router, while

non-critical packets are only allowed to arbitrate regular virtual

channels. In on-chip network design, router buffers are mainly

used for throughput enhancement. Since latency-critical traffic

only takes a small portion of the network traffic, and latency-

critical packets are typically short, a small virtual channel is

generally sufficient to cover the round trip latency of a latency-

critical packet. Therefore, only a small portion of router buffer

resources need to be allocated to the latency-critical traffic,

resulting in only a small performance impact on non-critical

traffic.

3.C. PRIORITIZED SWITCH ALLOCATION

To minimize Tcontention due to switch allocation when

locality misses occur, a prioritized switch allocation scheme

is used. Higher switching resource access priorities are given

to latency-critical flits. A separable allocator [6] is used.

Switch allocation is partitioned into two tasks: local arbitration

across the input ports, and global arbitration across the output

ports. A flit request is submitted to separate input and output

port arbiters. To reduce Tcontention , critical flits have priority

over non-critical flits during each arbitration. Using separate

arbiters allows efficient implementation. The prioritized arbiter

is implemented as a combination of priority-handling logic

and a conventional matrix arbiter, as follows. Assuming n
requesters for one resource, each requester has priority prio(i),

and asserts its request with reqi(i). The request sent to a

conventional arbiter would be reqo(i).

prioany =

n∑

i=

(prio(i) · reqi(i)) (4)

reqo(i) = (prioany + prio(i)) · reqi(i) for all i (5)

The result reqo(i) is sent to a matrix arbiter [6] that provides

a strong fairness guarantee.

3.D. HARDWARE CRITICAL PATH ANALYSIS

We next analyze the critical path of the router hardware

implementation. Detailed hardware characterization will be

presented in Section 4. The following analysis assumes P
physical ports per router and V virtual channels per port.

BW stage: a flit from the input port is stored to a specific

virtual channel buffer, which is implemented using circular

buffer. The critical path of this pipeline stage consists of a

V :  demultiplexer and buffer writing.

VA stage: The header flit of each packet performs virtual

channel allocation to request buffer resources from next-

hop router. The latency-critical virtual channel can only be

allocated to the critical packets. Other virtual channels are

available for all traffic. As shown in the previous section,

the virtual channel allocator is implemented as a canonical

separable allocator. Thus, the only impact on the critical path

is the addition of two P × V :  arbiters.

SA stage: Switch allocation is also implemented with a separa-

ble allocator that prioritizes latency-critical traffic. The critical

path of this stage is the combination of prioritized arbiters.

ST stage: Starting from a baseline crossbar design with support

for pipeline bypassing, a locality register is added to each

output port to record the input port information of incoming

traffic. A latency-critical flit for which locality-based predic-

tion succeeds will traverse directly from the router input port to

the crossbar output. This bypassing is enabled by a new stage

of 2:1 multiplexers. The selection signal is determined by VC

avail and the criticality tag of this flit. A locality bypassing

VC is also generated to update the flit’s destined VC field. The

critical path of this stage includes buffer read time, two stages

of V :  and P :  multiplexers, and a final 2:1 multiplexer

for bypassing selection.

4. EXPERIMENTAL RESULTS

This section evaluates the proposed design using detailed

router hardware characterization and network-level simulation.

4.A. NETWORK-LEVEL RESULTS

We implemented a cycle-accurate cache–network simulator.

The simulator supports k-ary mesh topologies consisting of

pipelined virtual-channel input-buffer routers, two levels of on-

chip cache hierarchy, and cache directories. The experimental

setup uses a hierarchical memory architecture that imitates

the server consolidation scenario for many-core CMPs [15].

Four 16-processor virtual machines are consolidated into one

64-processor CMP. The L2 cache is distributed and shared

within the same virtual machine. Since we are considering

NoCs for shared memory CMPs, network traffic traces for

each virtual machine are gathered using the M5 full-system

 20

 40

 80

 160

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c
ri
ti
c
a
l
n
e
tw

o
rk

 d
e
la

y

 (
c
y
c
le

s
)

transaction injection rate (transactions per ns)

baseline
base+PSA

base+LARP
base+LCVC

proposed
ideal

(a) cholesky-mpgenc-radix-lu random

 20

 40

 80

 160

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

c
ri
ti
c
a
l
n
e
tw

o
rk

 d
e
la

y

 (
c
y
c
le

s
)

transaction injection rate (transactions per ns)

baseline
base+PSA

base+LARP
base+LCVC

proposed
ideal

(b) lu-mpgenc-ocean-waternsq random

 20

 40

 80

 160

 0.2 0.4 0.6 0.8 1 1.2

c
ri
ti
c
a
l
n
e
tw

o
rk

 d
e
la

y

 (
c
y
c
le

s
)

transaction injection rate (transactions per ns)

baseline
base+PSA

base+LARP
base+LCVC

proposed
ideal

(c) lu-radix-cholesky-waternsq random

 10

 100

 0.2 0.4 0.6 0.8 1 1.2

c
ri
ti
c
a
l
n
e
tw

o
rk

 d
e
la

y

 (
c
y
c
le

s
)

transaction injection rate (transactions per ns)

baseline
base+PSA

base+LARP
base+LCVC

proposed
ideal

(d) cholesky-mpgenc-radix-lu normal

 10

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

c
ri
ti
c
a
l
n
e
tw

o
rk

 d
e
la

y

 (
c
y
c
le

s
)

transaction injection rate (transactions per ns)

baseline
base+PSA

base+LARP
base+LCVC

proposed
ideal

(e) lu-mpgenc-ocean-waternsq normal

 10

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4

c
ri
ti
c
a
l
n
e
tw

o
rk

 d
e
la

y

 (
c
y
c
le

s
)

transaction injection rate (transactions per ns)

baseline
base+PSA

base+LARP
base+LCVC

proposed
ideal

(f) lu-radix-cholesky-waternsq normal

Fig. 4. Low-latency experiments (critical network latency).

TABLE I: CONFIGURATION

Topology 8-ary 2-mesh

Number of router ports 5 (5 VCs per port)

Buffers per phy. channel 25 (5 per VC)

Flit size/channel width 8 Bytes

L1 cache per tile 64KB, 2-way 64-byte line

L2 cache per tile 256KB, 16-way 128-byte line

L2/memory access time 10/100 cycles

Coherence protocol MESI

Processors Alpha 21264

simulator [16] running six 16-thread SPLASH2 [17] and

ALPBench [18] multithreaded benchmarks, including mpgenc,

radix, lu, cholesky, ocean, and waternsq. The system configu-

ration is summarized in Table I.

We evaluate the network design under two workload mod-

els: random, in which nodes of the same virtual machine

are randomly assigned without spatial locality and normal,

in which nodes of the same virtual machine are assigned to

neighboring processor cores with moderate spatial locality.

Six router configurations are implemented to evaluate the

proposed latency-criticality aware router design. The baseline

router model, which represents the state-of-the-art design,

is a four-stage input virtual channel router with look-ahead

routing, speculative switch allocation, and pipeline bypassing.

The three techniques discussed in previous section, namely

locality-aware resource planning (LARP), latency-critical vir-

tual channel (LCVC), and prioritized switch allocation (PSA),

are each individually added to the baseline design to show their

effects on latency and throughput. In addition to these designs

and the proposed router model, we also estimate the ideal

network latency by removing all non-critical packets from the

network, thereby preventing interference with critical packets.

During our evaluation, we randomly pick four of the six

available benchmarks and consolidate them into one network

traffic pattern. We further temporally dilate and contract the

traffic to evaluate the performance of the proposed design

under different network traffic workload.

Fig. 4 shows the average latency of latency-critical traffic

for each of the router configurations. Compared to the baseline

state-of-the-art design, the proposed design reduces the critical

traffic latency by 36.2% on average (31.1% minimum and

42.9% maximum). Moreover, the proposed design is capable

of achieving critical traffic latency within 6.3% of the ideal

network. Among the individual proposed techniques, locality

bypassing is most effective. The locality bypassing success rate

is 85.0% on average. Locality bypassing alone reduces critical

traffic latency by 25.5% of the baseline case. Given heavy

traffic, i.e., the injection rate with double the zero-load latency,

the proposed design can still maintain the latency of critical

traffic within 11.9% of that for the ideal network. Under

heavy traffic, buffer resources are the resource bottleneck. In

these conditions, latency-critical virtual channel management

is the most effective single technique. Fig. 5 evaluates the

network throughput using different router configurations. The

network throughput is defined as the packet injection rate at

which the network average latency is double the zero-load

latency. This study shows that the proposed design does not

decrease network throughput. In addition, since critical packet

latency is significantly reduced, the overall network throughput

increases by 4.5% compared to the baseline state-of-the-art

design (maximum 5.6% and minimum 3.1%). In summary,

these studies demonstrate that the proposed design approaches

the latency of ideal interconnect for latency-critical traffic

while preserving high throughput for both latency-critical and

noncritical traffic.

4.B. CIRCUIT-LEVEL RESULTS

The proposed latency criticality aware router is evaluated

using a TSMC 65 nm low-power technology under typical

condition (1.2 V and 25°C) with nine metal layers. Timing and

power results are estimated using Synopsys Design Compiler

in topographical mode, which uses a default floorplan to

estimate wire delay. Chip floorplan and layout are generated

using Synopsys IC Compiler. We compare our design with the

 0

 1

 2

 3

 4

 5

lu-radix-cholesky-
waternsq-normal

lu-radix-cholesky-
waternsq-random

cholesky-mpgenc-
radix-lu-normal

cholesky-mpgenc-
radix-lu-random

lu-mpgenc-ocean-
waternsq-normal

lu-mpgenc-ocean-
waternsq-random

p
a

c
k
e

ts
 p

e
r

n
s

baseline base-PSA base-LARP base-LCVC proposed

Fig. 5. Throughput of each configuration.

previously-described baseline state-of-the-art router.

Area: Fig. 6 illustrates the floorplan of the proposed router.

The input buffer and crossbar dominate the router area, which

is estimated to be 0.42 mm. Compared to the baseline design,

the proposed design’s area overhead is approximately 5% in

terms of equivalent gate count.

Crossbar

Injection/ejection

port module

West port

module

North port

module

East port

module

South port

module

Fig. 6. Router layout (645 µm×
645 µm).

Timing: Table II shows

the synthesis result for each

pipeline stage. The switch

traversal stage is time-critical;

it limits the frequency of the

router to 1.34 GHz, which

is similar to the 1.41 GHz

peak frequency of the baseline

design. This slight latency

increase is due to the bypassing

multiplexer selection logic and

increased capacitive load due

to the locality registers. In

addition, the latencies of VA

and SA stages both increase due to latency-critical VC and

prioritized SA design. However, these two stages are not the

on critical paths in this design.

TABLE II: CRITICAL PATH DELAY

Router pipeline stages
Critical path delay Critical path delay

baseline (ps) proposed (ps)

BW 620 626
VA 648 654
SA 627 660
ST 709 743

Frequency (GHz) 1.41 1.34

Power: Power analysis (including dynamic and leakage

power) using average-case router traces from network-level

simulation shows that the power consumption of the proposed

latency criticality aware router is 359.9 mW at peak frequency,

which is within 2.3% of the baseline design (351.8 mW).

5. CONCLUSION

In this paper, we have identified a weakness in existing on-

chip packet-switched interconnect fabric design techniques.

These techniques focus on reducing average packet latency

instead of focusing on reducing delays for the latency-critical

packets that influence system-level performance. We have

determined that it is possible to significantly improve the

latencies of these critical packets (by 36.2% on average)

while preserving the throughput of non-critical traffic. In order

to achieve this goal, we have proposed and evaluated three

techniques: locality-aware resource planning, latency-critical

virtual channel, and prioritized switch allocation. Combined,

these techniques allow critical traffic latencies approaching

those of an ideal interconnect fabric (6.3% difference). We

have completed a detailed hardware design of the proposed

router and found that area, power consumption, and clock

frequency differ little from those of a state-of-the art router

design. In summary, we have developed and evaluated a low-

overhead router design that significantly improves the latency

of critical network traffic.

REFERENCES

[1] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivaku-
mar, S. W. Keckler, and D. Burger, “On-chip interconnection
networks of the TRIPS chip,” IEEE Micro, vol. 27, no. 5, pp.
41–50, Sept. 2007.

[2] “Tilera TILE64 chip-multiprocessor,” http://www.tilera.com.
[3] L. Seiler, et al., “Larrabee: a many-core x86 architecture for

visual computing,” ACM Trans. on Graphics, vol. 27, no. 3, pp.
6–23, Aug. 2008.

[4] D. Pham, et al., “Overview of the architecture, circuit design,
and physical implementation of a first-generation cell processor,”
IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 179–196, Jan.
2006.

[5] S. Vangal, et al., “An 80-tile 1.28 TFLOPS network-on-chip
in 65nm CMOS,” in Proc. Int. Solid-State Circuits Conf., Feb.
2007, pp. 98–589.

[6] W. J. Dally and B. Towles, Principles and Practices of Inter-
connection Networks. San Francisco, CA: Morgan Kaufmann
Pub., 2003.

[7] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express virtual
channels: towards the ideal interconnection fabric,” in Proc. Int.
Symp. Computer Architecture, June 2007.

[8] Z. Lu, M. Liu, and A. Jantsch, “Layered switching for networks
on chip,” in Proc. Design Automation Conf., June 2007, pp.
122–127.

[9] R. Mullins, A. West, and S. Moore, “Low-latency virtual-
channel routers for on-chip networks,” in Proc. Int. Symp.
Computer Architecture, 2004, pp. 188–197.

[10] A. Kumar, P. Kundu, A. Singh, L.-S. Peh, and N. Jha, “A
4.6Tbits/s 3.6GHz single-cycle NoC router with a novel switch
allocator in 65nm cmos,” in Proc. Int. Conf. on Computer
Design, Oct. 2007, pp. 63–70.

[11] N. E. Jerger, M. Lipasti, and L.-S. Peh, “Circuit-switched
coherence,” IEEE Computer Architecture Letters, vol. 6, no. 1,
pp. 5–8, 2007.

[12] N. Eisley, L.-S. Peh, and L. Shang, “In-network cache coher-
ence,” in Proc. Int. Symp. Microarchitecture, Dec. 2006, pp.
321–332.

[13] E. Bolotin, Z. Guz, I. Cidon, R. Ginosar, and A. Kolodny, “The
power of priority: NoC based distributed cache coherency,” in
Proc. Int. Symp. Networks-on-Chip, May 2007, pp. 117–126.

[14] “CACTI: An integrated cache access time, cycle time, area,
leakage, and dynamic power model,” http://quid.hpl.hp.com:
9082/cacti/.

[15] M. R. Marty and M. D. Hill, “Virtual hierarchies to support
server consolidation,” in Proc. Int. Symp. Computer Architecture,
June 2007, pp. 46–56.

[16] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt, “The M5 simulator: Modeling
networked systems,” IEEE Micro, vol. 26, no. 4, pp. 52–60,
2006.

[17] “SPLASH2 website,” http://www-flash.stanford.edu/apps/
SPLASH/.

[18] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes,
“The ALPbench benchmark suite for complex multimedia ap-
plications,” in Proc. Int. Symp. Workload Characterization, Oct.
2005, pp. 34–35.

