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ABSTRACT
People spend approximately 70% of their time indoors.
Understanding the indoor environments is therefore
important for a wide range of emerging mobile per-
sonal and social applications. Knowledge of indoor
floorplans is often required by these applications. How-
ever, indoor floorplans are either unavailable or obtain-
ing them requires slow, tedious, and error-prone man-
ual labor.

This paper describes an automatic indoor floorplan
construction system. Leveraging Wi-Fi fingerprints
and user motion information, this system automatically
constructs floorplan via three key steps: (1) room adja-
cency graph construction to determine which rooms are
adjacent; (2) hallway layout learning to estimate room
sizes and order rooms along each hallway, and (3) force
directed dilation to adjust room sizes and optimize the
overall floorplan accuracy. Deployment study in three
buildings with 189 rooms demonstrates high floorplan
accuracy. The system has been implemented as a mo-
bile middleware, which allows emerging mobile appli-
cations to generate, leverage, and share indoor floor-
plans.
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INTRODUCTION
On average, people spend approximately 70% of their
time indoors [15], such as in offices, schools, and stores.
New indoor mobile applications are being developed
at a phenomenal rate, covering a wide range of indoor
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personal and social scenarios. Many of these mobile
applications build upon indoor localization techniques,
using location information to optimize and deliver on-
the-fly personal and social services.

Indoor maps, i.e., indoor floorplans, are often required
by indoor localization techniques to answer the follow-
ing question “so... I’m here but where is here?” [11]. Sim-
ply put, the floorplan is typically in the form of a build-
ing blueprint, defining the structure and functionality
of a specific indoor environment. Given an indoor floor-
plan, the personal and social functions supported by the
indoor environment are then defined.

Acquiring indoor floorplan information is challenging
– (1) many buildings do not have floorplans in easily-
interpretable digital form; (2) even if available, building
managers are often reluctant to share such information
with the general public; furthermore, (3) buildings’ in-
ternal structures and the corresponding functionalities
often evolve over time, making the original floorplans
outdated. Although it is possible to manually construct
an indoor floorplan or correct an existing one, such pro-
cess is slow, tedious, error prone, and difficult to scale.

This work tackles the problem of automated indoor
floorplan construction. To accurately construct an in-
door floorplan, a set of indoor features are required, in-
cluding (1) unique identification of individual rooms,
(2) estimated room geometric information, e.g., length
and width, and (3) geometric relationship among
rooms. Accurate determination of these indoor floor-
plan features faces the following challenges:

• Heterogeneous indoor environments: An indoor
environment consists of rooms with diverse sizes.
Room connections through hallways also vary sig-
nificantly. Such heterogeneous indoor environments
make accurate floorplan construction challenging.

• Noisy Wi-Fi fingerprints: Due to the complex mul-
tipath propagation problem, Wi-Fi fingerprints ob-
tained by mobile phones are dynamic and noisy. The
problem is particularly challenging when using Wi-Fi
fingerprints to determine detailed floorplan features.

• Mobile crowd sourcing: Leveraging the built-in mo-
tion sensors of the mobile phones carried by occu-
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pants, “crowd sourcing” offers a potentially highly
scalable solution for automatic floorplan construc-
tion. The primary challenge is how to accurately
extract stable and representative floorplan structure
from diverse and random occupant motion patterns.

In this work, we propose an automatic indoor floorplan
construction system. Leveraging Wi-Fi fingerprints and
user motion information collected via mobile crowd
sourcing, the proposed system extracts indoor floorplan
features, including room identity, geometry, and inter-
room geometrical relationship, and then construct the
indoor floorplan automatically. To tackle the aforemen-
tioned challenges, the proposed system uses the follow-
ing main components.

• A room adjacency graph construction algorithm that
identifies the adjacency of rooms and constructs a
room adjacency graph that is robust to the spatial bias
of room fingerprints and Wi-Fi noise;

• A hallway layout learning algorithm that determines
the room arrangement along each hallway, e.g., room
sizes and orders, using crowd-based motion sensing
on smartphones; and

• A force directed dilation algorithm that adjusts the indi-
vidual room structures globally to improve floorplan
accuracy.

The proposed system builds upon existing room lo-
calization techniques [4, 6, 11]. The proposed system
has been implemented and tested through deployment
in five different buildings with diverse floorplan struc-
tures, including classrooms, research labs, libraries, of-
fices, and shopping malls with 189 rooms in total. The
deployment study shows that the proposed automatic
indoor floorplan construction system yields an average
room position accuracy of 91%, room area estimation
error of 33% and room geometric aspect ratio error of
24%, requiring on average only 20 data points per loca-
tion for the system to converge.

The rest of the paper is organized as follows. We
start with an overview of the system architecture, then
present the detailed technical design of the proposed
system. Evaluation results are presented next. After
surveying related work, we conclude this paper.

SYSTEM OVERVIEW
This section formulates the problem of indoor floorplan
construction, and provides an overview of the proposed
system.

A floorplan graphically displays the dimensions and
positions of rooms inside a building. A floorplan in-
cludes three types of information: the number of rooms,
dimensions of rooms, and relative position of rooms. In
this work, we focus on rectangular-shaped rooms typ-
ically seen in most buildings. Each room can be rep-
resented by the coordinates of its center point (e.g., x
and y values on a 2-D plane), along with its width and

length information. The indoor floorplan construction
problem can be defined as follows: Given a room set R
containing n distinct rooms on the same floor in a build-
ing, determine the relative center coordinates, width,
and length for each room ri(1 ≤ i ≤ n, ri ∈ R) in a
two-dimensional space.

In our system, the input data includes room Wi-Fi fin-
gerprint ri for each room, passively collected motion
sensor data (accelerometer and compass), and Wi-Fi
scan data when users are walking in the building. We
assume that at least three Wi-Fi access points are visible
from most positions in each room and hallway. This
assumption is valid for most public and commercial
buildings. A number of approaches exist for collecting
room Wi-Fi fingerprints, such as manual room finger-
print collection [4], leveraging user feedback [8, 11] ,
and automated learning techniques [6]. Our work lever-
ages the outputs of the aforementioned approaches and
we assume that each room has been associated with a
unique room ID and the corresponding Wi-Fi finger-
print. Note that the room IDs are used for identifica-
tion and are necessarily related to real room names or
numbers.

When users are walking, the motion sensor data and
Wi-Fi scan data are collected by our system running on
users’ smartphones. Note that all data are passively
collected from users without explicit actions on users’
part. Users do not even need to be aware of the collec-
tion process. The accelerometer data are collected at a
5 Hz frequency and used to determine if a user is walk-
ing. When a user is walking, the compass and Wi-Fi
data are collected at 5 Hz and 1 Hz frequencies, respec-
tively. Note that this system only needs to be run in the
training phase. Once the floorplan is constructed, the
system no longer needs to be active, and the produced
floorplan will be provided to other indoor mobile appli-
cations and services, thus saving smartphone energy.

Figure 1 illustrates the overall process of our indoor
floorplan construction solution. The system consists of
three main components: (1) room adjacency graph con-
struction, (2) hallway layout learning, and (3) force di-
rected dilation.

Room Adjacency Graph Construction. This compo-
nent identifies adjacencies among rooms and constructs
a room adjacency graph. In a room adjacency graph, the
vertices represent individual rooms and the edges be-
tween vertices indicate adjacency between two rooms.
We used k-means clustering to group Wi-Fi signals of
two adjacent rooms into the same cluster. This approach
is robust to Wi-Fi noise and unevenly distributed Wi-Fi
scans within a room.

Hallway Layout Learning. Based on the room ad-
jacency graph and users’ walking traces in hallways,
the layout learning algorithm first identifies rooms and
their orders along each hallway, and then assembles the
hallways based on the similarity score of Wi-Fi signals.
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Figure 1. Automatic indoor floorplan construction system overview.

This component includes a novel and accurate indoor
turn detection algorithm, which leverages compass sen-
sor data and a noise-robust room layout detection algo-
rithm.

Force Directed Dilation. This step optimizes the over-
all floorplan accuracy via global adjustment of the esti-
mated room dimensions. We use a force directed dila-
tion algorithm, in which the learned floorplan is defined
as a mechanical system with springs between adjacent
rooms, and the dimensions of rooms are automatically
adjusted based on the forces among rooms.

ROOM ADJACENCY GRAPH CONSTRUCTION
Room adjacency graph construction is a process to de-
termine whether each pair of rooms is adjacent for a
given set of rooms, R. The adjacency information is
represented using an undirected graph. For example,
if two rooms are adjacent, the corresponding nodes in
graph are connected by an edge as shown in Figure 1.
The adjacency graph is a fundamental information for
floorplan construction, and is used later in hallway lay-
out learning and force directed dilation.

To determine the adjacency of two rooms, a straight-
forward approach is to compare the similarity of their
fingerprints. However, such similarity can be affected
by the relative positions of two rooms, the type of wall
between rooms, and the distribution of fingerprints
within rooms. Yet, Wi-Fi signal noise increases the un-
certainty. Moreover, this approach requires the defini-
tion of a global threshold applicable to diverse room
conditions, which is very difficult to derive.

In this work, we propose a clustering based approach to
determine the relationship between pairs of rooms. It is
based on the observation that Wi-Fi signals in adjacent
rooms are similar, especially for those signals collected
near the partition wall. Even though wall can decrease
Wi-Fi signal strength, allowing differentiation of adja-
cent rooms, noise can blur the boundary between two
rooms. On the other hand, signals collected near the
wall can be differentiated by extreme RSS (received sig-
nal strength) values. The extreme RSS values for an AP
(access point) are close to the minimum or maximum
RSS value of that AP. Those signals are most likely at

the edges (corners) of rooms. By leveraging such Wi-
Fi signals, we can cluster adjacent rooms into the same
group.

Based on the above observations, for each room finger-
print (containing a set of Wi-Fi scans collected in that
room), we use the following procedure to remove Wi-
Fi scans in which APs contain few extreme RSS values.
First, for each access point api that can be observed in
a room r, we extract its RSS value from the room fin-
gerprint. Second, we normalize the RSS values using
minmax normalization to the range of [0, 1]. Given a
Wi-Fi scan w, where w = {rssap1 , rssap2 , ..., rssapm}, we
calculate the average normalized RSS value nrw as fol-
lows:

nrw =
m∑
i=1

(rssapi
)/m (api ∈ w). (1)

We remove all Wi-Fi scans whose nrw values satisfy
0.2 ≤ nrw ≤ 0.8, and only keep Wi-Fi scans with more
extreme RSS values.

After removing those Wi-Fi scans, we run the k-means
clustering algorithm on the remaining Wi-Fi scans from
all rooms. Based on our evaluation results, we set k
to 4 times the total number of rooms. For each clus-
ter, we calculate the total number of Wi-Fi scans nscan,
the number of unique rooms nroom, the number of
Wi-Fi scans for each room nscan/room, and the ratio
nscan/nroom as the threshold to determine if a room
should be considered in this cluster. This is because if
a room only has a few Wi-Fi signals in a cluster, e.g.,
nscan/room ≤ nscan/nroom, those signals might be noise
caused by environment changes or device heterogene-
ity. Thus if there are two rooms in one cluster that each
satisfies nscan/room ≥ nscan/nroom, these two rooms are
classified as adjacent rooms.

HALLWAY LAYOUT LEARNING
A hallway is defined as a straight or curved path in a
building that is adjacent to rooms. The end of a hall-
way can be a wall or an outlet. When a user walks
through a hallway, he/she will pass all the rooms along
the hallway sequentially. This indicates how rooms are
arranged along the hallway.
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Rooms vary by size and pairs of rooms can be posi-
tioned in many possible orientations. Based on these
observations, our layout learning technique includes
three sub-components: (1) hallway motion detection,
which detects walking in straight hallways; (2) layout
learning along hallway, which identifies the lengths of
rooms and sequences along the hallway; and (3) hallway
assembling, which is based on room overlap information
on intersecting hallways.

Hallway Motion Detection
The goal of hallway motion detection is to identify user
activities, such as walking straight and making a turn.
Our detection algorithm first distinguishes traversing
hallways from walking within rooms by leveraging Wi-
Fi signals while walking and room fingerprints. It then
identifies activities in different hallways via turn detec-
tion.

Hallway Traversal Detection
We leverage the technique proposed by Jiang et al.[6]
for walking detection due to its high detection accuracy
and energy efficiency. In order to determine whether
a user is walking in hallway, our system periodically
scans Wi-Fi signals at around 1 Hz. When a user is mov-
ing, the Wi-Fi RSS for access points change. However,
as obstacles between phone and access points mainly
affect Wi-Fi signal strengths, Wi-Fi signals within a
room are relative stable (even for moving phones) com-
pared to those during hallway traversal.

Based on the observation, we determine whether a
moving user is in a hallway or room by comparing two
consecutive Wi-Fi scans wa and wb. Due to Wi-Fi sig-
nal noise, the similarity score between two single Wi-Fi
scans is quite unpredictable. In order to deal with this
challenge, we first convert the single Wi-Fi scan wi to a
set of similarity scores dij for each room rj(rj ∈ R). dij
is defined as [5]

dij =
∏
k

P (ngramk(wi)|rj)P (rj), (2)

where

ngramk(wi) = (apk, apk+1). (3)

That is, apk and apk+1 are two APs in Wi-Fi scan wi and
are consecutive when ordered by RSS values. P (rj) is
the probability of room rj appearing in the system. We
set all P (rj) equal to 1.0 since rooms are treated equally
in our system.

The Wi-Fi scan wi is then converted to a vector Dwi
=

di1, ..., din, where n is the total number of rooms in R.
The similarity computation between wa and wb is con-
verted to the similarity computation between Dwa

and
Dwb

. This conversion makes the similarity more reliable
because dij is calculated using room fingerprint, which
contains a set of Wi-Fi scans.

The similarity function between signal vector Dwa and
Dwb

is defined by Tanimoto Distance:

simi(Dwa
, Dwb

)

=
D(wa) ·D(wb)

|D(wa)|2 + |D(wv)|2 −D(wa) ·D(wb)
. (4)

We set a threshold τ . If simi(Dwa
, Dwb

) ≤ τ , this sug-
gests motion within a room. simi(Dwa

, Dwb
) > τ sug-

gests motion within a hallway. Based on our experi-
mental data, we set τ = 0.3.

Hallway Turn Detection
Compass-based turn detection [13] has been well stud-
ied in outdoor environments. However, in indoor envi-
ronments, the accuracy of digital compasses on smart-
phones can be significantly affected by electrical cables
and devices, construction materials, and other metallic
objects nearby.

To deal with these challenges, we propose a technique
combining accelerometer, compass, and Wi-Fi signals to
detect turns in hallways. This is accomplished in three
key steps: (1) coarse-grained turning point detection
using accelerometer-based and compass-based turn de-
tection; (2) clustering of turning points using Wi-Fi sig-
nals; and (3) fine-grained turning point detection when
a user is close to a cluster of turning points. The intu-
ition is that, we want to identify stable turning point
clusters and utilize fined-grained (i.e., more sensitive)
turning point detection only when a user is close to a
turning point cluster. Next, we describe the three steps
in detail.

Step 1: Coarse-grained turning point detection. Here, a
turning point is detected whenever either accelerom-
eter or compass detects a turn. Accelerometer-based
turn detection is inspired by the walking detection ap-
proach [6], which assumes that when a user is walk-
ing, his body is in oscillation. However, when the user
is turning, the oscillation is broken. If m/mabs > 0.15
and mabs > 300, we consider the user to be turning.
Compass-based turn detection uses a 3 second long
sliding window and calculates the mean value for each
window. If the change of two consecutive values is
larger than τcompass (set to 30 in this work), the user is
determined to be turning..

Step 2: Clustering of turning points. The individual turn-
ing points detected using either accelerometer or com-
pass can be noisy. Given the physical constrains of hall-
ways, users’ turning points should be centered around
certain regions such as the end of a hallway or hallway
intersection. To identify these regions where turning is
likely to occur, we leverage Wi-Fi scans collected at in-
dividual turning points and use density-based cluster-
ing to group Wi-Fi scans into clusters representing these
turning regions. The similarity of two Wi-Fi scans is
computed based on RSS value using Equation 4. The
two parameters for density clustering algorithm, Eps
and MinPts, are set to 0.8 and 15 respectively. Note
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that although the similarity of two single Wi-Fi scans is
noisy, the density based clustering algorithm is robust
to such noise and can produce stable Wi-Fi based turn-
ing regions.

Step 3: Fine-grained turning point detection. Given the sta-
ble turning regions, we can determine whether a user
is close to any of these regions by calculating the simi-
larity (Equation 2) between the current Wi-Fi scan and
each of the Wi-Fi clusters produced in Step 2. If the user
is close to a turning region, we lower the thresholds
of accelerometer- and compass-based turning point de-
tection. Specifically, m/mabs is set to 0.11 and τcompass

is set to 20. The lower thresholds make turning point
detection more sensitive near the turning regions. If
both accelerometer- and compass-based approaches de-
tect turning activity, the user is classified as turning.

Layout Learning Along Hallway
Given a specific hallways, there are two different types
of room layouts along this hallway: (a) rooms on one
side of the hallway only and (b) rooms on both sides of
hallway. Not only do we need to identify each hallway
and the rooms along the hallway, we also need to deter-
mine the rooms’ orders and lengths along the hallway.

The hallway motion detection algorithm identifies the
Wi-Fi scan sequences collected in a particular hallway.
Those sequences may cover a whole hallway or seg-
ments of it. The hallway identification algorithm then
clusters those Wi-Fi sequences into groups so that each
group represents a unique hallway. All Wi-Fi sequences
in one group are collected in the same hallway. A trace
is not required to cover the whole hallway from one end
to the other. A user can start and end a trace at any
points on a hallway. The system can learn the complete
hallway layout as long as the aggregated traces cover
the whole hallway.

For each hallway h, we get a group of Wi-Fi scan se-
quences Sh and a room set s′h by comparing room fin-
gerprints with Wi-Fi scan sequences. To identify room
order and length of rooms along the hallway, we first
group rooms on the same side of hallway together
based on the room adjacency graph – if rooms are on
the same side of the hallway, their shortest path length
to the group equals 1. Then for each side of the hallway,
the following calculation is performed. For each Wi-Fi
scan sequence sh ∈ Sh, sh = {w1, . . . , wj}, we calculate
the similarity between wi(1 ≤ i ≤ j) and each room r
along the hallway based on Equation 2. Then we can
get a time series shown as real dots (blue) in Figure 2,
where x is the time point at which wi was collected and
y is the Wi-Fi similarity score. The time series tend to
follow Gaussian distribution, and fitting the time series
with a Gaussian model can help reduce noise in the Wi-
Fi similarity calculation..

We repeat this process for all rooms on the same side
of the hallway, producing results as shown in Figure 3.
We compute the orders of rooms by compare the times-
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Figure 2. Hallway room similarity fitting.

tamps at the means of the Gaussian distributions. The
time duration for crossing each room is also computed
using intersection of adjacent distributions. For exam-
ple, in Figure 3, the start time ts2 of crossing room 2 is
the intersection of room1 (blue) and room2 (red) curves
and the end time te2 is the intersection of room2 (red)
and room3(green) curves. The time duration of cross-
ing room 2 is thus ts2 − te2. The room length along
the hallway is computed by multiplying the duration
with average walking speed, which is set to be 1.4 m/s.
The final room length is the average of room lengths
computed from all sh in Sh. Using the average room
length eliminates outliers caused by a few users who
walk slower or faster than others.
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Figure 3. Hallway room order and size.

Hallway Assembling
We have learned a set of hallways H and the infor-
mation of room order and lengths along each hallway
h(h ∈ H). Hallway assembling aims to identify con-
necting and/or intersecting hallways. The assembling
algorithm starts with two hallways ha and hb (ha, hb ∈
H). If ha and hb share common rooms, they are assem-
bled as one of the structures in Figure 4 (a), (b), and (c).
The choice of structure is determined by the positions
of the shared rooms in each hallway. For example, if the
shared rooms are at one end of both hallways, the two
hallways are assembled as the structure in Figure 4(a).
We approximate the angle of two intersecting hallways
as either 45◦ or 90◦. These two intersection types allow
us to determine whether two hallways are perpendicu-
lar, and in turn capture the geometric relations among
rooms.

In order to estimate the angle between two hallways,
our system calculates the changes in compass readings
when a user turns from one hallway to the other. When
the change is larger than a threshold τ , the angle of
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Figure 4. Hallway assembling: Connecting multiple hallways.

the two hallways is classified as 90◦. Otherwise, it is
classified as 45◦. Due to noise resulting from magnetic
material in buildings, a single estimation is unreliable.
We use majority voting to determine the angle of two
hallways by considering compass reading changes from
different users and the same user at different times. We
evaluated this approach in four different buildings with
controlled experiments. The results show that the hall-
way angle classification accuracy is 93%.

Next, we pick another hallway hc that intersects with
ha or hb. The constraint of hallway intersection alone
is insufficient for the placement of hc. For example, in
Figure 4(d), if hc intersects with hb at one end, hc can be
placed either above hb or below hb. In order to deter-
mine that, we select a room rhc

from the side that does
not intersect with hb and another two rooms rabove and
rbelow which are above and below hb, e.g., two rooms
at each side of ha. If the similarity between fingerprint
rhc and rabove is greater than that of rhc and rbelow, hc is
placed above hb. Otherwise, it is placed below hb. We
define the similarity of two room fingerprints to be the
average similarity of each Wi-Fi scan in one room to the
fingerprint of the other room based on Equation 2.

Figure 4(e) shows one more scenario that needs to be
addressed in hallway assembling. Here, hd intersects
with ha and hc, but the length of hd is shorter than the
distance already learned between hc and hd. In that
case, we dilate hallway hd to satisfy the conditions, and
all rooms along hallway hd are dilated by the same pro-
portion.

In some large public buildings, e.g., airports and shop-
ping malls, a few hallways are curved. Figure 12 shows
an example from a shopping mall. In order to deal with
these scenarios, our system calculates the hallway curve
using the hallway length and direction angle changes
between the two ends of a hallway. The direction an-
gle changes are calculated using the compass sensor on
smartphone. We use the average value over multiple
users in order to reduce the impact of magnetic noise.

FORCE DIRECTED DILATION
Our hallway layout learning algorithm is able to es-
timate the room dimensions along each hallway (i.e.,
room length) but not the width (or depth) of these
rooms. To estimate the perpendicular dimensions, e.g.,
room 105 and 150 shown in Figure 9(c), another tech-
nique is required.

FrFsFs

(a) (b)

Fs

Figure 5. Spring system and the forces.

Algorithm 1 Force-Directed-Dilation(input G,D)
1: input G; . graph after hallway learning &

assembling
2: inputl D; . directions set: left, right, up, and down
3: while G is not in equilibrium state do
4: Compute Fvd on each v in d . v ∈ G and d ∈ D
5: Fvjdk

= Max(Fvd)
6: Stretch vj in direction dk with ∆ meters
7: end while

One might consider using user motion within rooms to
estimate room dimensions [1]. However, this approach
can be unreliable because it requires that users move
to all edges and corners of the room. In reality, users
are generally concentrated within part of a room. Thus,
we propose to use a force directed dilation technique to
estimate and automatically adjust the sizes of rooms.

Force directed algorithms [14, 3] have been applied to
the problem area of graph drawing. The idea is to place
graph nodes in 2D or 3D space with as few crossing
edges as possible. The algorithm assigns an attractive
and repulsive force to each edge in a graph. The val-
ues of the two forces are determined by the distances
between the nodes. Once the forces have been defined,
the algorithms gradually adjust the positions of nodes
until each node experiences net zero force.

Our floorplan optimization algorithm responds to at-
tractive Fs and repulsive Fr forces, between rooms. As
shown in Figure 5, if two rooms are connected in the
graph, we assign a spring system between their centers.
The force Fs exerted by a spring is defined as [3]. Note
that Fs also exists between hallways and rooms.

Fs(d) = c1 ∗ log(d/c2), (5)

where d is the length of the spring, and c1 and c2 are
constants. As shown in Figure 5(a), each room receives
the same amount of force Fs but in opposite directions.
We define Fr as the force generated by walls between
two adjacent rooms. Thus, if walls are not against each
other, as shown in Figure 5(a), the force Fr = 0. Other-
wise, Fr is equal to the opposite force on the wall, e.g.,
Fr = −Fs in Figure 5(b).

Having defined the attractive force Fs and repulsive
force Fr, we use the force directed dilation algorithm,
as sketched in Algorithm 1, to determine the dimen-
sions of the rooms. The inputs of the algorithm are
the graph G and direction set D. G is learned in the
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first two components and nodes have been placed as
learned/individual rooms. D represents the direction
of force and consists of four directions: left, right, up,
and down. A force F towards any other direction will
be decomposed into these four directions.

The equilibrium state of graph is defined as follows: (1)
the net forces F on all vertices are zero or (2) no vertex
in the graph can be dilated. If the graph is not in equilib-
rium state, we compute the sum of forces for each ver-
tex Fv and decompose it to each direction in D as Fvd.
Then we find the largest force Fvd and dilate vertex v in
direction d. Note that if there are multiple vertices with
the same largest force Fvd, all those vertexes will be di-
lated. The algorithm repeats the above steps until the
graph is in an equilibrium state.

The reason to dilate a room with the largest force Fvd

is that when a vertex has a larger force, it means that
the room has less similarity to the actual shape in the
floorplan. For example, in Figure 9(c), room 150 has the
largest force on the left direction, which is generated by
the attractive forces from room 105, 116 and 137. The
large force is caused by the deviation of room 105’s cur-
rently assigned size from its actual size.

We assign higher priorities to rooms like 150 and 105 be-
cause (1) adjusting those rooms will make the learned
floorplan look more like the real one and (2) avoiding
block among rooms while dilation. For example, room
116 in Figure 9(c) also receives force in the down direc-
tion. If we change it first, it will block the dilation of
room 150 in the following steps.

DEPLOYMENT STUDY
The system has been implemented as a mobile middle-
ware on Android. A pilot indoor mobile application
has also been developed built upon the floorplan con-
struction middleware. Nine users have been recruited
to conduct the deployment study at five different build-
ing sites: classrooms, research facilities, libraries, shop-
ping malls, and offices with a total of 189 unique rooms.
The user study lasted two months.

During the user study, the participants installed our
mobile app on their personal Android phones and car-
ried their phones normally without any change to their
daily activities. The data collection function is automat-
ically activated only when users are in the study build-
ings in order to minimize the impact on smartphone
battery lifespan and protect participants’ privacy. We
implemented a state-of-the-art room fingerprinting al-
gorithm [6] to generate the Wi-Fi based room finger-
prints that are required by the system as inputs. The
system automatically learned fingerprints for 91 unique
rooms using the algorithm. We manually collected fin-
gerprints for the remaining 98 rooms in order to gen-
erate complete floorplans. 11 phones of 6 types were
used. We collected more than 25 motion traces from
users for each hallway.
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Figure 6. Quality of room adjacency graph with different k.

Room Adjacency Graph Construction
We first evaluate the proposed room adjacency graph
construction algorithm, which provides fundamental
information for use in floorplan construction. We adopt
the precision-recall measure. More specifically, given
the ground truth graph G and the produced graph G′

of our algorithm, the recall is the number of links in G
divided by the sum of the number of links in both G
and G′s. The precision is the number of links in G′ di-
vided by the sum of the number of links in both G and
G′s. The precision-recall measure is evaluated under
different k-means clustering setting k. As shown in Fig-
ure 6, as k increases, recall increases and precision de-
creases. This is due to the fact that, with more clusters,
the algorithm becomes more sensitive to the change of
adjacency between rooms. However, as the correspond-
ing size of each cluster decreases, the classification pro-
cess becomes less robust. The deployment study shows
that a k value equaling to 4 times of the total number of
rooms provides a good precision-recall tradeoff.

Motion-Based Traversal/Turn Detection
We developed a motion detection technique for hall-
way traversal detection and turn detection. Appropri-
ate thresholds need to be experimentally determined
for high-accuracy motion detection.

Figure 7 evaluates the quality of hallway traversal de-
tection using different thresholds. Using precision-
recall measure, the recall is the total duration of cor-
rectly detected hallway traversals divided by the to-
tal duration of hallway traversals and the precision is
the total duration of correctly detected hallway traver-
sals divided by the total duration of detected hallway
traversals. This study shows that the threshold settings
for similarity between two consecutive Wi-Fi scans sig-
nificantly affect the quality of motion detection. Small
thresholds result in missing hallway traversals. Large
thresholds lead to misclassification of in-room walk-
ing as hallway traversal. The deployment study shows
that a threshold of 0.3 provides a good precision-recall
tradeoff.

Figure 8 evaluates the quality of hallway turn detec-
tion using the precision-recall measure. The proposed
method, which combines accelerometer, compass, and
Wi-Fi fingerprint data, is compared against the fol-
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Figure 7. Traversal detection quality with different thresholds.
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Figure 8. Turn detection quality comparison.

lowing three techniques, accelerometer-only, compass-
only, and accelerometer-compass. It shows that,
accelerometer-only based approach yields low recall
and precision due to high dynamics and diversities of
human motion. Compass-only based approach yields
high precision but suffers from low recall when metal-
lic objects are nearby. The combined accelerometer-
compass approach further improves precision with the
cost of low recall measure. On the other hand, leverag-
ing the proposed Wi-Fi fingerprint-based turning point
detection, our proposed solution offers both high preci-
sion and recall.

Floorplan Construction
Floorplans are the final output of the proposed system.
We show four case studies of automatically constructed
floorplans, a classroom building, a research lab build-
ing, a shopping mall, and a office builidng. The library
building floorplan is not shown due to limited space
and its similar structure to research lab building, but its
results are included in the following quantitative anal-
ysis results.

Figure 9 provides a step-by-step walk through of the
floorplan construction process for the classroom build-
ing – (a) is the ground truth floorplan; (b) is the room
adjacency graph; (c) is the initial floorplan after hallway
layout learning; and (d) is the final floorplan after force
directed dilation. The results show that the automati-
cally constructed floorplan offers excellent match to the
ground truth.

Figure 10 shows the research lab building case study,
which also shows excellent match to the ground truth.
In addition, detected floorplan mismatches are indi-
cated. The following room pairs (indicated in red)
had their positions swapped: 19–20, 40–41, and 49–
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Figure 9. Classroom building floorplan case study.
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Figure 10. Research lab building floorplan case study. Left side is
the original floorplan and right side is the learned one.

50. For rooms 44, 45, 46 (marked in blue), the width
is estimated incorrectly, because their widths are dif-
ferent from the rest of the rooms along the same hall-
way. Room 10 and 11 are elevators and emergency exits,
which are not accessible to our study and were there-
fore not detected and lead to overestimates of the sizes
of rooms 8 and 9.

Figure 11 shows the office building case study, in which
some rooms and hallways have irregular shapes. The
result shows that our approach can still estimate room
sizes and relative positions with reasonable accuracy
even for irregular rooms and hallways. Figure 12 shows
the shopping mall building case study, which has a
main curved hallway and rooms along the hallway. The
learned floorplan indicates that the room relations are
learned correctly but the room size and shape are not
exactly right. This is because we have no access to the
hallway behind the stores and the room shape is mainly
learned through our force-directed dilation algorithm
instead of the hallway layout learning algorithm.

To quantitatively measure the quality of the constructed
floorplan, the following three metrics are introduced:

• Position: A binary measurement for the relative posi-
tion of two adjacent rooms with four directions: up,
down, right, and left. Given two rooms, ra and rb, if
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Figure 11. Office building floorplan case study. Left side is the orig-
inal floorplan and right side is the learned one.

Figure 12. Shopping mall floorplan case study. Left side is the orig-
inal floorplan and right side is the learned one.

any part of rb is on the left side of room ra’s left wall,
we say that rb is on the left side of ra, similar conven-
tions are used for other directions. Also the position
may be a combination of two directions, e.g., up-left.
The position accuracy is defined as the total number
of room pairs with correctly learned relative position
divided by the total number of room pairs.

• Room area: The room length multiplied by width.
Room area error is defined as the difference between
learned room area and ground truth room area di-
vided by the ground truth room area.

• Aspect ratio: The room geometric length-width ratio,
which reflect the shape of a room. Ratio error equals
to the difference of learned ratio and ground truth di-
vided by real the ground truth.

Figure 13 shows the average position accuracy mea-
sure as a function of number of motion traces per hall-
way. Our system uses crowd-sourcing based learning
method. In general, the more user data collected, the
better its accuracy. Given the targeted accuracy mea-
sure, a good learning method should converge quickly,
and therefore have a low crowd-sourcing data require-
ment. Given different numbers of motion traces col-
lected per hallway, the corresponding floorplan accu-
racies are shown in this figure. When 20 traces are col-
lected in each hallway, the position accuracy converges
to 91%. Note that each motion trace can start and end
at any point in a hallway.

Figure 14 shows the area error measure with and with-
out the forced directed dilation. The results show that
force directed dilation consistently improves room area
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Figure 13. Position measure.
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Figure 14. Area measure.

estimation accuracy by 10%, achieving a stable error
measure of 33% with 20 data points per location.

Figure 15 shows the average aspect ratio measure. This
study shows that, force directed dilation consistently
helps reduce the error measure, converging to a 24% er-
ror rate with 20 data points per location.

RELATED WORK
In this section, we survey related work spanning the
following areas: indoor mapping techniques, user be-
havior sensing techniques, and Wi-Fi fingerprint based
indoor localization.

Floorplan construction
Simultaneous Localization and Mapping (SLAM) is a
technique to build a map in an unknown environment,
while simultaneously tracking the current location [2].
This technique is widely used in robotics. However, the
map constructed in SLAM consists of a set of signifi-
cant points, instead of floorplan. SmartSLAM applies
the SLAM approach on the smartphones [12]. It uti-
lizes the Wi-Fi signals collected when users are walking
to generate maps of a building. However, SmartSLAM
focuses on just hallway layout instead of the floorplan
of the whole building. For example, it cannot derive
the room dimension and position information. Alzantot
et al. have proposed a floorplan construction approach,
CrowdInside, based on user motion traces in the build-
ing [1].

Motion detection
There is a rich literature on user behavior sensing tech-
nologies [9, 7, 6, 10]. In this work, we implemented
the walking detection technology proposed by Jiang et
al. [6] because it has good energy efficiency. Turn de-
tection has been studied in previous work [7] using ac-
celerometer and compass on smartphones. However,
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Figure 15. Aspect ratio measure.

their technique is targeted for outdoor scenarios and
thus does not consider the impact of indoor environ-
ment on the accuracy of compass.

Comparisons
In contrast with our work, CrowdInside [1] does not
require Wi-Fi coverage and it works well for irregular
rooms and hallways. However, CrowdInside relies on
landmarks (e.g., elevator and stairways), which are not
always available. Moreover, it requires that user traces
cover all edges of a room in order to estimate its shape.
This requirement may not be met in practice because
users typically concentrate in portions of rooms, e.g.,
the desk area. In addition, the edges of rooms may be
inaccessible to users, e.g., blocked by furniture. In our
future work, we would like to investigate leveraging
their technique to further improve our system for irreg-
ular rooms and hallways while maintaining the benefit
of our approach that only rely on users’ motion in hall-
ways.

We also compared our work with two state-of-the-art
Wi-Fi based room localization systems: ARIEL [6] and
LiFS [16]. ARIEL [6] is a room fingerprinting sys-
tem that automatically clusters Wi-Fi signals by room.
In ARIEL, rooms have automatically assigned unique
room IDs and users can label rooms by their preference.
It works well when the number of rooms is small for
each individual user, but a large number of room la-
bels would be difficult for a user to memorize. In addi-
tion, this approach only provides the room information
without any contextual information, e.g., room size and
relations to other rooms. Our system, built upon the
ARIEL system, can automatically construct a floorplan
for users to tackle the above problems.

LiFS [16] assumes a floorplan is available and it auto-
matically maps Wi-Fi signals collected from users to the
existing floorplan. Their approach works well in build-
ings whose floorplans are available. Otherwise substan-
tial effort of manual floorplan construction may be re-
quired. Our system deals with the case when floorplan
is not available. LiFS is appropriate when floorplans are
available.

CONCLUSIONS
This paper has presented an automatic floorplan con-
struction system targeting indoor environments. The
proposed solution uses on-site Wi-Fi infrastructure. It

also uses information on the motion of occupants gath-
ered via crowd sourcing. Our analysis and optimiza-
tion techniques determine the identities and geometries
of individual rooms, as well as room adjacency infor-
mation, and then construct an indoor floorplan through
hallway layout learning and force directed dilation. The
system functions for a variety of indoor environments,
and is robust to Wi-Fi noise and variation in occupant
motion patterns. Deployment at three building sites
with 189 rooms yields an average room position ac-
curacy of 91%, room area estimation error of 33% and
room geometric aspect ratio error of 24%, using on av-
erage only 20 data points per location for the system to
converge.
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