
MOCSYN: Multiobjective Core-Based Single-Chip System Synthesis

Robert P. Dick and Niraj K. Jha

Department of Electrical Engineering
Princeton University

Princeton, New Jersey 08544

Abstract
In this paper, we present a system synthesis algorithm, called
MOCSYN, which partitions and schedules embedded system
specifications to intellectual property cores in an integrated cir-
cuit. Given a system specification consisting of multiple periodic
task graphs as well as a database of core and integrated circuit
characteristics, MOCSYN synthesizes real-time heterogeneous
single-chip hardware-software architectures using an adaptive
multiobjective genetic algorithm that is designed to escape local
minima. The use of multiobjective optimization allows a single
system synthesis run to produce multiple designs which trade
off different architectural features. Integrated circuit price,
power consumption, and area are optimized under hard real-time
constraints. MOCSYN differs from previous work by considering
problems unique to single-chip systems. It solves the problem of
providing clock signals to cores composing a system-on-a-chip. It
produces a bus structure which balances ease of layout with the
reduction of bus contention. In addition, it carries out floorplan
block placement within its inner loop allowing accurate estimation
of global communication delays and power consumption.

1 Introduction
The process of concurrently defining the hardware and software
portions of an embedded system while considering dependencies
between the two is called hardware-software co-design [1]–[4].
Time pressure makes it difficult for an engineer to explore the nu-
merous alternative designs which have the potential to meet a given
set of specifications. As a result, an engineer frequently selects a
conservative architecture after little experimentation, resulting in
a needlessly expensive system. The majority of past research in
the area of hardware-software co-design has attempted to ease the
process of design exploration, allowing an engineer to examine a
number of alternative implementations in the short time available.
Co-synthesis is the automation of the generation of an embedded
system architecture. Given an embedded system specification, a
co-synthesis system selects hardware and software processing ele-
ments, devices upon which tasks execute. In addition, the system
assigns each task to a processing element and ensures that tasks
which need to communicate with each other are capable of doing
so. Finally, schedules are produced for tasks and communication,
such that real-time constraints are met [5], [6]. Co-synthesis sys-
tems generate feasible, low-cost architectures without designer in-
tervention.

It is possible to implement some embedded systems using a
single integrated circuit (IC), thereby reducing cost and improv-
ing performance [7]. Economic and time pressures frequently
make it impractical to do an in-house design for each compo-
nent in a single-chip system. Fortunately, the number of intel-
lectual property (IP) cores available from the industry has dra-

This work was supported in part by an NSF Graduate Fellowship and in part by NSF
under Grant No. MIP-9729441.

matically increased in the past year. Companies like Alta Group,
VAutomatic Inc., Virtual Chips, and Intronic offer a wide range
of IP cores,e.g., protocol processors, general-purpose processors,
micro-controllers, digital signal processors, memory, and Data En-
cryption Standard engines.

Optimal co-synthesis is an intractable problem. Alloca-
tion/assignment and scheduling are each NP-complete for dis-
tributed systems [8]. As a result, it is not surprising that all co-
synthesis systems which employ optimal mixed integer linear pro-
gramming [9], [10] and exhaustive exploration [11] can only be
applied to small instances of the co-synthesis problem. There are
a number of co-synthesis algorithms which make the solution of
large problem instances tractable. To achieve reasonable run-time,
however, it is necessary to sacrifice the guarantee of solution op-
timality. Iterative improvement algorithms start with a complete
solution and make local changes to it in an attempt to improve
the solution’s cost [5], [12], [13]. Constructive algorithms build a
system by incrementally adding components to it [14], [15]. Sim-
ulated annealing algorithms have been successfully used to par-
tition hardware-software systems [16]. Genetic algorithms have
been applied to the hardware/software partitioning problem [17].
A multiobjective genetic algorithm was applied to the more gen-
eral co-synthesis problem [18].

MOCSYN, which stands formultiobjectivecore-based single-
chip systemsynthesis, differs from past work by considering
a number of issues unique to core-based single-chip systems.
MOCSYN determines the clock frequencies supplied to different
cores. It generates priority-based bus structure of arbitrary topol-
ogy, balancing ease of routing and bus contention minimization.
In addition, it conducts floorplan block placement [19] within its
inner loop, allowing estimates of global wiring delays and power
consumption to be used during scheduling and cost calculation.
Experimental results demonstrate that a global bus is, in general,
inferior to the use of priority-based arbitrary bus topologies. Con-
ducting block placement in the inner loop frequently results in an
improvement in solution quality when compared with worst-case
or best-case communication delay estimates.

2 Data structures and definitions
In this section, we describe the data structures used in MOCSYN
and define basic co-synthesis terms.

Cost: A cost is a variable that a synthesis system attempts to
minimize. Price, power dissipation, and IC area are examples of
costs.

Task graph: As shown in Fig. 1, a task graph is a directed
acyclic graph in which each node is associated with a task and
each edge is associated with a scalar describing the amount of data
that must be transferred between the two connected tasks. A task
with an incoming edge,i.e., a task toward which an edge’s arrow
points, may execute only after receiving data from the other task
to which the edge is connected. Thus, in Fig. 1,DCT is data-
dependent onNEG. Theperiod of a task graph is the amount of

Deadline = 15

Deadline = 23

4

6

Deadline = 10

Period = 8

4

33

IOP DCT

FIL

FT

NEG

Figure 1: Task graph

time between the earliest start times of its consecutive executions.
A node without any outgoing edges is asink node. A deadline, the
time by which the task associated with the node must complete its
execution, exists for every sink node. Other nodes may also have
deadlines associated with them.

Multi-rate: A multi-rate system contains task graphs with dif-
ferent periods. It was shown in [20] that, in order to guarantee a
valid schedule for a multi-rate system, each task graph must re-
peatedly execute until the least common multiple (LCM) of the
periods, termed as the hyperperiod, of all the task graphs in the
system has elapsed.

Core: A core executes one or more tasks. Multiple cores may
be located on the same IC, upon which multiple tasks may ex-
ecute simultaneously. The following information establishes the
relationship between tasks and cores:� A two-dimensional array indicating the relative worst-case

execution time of each task on each core.� A two-dimensional array indicating the relative average
power dissipation of each task on each core.� A two-dimensional array indicating the core types upon
which each task type may be executed.

In addition, each core has a price which corresponds to royalties
paid to the IP producer on a per-use basis. This price is zero for
royalty-free IP cores. If IP has a one-time fee instead of, or in ad-
dition to, a per-use royalty, the price is equivalent to the one-time
fee divided by the expected production volume. Each core has a
width, a height, a maximum clock frequency, a variable indicat-
ing whether or not its communication is buffered, and an energy
consumption per cycle dedicated to communication.

Core allocation: The information denoting the number of cores
of each type present in an IC.

Link: A link is a potential point-to-point contact between a pair
of cores. Any given link may be merged with other links during
bus formation (see Section 3.7), thereby ceasing to exist.

Task assignment: The information denoting the core upon
which a given task is executed.

Architecture: A set of allocation, assignment, and scheduling
information which defines an embedded system.

3 The MOCSYN algorithm
In this section, we give an overview of MOCSYN (see Section 3.1)
and describe the algorithms of which it is composed. Section 3.2
describes the algorithm used to determine the clock frequency used
for each type of core. Section 3.3 describes the initialization of

MOCSYN’s data structures. Section 3.4 describes how core allo-
cation and task assignment are determined. Section 3.5 explains
how links are prioritized. The block placement algorithm used by
MOCSYN is described in Section 3.6. Bus topology generation is
explained in Section 3.7. Scheduling is explained in Section 3.8.
Finally, cost calculation is described in Section 3.9.

3.1 Algorithm overview
In this subsection, we give a high-level description of the
MOCSYN algorithm. MOCSYN carries out the following tasks:

1. Determine aclock frequencyfor each core type, subject to
trade-off between execution time and power consumption.

2. Determine theallocationof cores to use.
3. Determine the tasks toassignto each core, subject to trade-

off between ease of routing and minimization of bus con-
tention.

4. Determine abus structureto use on the IC.
5. Derive ablock placementfor the cores, allowing an estima-

tion of wire delay, wire power consumption, and silicon area.
6. Assigneach communication event to a bus.
7. Schedulethe tasks on the cores and the communication

events on the communication links.
MOCSYN uses a genetic algorithm to optimize embedded sys-

tem architectures. In general, genetic algorithms have the abil-
ity to escape local minima. They allow solutions to cooperatively
share information with each other. Genetic algorithms are espe-
cially useful for simultaneously optimizing more than one cost.
Conventional iterative improvement and simulated annealing algo-
rithms maintain only one solution at a time. Most single-solution
optimization algorithms collapse all costs into a single value with a
weighted sum [21], [22]. Genetic algorithms maintain a pool of so-
lutions which evolve in parallel. This allows solutions to be ranked
relative to each other. Genetic algorithms are capable of true mul-
tiobjective optimization, exploring thePareto-optimal setof solu-
tions,i.e., those solutions which are better than any other solution
in at least one way. In a genetic algorithm, solutions are iteratively
improved bymutation, randomized local changes to a solution,
andcrossover, during which information is shared between differ-
ent solutions. In this paper, we concentrate on the unique problems
encountered when designing single-chip core-based systems.

Initialization

Change core
allocation

Results

Clock
selection

Communication
assignment

Schedule

Task
prioritization

Change task
assignment Link

prioritization

Bus
structure

Architecture loop

Cluster loop

Link
re-prioritization

Block placement

Figure 2: MOCSYN overview

An overview of the MOCSYN algorithm is shown in Fig. 2.
Initially an optimal, but potentially slow, algorithm determines the
clock frequency to provide to each core. Basic data structures are
then initialized. MOCSYN is a hierarchical algorithm. It uses a
genetic algorithm to improve the task assignments of individual

architectures. More detailed information about this genetic opti-
mization framework can be found in [23]. After this phase has
been repeated an arbitrary (user-selectable) number of times, an
attempt is made to improve the core allocation of aclusterof ar-
chitectures,i.e., a collection of architectures which share the same
core allocation but may have different task assignments. Within
the architecture optimization loop, a number of deterministic al-
gorithms are used to concurrently evaluate the core allocation and
task assignment of each architecture. First, a priority is assigned to
each link,i.e., the communication carried out between each pair of
cores. These priorities are used to generate a block placement for
the cores, ensuring that core pairs for which communication pri-
ority is high are located near each other. Links are re-prioritized
based on global wiring delay information which is extracted from
the block placement. A bus structure which trades off potential
bus contention for ease of routing is produced. At this point, tasks
are prioritized and a schedule is generated for the tasks assigned
to each core. Communication events are concurrently assigned to,
and scheduled on, busses. At the completion of each architecture
optimization loop, changes are made to the task assignments in an
attempt to improve them. At the completion of each cluster opti-
mization loop, changes are made to the core allocations in an at-
tempt to improve them. Each of the sub-algorithms noted in Fig. 2
is described in the following sections.

3.2 Clock selection
In this subsection, we discuss the problems associated with se-
lecting a clock frequency for each core in an IC and describe the
algorithm used in MOCSYN to solve these problems.

Communication between cores in an IC can be single-frequency
synchronous, multi-frequency synchronous, or asynchronous
[24], [25]. Single-frequency synchronous communication has the
potential to keep communication overhead at a minimum. How-
ever, its use requires that all the cores which communicate with
each other be clocked at the same frequency. When different cores
have different maximum frequencies, all cores must be clocked at
a frequency less than or equal to the maximum frequency of the
slowest core. Thus, using a single-frequency synchronous com-
munication protocol will generally force sacrifices in core speed.
Multi-frequency synchronous communication allows cores with
different clock periods to communicate with each other at a rate
proportional to the LCM of the communicating core’s periods.
Unfortunately, when cores have different minimum periods and
efforts are made to allow each core to run near its maximum fre-
quency, the LCM of the periods of communicating cores can be
significantly higher than the period of any individual core,e.g.,
LCM

✁✄✂✆☎✞✝✠✟☛✡✌☞✠✂
. This generally results in slow communication.

A third option is asynchronous communication. Although it has a
reputation for increasing communication overhead, we believe that
it is the best available option for systems in which different cores
are clocked at significantly different frequencies. Using asyn-
chronous communication, communication speed is bounded only
by the bus bandwidth and rate at which communicating cores can
transmit and receive information. Using asynchronous commu-
nication has the additional advantage of making inter-core clock
skew irrelevant. Past work provides a framework for automatically
synthesizing asynchronous interface protocols [25].

Given that one is using asynchronous communication, the se-
lection of clock frequencies for the cores comprising a single-chip
system need not be constrained by communication considerations.
However, there are a number of other problems which must be
dealt with. Supplying each core with an arbitrary clock frequency
would require a large number of frequency generators,e.g., analog
timers based on RC delay or crystal oscillation. These compo-
nents are difficult to integrate with conventional CMOS IC pro-
cesses. Using discrete components is a poor option because each
additional external component increases the price and area of an
embedded system. Thus, a clocking approach which requires only

For each✍ between 1 and✎ , inclusive,
there is an array,✏✒✑ , of size ✓✕✔✗✖✙✘ ,
which contains integers.

Each of these integers is the current denominator
for the numerator equivalent to its index.

Optimize ✚ for the current✛ ’s.

For all ✍ ’s between 1 and✎ , inclusive, if ✜✢✑ ✡ ✜✆✔✗✖✙✘✣✑ :✤
ranges from 1 to✓✗✔✗✖✙✘ , inclusive

Find the
✤

for which
✤✆✥ ✁ ✏ ✑ ✦★✧✪✩ ✟ is maximal

Increment✏☛✑ ✦
Set ✫ ✑✭✬ ✏ ✑ ✦
Set ✓✮✑ ✬ ✤

Figure 3: Clock selection kernel

one frequency source but allows nearly arbitrary frequencies to be
delivered to each core would be advantageous.

We use an approach in which a single external oscillator is used
to supply a base frequency. A cyclic counter or interpolating clock
synthesizer associated with each core is used to divide this fre-
quency by an integer, in the case of a cyclic counter, or multiply
the frequency by a rational number, in the case of an interpolat-
ing clock synthesizer [26]. A description of the clock selection
algorithm used in MOCSYN follows, which is capable of dealing
with interpolating clock synthesizers. As the cyclic counter clock
selection problem is a special case of the interpolating clock syn-
thesizer clock selection problem, the algorithm used in MOCSYN
is capable of solving either problem.

Given: A maximum external clock frequency (✚✯✔✗✖✙✘) and
a maximum frequency associated with each of the✎ cores✁ ✜✆✔✗✖✙✘✭✰ ☎ ✜✆✔✗✖✙✘✲✱ ☎✴✳✵✳✢✳✵☎ ✜✆✔✕✖✶✘✸✷ ✟ .

Each core’s clock frequency multiplier is a rational number,✛✹✑ ✡ ✓✮✑ ✥ ✫✺✑ , with a positive integer numerator✓✮✑ less than or
equal to a user-supplied maximum,✓✗✔✗✖✙✘ , and a positive integer
denominator,✫✻✑ . A core’s internal frequency,✜✵✑ , is equal to the
external frequency (✚) multiplied by its multiplier,✛ ✑ .

MOCSYN maximizes the average of the ratios of the core fre-
quencies (✜ ✑) to the core frequency maxima (✜✆✔✗✖✙✘ ✑), i.e.,✼ ✷✽ ✑✿✾❀✰ ✜ ✑ ✥ ✜✆✔✗✖✙✘ ✑❂❁ ✥ ✎

It is simple to determine an optimal external frequency (✚) if
the value of each multiplier

✁ ✛✹✑ ✟ is known. Obviously, for an
optimal ✚ , ❃✶✍❅❄❇❆ ✩ ☎ ✎✣❈ such that✜ ✑ ✡ ✜✆✔✕✖✶✘ ✑ . Thus, one need
only consider a small set of✚ ’s. ❉✣✍☛❄❊❆ ✩ ☎ ✎✲❈ ☎ ✚❋✑ ✡ ✜✆✔✕✖✶✘✸✑ ✥ ✛✹✑ .
The ●❅❍❏■ ✷✑❑✾❀✰ ✚ ✑ for which ▲ ✷✑❑✾❀✰ ✜ ✑❋▼ ✜✆✔✕✖✶✘ ✑ is the optimal✚ for
a given set of✛ ’s.

The only remaining problem is to determine an optimal set of✛ ’s. It is obvious that, for any given pair of✜✆✔✗✖✙✘ ’s, ✜✆✔✕✖✶✘❖◆ and✜✆✔✗✖✙✘✣P , if ✜✆✔✗✖✙✘ ◆❘◗ ✜✆✔✕✖✙✘✣P then an optimal✛ ◆❙◗ ✛✹P . This
observation allows the solution space of✛ ’s to be pruned.

Initially, all ✫ ’s are equal to 1 and all✓ ’s are equal to✓✗✔✕✖✶✘ .
Therefore, all✛ ’s are equal to✓✗✔✗✖✙✘ .

To maximize the average of core frequency to maximum fre-
quency ratios, one need only repeatedly execute a simple algo-
rithmic kernel, while keeping track of the best set of✛ ’s, until✚ ▼ ✚✯✔✗✖✙✘ . This kernel is shown in Fig. 3. Although, given a
maximum highest internal clock frequency of✜✆✔✕✖✶✘❖◆ and a min-
imum highest internal clock frequency of✜✆✔✗✖✙✘✣P , this algorithm
takes ❚ ✁ ✎✗❯✵✓✗✔✗✖✙✘❱❯✢✜✆✔✕✖✶✘❖◆ ✥ ✜✆✔✗✖✙✘✣P ✟ time, in practice it is fast
(see Section 4).

Linear interpolating clock synthesizers are compatible with
standard digital design tools and processes. Their use provides

a significant advantage: one can distribute a base global clock fre-
quency which is well below the maximum local clock frequencies,
thereby reducing power consumption in the global clock distribu-
tion net. However, interpolating clock synthesizers are more com-
plicated than cyclic counters. In addition, they are likely to require
more area [26]. If one chooses to use cyclic clock division coun-
ters, instead of linear interpolating clock synthesizers, the same
clock selection algorithm is used. However,✓✗✔✗✖✙✘ is set to 1.

3.3 Initialization
At the start of an optimization run, each cluster’s core allocation
is initialized. One of three initialization routines is randomly se-
lected:

1. Add one core of a randomly selected type.
2. Add one core of each type.
3. Repeatedly add cores of random types until a random number

(ranging from one to twice the number of core types) has
been added.

MOCSYN ensures that there is at least one core capable of ex-
ecuting each type of task in the input task graphs. It checks each
task and adds an appropriate core to the allocation if none of the
cores currently in the allocation are capable of executing the task.
Each architecture’s tasks are assigned using the task assignment
algorithm described in Section 3.4. The global temperature of the
genetic algorithm is set to one. This temperature decreases dur-
ing the run of the algorithm and is used to control the probabil-
ity of making a core allocation or task assignment change which
decreases the quality of a solution [23]. At the beginning of an
optimization run, random changes are made. As time progresses,
MOCSYN becomes greedier, making only those changes which
result in an improvement in core allocation or task assignment
quality. This property increases the probability that MOCSYN will
escape local minima [27].

3.4 Core allocation and task assignment
Core allocations are optimized by MOCSYN’s genetic algorithm.
The allocations change via crossover and mutation of the data
structure which maintains the core allocations for each cluster of
architectures. When mutation occurs, a core is added or removed
from the core allocation. The probability of adding a core is equiv-
alent to MOCSYN’s global temperature, which gradually changes
from one to zero during the run of the algorithm. This results in
allocations being more likely to increase during the start of a run
and more likely to be pruned near the end of a run. After removing
a core, MOCSYN ensures that there is at least one core capable of
executing each type of task present in the input task graphs using
the method described in Section 3.3.

Core allocation crossover swaps portions of the core allocations
of two clusters with each other. MOCSYN uses a novel method for
selecting portions of the core allocations to be swapped. The prob-
ability of the allocations of two types of cores remaining together
during a crossover,i.e., the probability that both are swapped or
that both are not swapped, is proportional to the similarity between
the data describing the core types,e.g., prices, execution time vec-
tors, and power consumption vectors.

Task assignment mutation causes tasks to be reassigned to dif-
ferent cores. A task graph is randomly selected and a number
of tasks within the graph are randomly selected for reassignment.
The number of tasks to be reassigned is equivalent to the num-
ber of tasks in the task graph multiplied by the global tempera-
ture. For each task selected, a new core assignment is determined.
A core’s Pareto-rank is the number of other cores for which at
least one property is inferior. First the properties of each core,
when executing the given task, are used to determine the Pareto-
ranks of all the cores capable of executing the task. Execution
time, energy consumption, core area, and weight, a measure of the
time required to execute the tasks already assigned to a core, are
used in the Pareto-ranking process. An array of cores is sorted in

order of increasing Pareto-rank. The core to which the selected
task is re-assigned is determined by indexing into the sorted array
by ❲ ✁ ✩❋❳❙❨ ❩★❬❏❭ ❪❫❬❵❴✸❛ ✟ ❯ ❬❵❪✞❪❫❬❵❜ ❝❡❞❣❢✐❤✴❥ where flatrand is a uniform
random variable ranging from [0, 1) and arraysize is the size of
the sorted array of cores.

Task assignment crossover causes the task assignments of one
or more task graphs to be swapped between two architectures.
The probability of the task assignments of two task graphs re-
maining together during a crossover is proportional to the simi-
larity between the data describing the task graphs,e.g., periods
and deadlines. A similar algorithm is used for both core allocation
crossover and task assignment crossover.

3.5 Link prioritization
This subsection describes the algorithm used by MOCSYN to pri-
oritize links. Communication priority is composed of two values:
slack and communication volume.Slackis the difference between
the earliest finish time and latest finish time of a task. Thus, it
is the amount of time by which a task’s execution can be delayed,
from its earliest possible execution time, without causing any other
tasks to miss their deadlines. Earliest finish times are computed by
considering task execution times during a topological search of the
task graph, starting from the node with no incoming edges. Latest
finish times are computed by conducting a backward topological
search of the task graph, starting from the nodes which have dead-
lines.

Task graph edges, which signify communication, have a slack
equivalent to the average of the slacks of the tasks they connect.
Link priority determination is conducted before block placement
and bus topology generation. Therefore, it is not possible to take
communication time into account during communication priority
determination. Hence, at this stage, slack is only estimated. This
problem is corrected later, during link re-prioritization. Commu-
nication volume is the quantity of communication which passes
along a link. Link priority is a weighted sum of the reciprocals of
the slacks of the task graph edges along it and its communication
volume.

3.6 Floorplan block placement
This subsection describes the block placement algorithm used
within MOCSYN’s inner loop. This algorithm is based on pre-
vious work. Initially, a balanced binary tree of cores is formed,
based on the priority of communication between core pairs. Ac-
counting for the priority of communication between core pairs is
an extension of the historical algorithm, which considered only
the binary presence or absence of communication [28]. As a re-
sult, the time complexity of the partitioning algorithm is increased
from ❚❧❦♠✎ ✱✵♥ to ❚♦❦♠✎ ✱ ❯✢♣rq✠st✎ ♥ where ✎ is the number of cores.
Cores which are adjacent in the binary tree will be adjacent in the
final block placement. After forming the binary tree, MOCSYN
optimally determines the orientations of all of the cores such that
the aspect ratio of the IC,i.e., the ratio between width and height,
does not exceed a value specified by the user. Under this condi-
tion, IC area is minimized. This algorithm is based on past work
and takes❚ ✁ ✎✗❯✵♣rq❵s✉✎ ✟ time [29].

3.7 Bus formation
This subsection describes the algorithm used by MOCSYN to pro-
duce an arbitrary bus topology.

MOCSYN recalculates link priorities using an algorithm sim-
ilar to that described in Section 3.5. The global wiring delay in-
formation extracted from the block placement, however, is used to
estimate communication time during this calculation.

In Fig. 4, the core graph represents four cores (A, B, C, and
D). The edges connecting pairs of cores represent communication,
i.e., no edges exist for core pairs between which there is no com-
munication. The numeric labels on the edges denote the priority of
the communication occurring between the connected cores. Thus,
communication with a priority of seven occurs between coreA

5

CB

A 7

2

D

2

AB
5

AC
2

CD
2

7
AD

7
AD

4
ACD

AB
5

AD
7

9
ABCD

Core graph

Bus graph 2 Bus graph 1

Link graph

Figure 4: Bus formation

and coreD. The first step of MOCSYN’s bus formation algorithm
converts this core graph into a link graph, as shown in Fig. 4. For
every pair of cores between which communication occurs, a node
with the priority equivalent to that pair’s communication priority
is added to the link graph. Link graph nodes which share at least
one core are connected to each other with edges. Since coreA
communicates with coreB with a priority of five, there is a node
in the link graph, calledAB, with a value of five. There is an edge
between nodeAB andAC because they share coreA. There is no
edge between nodeAB andCD because they share no core.

The link graph is incrementally changed by merging the pair
of nodes, between which there exists an edge and for which the
sum of priorities is minimal,i.e., less than the sum of the priorities
of any other pair of nodes between which an edge exists. The new
node’s name is the set union of the merged nodes’ names. The new
node’s priority is the sum of the priorities of the nodes merged to
form it. Thus, when nodeAC is merged with nodeCD in bus graph
1, the resulting node has the nameACD and a priority of four (2 +
2). This algorithm is halted when the number of busses is less than
or equal to a user-specified value.

After halting the bus formation algorithm, one is left with a bus
graph in which each node represents a bus. Thus, in bus graph
2, there exists one global bus (ABCD) and one point-to-point link
(AD). Note that the algorithm tends to form large common busses
for multiple low-priority communications while producing smaller
busses for high-priority communication. In this way, bus con-
tention is reduced for high-priority communication while routing
and multiplexing complexity is reduced for low-priority commu-
nication.

3.8 Scheduling
In this subsection, we describe the scheduling algorithm used in
MOCSYN. Scheduling is NP-complete for distributed systems
[8]. We, therefore, resort to a heuristic scheduling algorithm.
MOCSYN uses a preemptive static critical path scheduling al-
gorithm. The resulting schedule is static,i.e., the time at which
each event is carried out is computed by MOCSYN to determine
whether or not hard deadlines are met by the schedule. Such guar-
antees are not possible, in general, when task priorities are allowed
to vary during the operation of the synthesized architecture.

We assume that uniform buffers are distributed throughout the
communication networks in order to minimize communication de-
lay. The use of regularly distributed buffers reduces the depen-
dency of delay on wire length from❚ ❦✄✈❂✇ ✎ ✱✵♥ to ❚ ✁ ✈❂✇ ✎ ✟ where

✈❂✇ ✎ is wire length. Given the process parameters, and V①②① , opti-
mal buffer spacing is calculated. This value is used to determine
the RC delay between a pair of cores [30]. This value is divided
by the bus width and multiplied by the number of digital voltage
transitions to determine the delay for a communication event. Core
execution time is equal to the number of execution cycles divided
by the core’s frequency.

MOCSYN targets multi-rate embedded systems. It ensures va-
lidity of schedules by scheduling copies of task graphs until the
hyperperiod has been reached. It is, therefore, possible to have
multiple task copies in the schedule for a single task specified in
the input task graphs. When there are multiple copies of the same
task graph, they are numbered in order of increasing start node ear-
liest start time. Each copy’s number is itstask graph copy number.
Task graphs may have periods which are less than the maximum
deadline in the task graph. This makes it possible for the execu-
tion of multiple instances of the same task graph to overlap in time.
MOCSYN handles this case correctly and is capable of interleav-
ing tasks from different copies of the same task graph, as well as
from different task graphs.

Before scheduling, MOCSYN assigns a priority to each task.
This priority is the slack of the task. It differs from the slack com-
puted in Section 3.5 because, at this point, a block placement has
been generated. Thus, slack takes communication delay into ac-
count. Unfortunately, the effects of bus contention are unknown
before scheduling is carried out.

When the scheduling algorithm begins, all tasks with no incom-
ing edges are entered into a pending list which is sorted in order
of decreasing slack. Ties are broken by ordering the tasks which
share the same slack by increasing task graph copy number. Tasks
are iteratively removed from the end of the pending list and sched-
uled. After a task is scheduled, tasks which are data-dependent
upon it are checked to determine whether all of their dependencies
have been satisfied. Tasks which pass this test are entered into the
pending list and the pending list is sorted again before scheduling
the next task.

Before scheduling an individual task,③ , MOCSYN schedules
all of its incoming edges,i.e., communication events. Each edge is
scheduled on a bus connecting the core to which③ is assigned and
the core to which③ ’s parent is assigned. When multiple busses
are available, MOCSYN selects the bus upon which the com-
munication event will complete at the earliest time. If either of
the communicating cores does not have communication buffers,
MOCSYN schedules the communication event to the unbuffered
cores as well.

Every time a task is scheduled on a core, MOCSYN determines
whether or not preemption is likely to result in an improved sched-
ule. MOCSYN first tentatively schedules a task,③ , to the earliest
time slot on its core, which starts after its incoming edges have
completed execution, and has a long enough duration to accommo-
date the task. MOCSYN then checks to see whether preempting
the task,④ , which is scheduled to the same processor as③ , previous
and adjacent to③ , would result in anet improvement, where net
improvement is defined as the❳ (increase in finish time for④) ✧
(decrease in finish time for③) ❳ (③ slack)✧ (④ slack). If preemption
results in a net improvement, there is enough time available on the
core processor before the next scheduled task, and preempting④
does not change the times at which it communicates with tasks on
other cores, then the preemption is carried out.

3.9 Cost
In this subsection, we describe the manner in which an architec-
ture’s costs are calculated. As mentioned before, MOCSYN opti-
mizes architecture price, area, and power consumption under hard
real-time constraints. An architecture is invalid if any task with
a deadline violates that deadline. Power consumption is the sum
of the energy consumptions of all of an IC’s tasks executed on
all its cores, throughout the hyperperiod, in addition to the energy

consumed in the global clock distribution and communication net-
works, divided by the hyperperiod. As discussed in Section 3.8, we
assume regularly spaced buffers in the global communication net-
work. In addition, the clock network is assumed to be constructed
with buffered segments. Leakage current is assumed to be negli-
gible. This allows delay and energy consumption to be estimated
as linear functions of wire length and transition count, with con-
stant factors derived from the process parameters and V①②① . Ulti-
mately, three such constant factors are computed: communication
wire delay factor, communication wire energy factor, and clock
energy factor. The energy consumed by the global clock network
is determined by estimating the total wire length of this network,
multiplying this value by the number of transitions occurring dur-
ing a hyperperiod, and also multiplying by the clock energy factor.
The wire length estimate is derived from a minimal spanning tree
of the core positions in the block placement. This provides a con-
servative estimate on wire length. A Steiner tree may be used in
the final post-optimization routing operation. However, computa-
tion of minimal Steiner trees is time-consuming (NP-complete).
Hence, it is not used in inner-loop routing estimates. Energy con-
sumption in the global communication networks is similarly com-
puted. A separate minimal spanning tree is computed for each bus.
The transitions required for the communication events occurring
on each bus are used to compute the bus energy consumptions.

An architecture’s price is the sum of the prices of all the cores
on the IC plus the area-dependent price of the IC. The area of the
IC is equivalent to the total rectangular area required for its block
placement.

4 Experimental results
In this section, we present experimental results demonstrating the
effects of a number of algorithms employed within MOCSYN.
Section 4.1 shows the results produced by the clock selection al-
gorithm when run on an example. In Section 4.2, we empirically
determine the influence of a number of MOCSYN’s specialized
algorithms. Section 4.3 shows the result of running MOCSYN on
a number of examples in multiobjective optimization mode.

Previous co-synthesis systems do not target the single-chip syn-
thesis problem. As a result, there is not a body of examples with
which MOCSYN’s performance can be compared. It is, however,
possible to experimentally determine the effects of the algorithms
comprising MOCSYN. The examples discussed below attempt to
determine how clock selection, block placement, and bus topology
generation affect the solution of the single-chip synthesis problem.
The data used in these examples are available via anonymous FTP
at ftp://ftp.ee.princeton.edu/pub/dickrp/MOCSYN.

4.1 Clock selection
MOCSYN automatically selects clock frequencies for each core
using the algorithm described in Section 3.2. In this subsection,
we examine the results produced by this algorithm when run on an
example problem.

In the interest of decreasing the power consumed in the global
clock distribution network, one may reduce the frequency of the
base clock. There is a trade-off between power consumption and
execution time. However, this relationship is not linear. Fig. 5
shows the relationship between maximum reference clock fre-
quency and the average proportion of maximum internal clock
rates at which the cores are clocked for a set of eight cores, each
of which has a random maximum internal frequency ranging from
2 to 100 MHz. Each sample point lies at the optimal reference
clock frequency for a set of core multiplier values. The top solid
line shows the average ratio of actual core frequencies to maxi-
mum core frequencies for linear interpolating clock synthesizers
with a maximum numerator of eight. The bottom solid line corre-
sponds to a cyclic counter clock divider. The dotted lines indicate
the maximum ratio encountered before or at each frequency. The
increase in power consumed by the clock reference frequency dis-
tribution network is approximately a linear function of frequency.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 p
ro

po
rt

io
n

of
 m

ax
im

um
 in

te
rn

al
 fr

eq
ue

nc
ie

s

⑤

External frequency (MHz)

8X frequency multiplication

No frequency multiplication

Figure 5: Clock selection quality as a function of external fre-
quency

As shown in Fig. 5, the quality of the internal clock frequencies is
a sub-linear function of reference clock frequency. If one were us-
ing an interpolating synthesizer with maximum numerator of eight
for the cores in this example, choosing a maximum reference fre-
quency greater than 100MHz would not result in a significant in-
crease in execution speed but may have a negative impact on sys-
tem power consumption.

4.2 Feature comparisons
This subsection empirically shows the influence of a number of the
core-based synthesis algorithms used in MOCSYN.

Table 1 shows the results of synthesizing a number of ICs using
MOCSYN with various sets of features enabled. For these exam-
ples, price was optimized under hard real-time constraints. If mul-
tiobjective optimization were used, it would be difficult to compare
the solutions produced by different versions of MOCSYN because
each problem might have more than one solution (see Section 4.3).
Each example in Table 1 is produced with the aid of TGFF [31],
a randomized task graph and core generator which allows corre-
lation between different attributes. The examples are multi-rate.
Each contains six task graphs with an average of eight tasks each
and a variability of seven tasks. For each task with a deadline, the
deadline is equal to

✁⑦⑥ ✇ ④❖③⑨⑧ ✧❙✩ ✟ ❯ ✝✆☎✞⑩✠❶✠❶✐❷ s where
⑥ ✇ ④❖③⑨⑧ is the dis-

tance of a task, in nodes, from the start node of a task graph. Each
communication event requires an average of 256 kilobytes, with a
variability of 200 kilobytes, of data to be transferred. There are
eight core types, each of which has an average price of 100 with
a variability of 80. Each core has an average width and height
of 6 mm and a width and height variability of 3 mm. The core
maximum frequency average is 50 MHz with a variability of 25
MHz. Cores have buffered communication 92% of the time. Com-
munication on cores requires an average of 10 nJ per cycle with a
variability of 5 nJ per cycle. Tasks require an average of 16,000
cycles to execute with a variability of 15,000 cycles. Task preemp-
tion takes an average of 1,600 cycles with a variability of 1,500
cycles. Tasks dissipate an average of 20 nJ per cycle with a vari-
ability of 16 nJ per cycle. 57% of the core types are capable of
executing any given task type. Communication wire delay factor,
communication wire energy factor, and clock energy factor are cal-
culated based on the 0.25

❷
m process parameters given in the lit-

erature [32], with a V①t① of 2.0 V. Communication networks are
assumed to be 32 bits wide. Wire delay and power consumption
per

❷
m per transition are calculated based on the use of a buffer

separation distance which optimizes delay per
❷

m. The maximum
clock reference frequency is 200 MHz and the maximum interpo-

Table 1: Feature comparisons
Worst-case Best-case Single

Example
MOCSYN

commun. commun. busprice
price price price

2 181 181 181 181
3 255 255 255
4 211 211 211 211
5 154 154 154 154
6 230
7 174 174 174 174
8 219 219
9 182 182 182
10 901
11 166 166 166 166
12 405 405
13 636
14 166 368 166
15 151 151 151 151
16 389
17 302
18 315
19 320 365 320
20 176 176 176 176
21 212
22 170 257 257 257
23 322 323 322
24 421 421
25 113 113 113 113
26 440
27 173 173 173 173
28 858
29 169 169 186 169
30 203 203 203
32 396 406
33 317
34 368
35 694
36 269
37 132
38 460 460
39 179 270 179 270
40 327 327
41 273 273 273
42 426
43 72 72
44 182 182
45 148 148 148 148
46 344 344 344
47 404 404 285
48 135 135
49 60 60 60 60
50 291 357 211

Better 0 0 0 3
Worse 0 26 31 24

lating clock synthesizer numerator is eight. For each example, the
same parameters are given to TGFF and MOCSYN. Only the ran-
dom seed given to TGFF is varied, to produce different examples
based on the same parameters.

The bottom two rows in Table 1 display the number of solu-
tions which are superior and the number of solutions which are in-
ferior to those produced by MOCSYN with all its features turned
on. The first column in Table 1 shows the random seed given to
TGFF to generate the corresponding example. The second column
shows the price of solutions produced by MOCSYN when carrying
out block placement-based wire delay estimations and using up to
eight busses organized to reduce bus contention. Empty price en-
tries indicate examples for which no solution was found. Example
11 is omitted from Table 1 because no solution was ever found

for them. Note that there is no guarantee that solutions exist for
all of the problems produced by TGFF. Each of the examples in
this section took less than two minutes to complete on a 200 MHz
Pentium Pro running Linux.

The third column shows the price of solutions under the as-
sumption that the distance in the block placement between each
pair of cores is equal to the maximum distance between any pair
of cores. Although this estimate may appear conservative, it is
not possible to derive a tight bound on the maximum separation
between any pair of cores without carrying out block placement
in the inner loop. Thus, in practice, this estimate would proba-
bly be even more conservative if an inner-loop block placer were
not available. Using worst-case communication delay assump-
tions never resulted in superior results to block placement-based
communication delay assumptions. However, MOCSYN’s per-
formance with block placement based communication delay es-
timates was superior to its performance with worst-case estimates
for 26 examples, many of which were unsolvable when the worst-
case communication delay assumption was used.

The fourth column shows the price of solutions which result
from carrying out optimization under the assumption that commu-
nication events take almost no time. After the optimization run is
complete, solutions which are invalid due to unschedulability are
eliminated. Best-case communication delay estimates never re-
sulted in an improvement in solution quality over block placement-
based communication delay estimates. However, the use of block
placement-based communication delay estimates resulted in supe-
rior solutions for 31 of the examples.

The fifth column shows the price of solutions which result from
allowing MOCSYN to carry out block placement in the inner loop
to accurately estimate communication delay but allowing only a
global bus to be used, instead of an arbitrary priority-based topol-
ogy of up to eight busses. For three examples, this approach actu-
ally resulted in an improvement over the solutions produced when
allowing up to eight busses. For these examples, there was a valid
solution which contained only two or three cores, thereby reducing
the amount of off-core communication. The availability of a large
number of busses reduced bus contention, making it practical to
use a larger number of cores. However, when only one bus was
available, it became essential to minimize communication in order
to minimize bus contention. Thus, with only one bus, MOCSYN
was forced to concentrate its optimization efforts on solutions with
allocations containing only a few cores. For a couple of examples,
this focussed exploration of the solution space paid off. However,
there is no guarantee that a solution with a small number of cores
exists. Thus, for 24 examples, being forced to concentrate on so-
lutions with a small number of cores resulted in inferior solutions
to those produced when eight busses were available, or no solution
at all. In general, the features employed by MOCSYN to synthe-
size core-based systems result in superior performance to simpler
approaches.

4.3 Multiobjective optimization
In this subsection, the results of using MOCSYN to conduct mul-
tiobjective optimization on a number of examples are presented.
When MOCSYN is run in multiobjective optimization mode, it
produces a set of solutions, each of which is superior, in some
way, to at least one other solution. Table 2 shows the sets of solu-
tions produced for ten examples. These are produced with the aid
of TGFF. They use the same parameters as the examples in Sec-
tion 4.2 with one exception: the average number of tasks in each
task graph is related to the example number (❤❫❸) in the following
manner:✩✉✧ ✇ ✘❹❯✐❺ . Thus, the six task graphs in Example 10 each
has an average of 21 tasks. The variability in the number of tasks
in each task graph is always one less than the average number of
tasks in each task graph. MOCSYN took less than seven minutes
when run on each of these examples. For some of the examples,
MOCSYN found numerous solutions which trade off price, area,

Table 2: Multiobjective Optimization
Example Price Area (mm✱) Average Power (mW)

318 90 479.7
358 96 443.3

1 543 196 424.1
554 182 420.3
612 216 384.6
181 50 199.7

2 186 65 151.1
250 91 128.1
166 72 47.93
170 78 44.1
181 78 260.74
211 66 363.3
154 56 183.6

5 276 120 170.4
483 232 164.4
405 176 172.76
462 224 127.0

7 126 36 110.1
8 219 90 41.3
9 182 60 72.7
10 781 352 114.3

and average power consumption.

5 Conclusions and future work
In this paper, we presented a method for the synthesis of core-
based, single-chip, low-price, low-power, real-time, multi-rate,
heterogeneous embedded systems. A multiobjective genetic algo-
rithm, which allows exploration of the Pareto-optimal set of archi-
tectures instead of providing a designer with a single solution, was
applied to a number of examples. MOCSYN’s use of automatic
clock selection, block placement-based communication delay es-
timation, and arbitrary bus topology generation allows it to solve
the core-based synthesis problem.

6 Acknowledgments
We would like to thank I-Jong Lin for his suggestions regarding an
elegant clock frequency selection algorithm.

References
[1] W. H. Wolf, “Hardware-software co-design of embedded systems,”

Proc. IEEE, vol. 82, pp. 967–989, July 1994.

[2] M. Chiodo et al., “Hardware/software co-design of embedded sys-
tems,”IEEE Micro, vol. 14, pp. 26–36, Oct. 1993.

[3] G. De Micheli, “Computer-aided hardware-software codesign,”
IEEE Micro, pp. 10–16, Aug. 1994.

[4] P. H. Chou, R. B. Ortega, and G. Borriello, “The chinook hard-
ware/software co-synthesis system,” inProc. Int. Symp. System Syn-
thesis, pp. 22–27, Sept. 1995.

[5] T.-Y. Yen, Hardware-Software Co-Synthesis of Distributed Embed-
ded Systems, PhD thesis, Dept. of Electrical Engg., Princeton Uni-
versity, June 1996.

[6] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong,Specification and
Design of Embedded Systems, Prentice-Hall, Englewood Cliffs, NJ,
1994.

[7] R. Weiss, “32-bit cores drive systems-on-a-chip,”Computer Design,
pp. 82–89, Sept. 1996.

[8] M. R. Garey and D. S. Johnson,Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and Com-
pany, NY, 1979.

[9] S. Prakash and A. Parker, “SOS: Synthesis of application-specific
heterogeneous multiprocessor systems,”J. Parallel & Distributed
Computers, vol. 16, pp. 338–351, Dec. 1992.

[10] M. Schwiegershausen and P. Pirsch, “Formal approach for the opti-
mization of heterogeneous multiprocessors for complex image pro-
cessing schemes,” inProc. European Design Automation Conf.,
pp. 8–13, Sept. 1995.

[11] J. D’Ambrosio and X. Hu, “Configuration-level hardware/software
partitioning for real-time systems,” inProc. Int. Workshop Hard-
ware/Software Codesign, vol. 14, pp. 34–41, Aug. 1994.

[12] T.-Y. Yen and W. H. Wolf, “Communication synthesis for distributed
embedded systems,” inProc. Int. Conf. Computer-Aided Design,
pp. 288–294, Nov. 1995.

[13] J. Hou and W. Wolf, “Process partitioning for distributed embed-
ded systems,” inProc. Int. Workshop Hardware/Software Codesign,
pp. 70–76, Mar. 1996.

[14] S. Srinivasan and N. K. Jha, “Hardware-software co-synthesis of
fault-tolerant real-time distributed embedded systems,” inProc. Eu-
ropean Design Automation Conf., pp. 334–339, Sept. 1995.

[15] B. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-
software co-synthesis of embedded systems,” inProc. Design Au-
tomation Conf., pp. 703–708, June 1997.

[16] D. Herrmann, J. Henkel, and R. Ernst, “An approach to the adap-
tation of estimated cost parameters in the COSYMA system,” in
Proc. Int. Workshop Hardware/Software Codesign, pp. 100–107,
Mar. 1994.

[17] D. Saha, R. Mitra, and A. Basu, “Hardware software partitioning
using genetic algorithm approach,” inProc. Int. Conf. VLSI Design,
pp. 155–160, Jan. 1997.

[18] R. P. Dick and N. K. Jha, “MOGAC: A multiobjective genetic algo-
rithm for the co-synthesis of hardware-software embedded systems,”
in Proc. Int. Conf. Computer-Aided Design, pp. 522–529, Nov. 1997.

[19] W. Wolf, “Floorplanning: The art of chip-level design,”Electronics
Journal, pp. 8–13, Oct. 1998.

[20] E. L. Lawler and C. U. Martel, “Scheduling periodically occurring
tasks on multiple processors,”Information Processing Letters, vol. 7,
pp. 9–12, Feb. 1981.

[21] C. M. Fonseca and P. J. Fleming, “Multiobjective genetic algorithms
made easy: Selection, sharing and mating restrictions,” inProc. Ge-
netic Algorithms in Engineering Systems: Innovations and Applica-
tions, pp. 45–52, Sept. 1995.

[22] J. L. Breeden, “Optimizing stochastic and multiple fitness func-
tions,” in Proc. Evolutionary Programming, vol. 4, pp. 127–134,
Mar. 1995.

[23] R. P. Dick and N. K. Jha, “CORDS: Hardware-software co-synthesis
of reconfigurable real-time distributed embedded systems,” inProc.
Int. Conf. Computer-Aided Design, pp. 62–68, Nov. 1998.

[24] J. Smith and G. De Micheli, “Automated composition of hardware
components,” inProc. Design Automation Conf., pp. 14–19, June
1998.

[25] M. Kishinevsky, J. Cortadella, and A. Kondratyev, “Asynchronous
interface specification, analysis and synthesis,” inProc. Design Au-
tomation Conf., pp. 2–7, June 1998.

[26] M. Bazes, R. Ashuri, and E. Knoll, “An interpolating clock synthe-
sizer,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 1295–1300,
Sept. 1996.

[27] F. Romeo,Simulated Annealing: Theory and Applications to Layout
Problems, PhD thesis, Dept. of Electrical Engg. & Computer Sci-
ence, University of California, Berkeley, Mar. 1989.

[28] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” inProc. Design Automation Conf.,
pp. 173–181, June 1982.

[29] L. Stockmeyer, “Optimal orientations of cells in slicing floorplan
designs,”Information and Control, vol. 57, pp. 91–101, May/June
1983.

[30] N. H. E. Weste and K. Eshraghian,Principles of CMOS VLSI Design,
A Systems Perspective, Addison-Wesley, Reading, MA, 2 ed., 1993.

[31] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,”
in Proc. Int. Workshop Hardware/Software Codesign, pp. 97–101,
Mar. 1998.

[32] J. Conget al., “Interconnect design for deep submicron ICs,” inProc.
Int. Conf. Computer-Aided Design, pp. 478–485, Nov. 1997.

