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Editor’s note:

With widespread use of IoT devices in our daily life, it is imperative to 

incorporate analysis and decision-making capabilities in these devices. 

This article describes the application and technology trends leading to 

embedded intelligence in the IoT.

—Partha Pratim Pande, Washington State University

 THE INTERNET-OF-THINGS (IOT) is a distrib-

uted  system of embedded computers that sense, 

analyze, and possibly actuate in the physical world. 

IoT systems frequently use wireless communica-

tion. Users face constraints on price and energy 

consumption that favor efficient designs. Embed-

ded intelligence is the capacity for in-system anal-

ysis and decision- making. It stands in contrast to 

transferring raw data for analysis in the cloud. It can 

benefit a wide range of IoT applications, including 

computer vision, transportation, industrial automa-

tion, medical devices, wearables, and agriculture.

This article describes the applications and tech-

nology trends leading to embedded intelligence in 

the IoT, indicates challenges faced by designers and 

maintainers of IoT systems, explains research con-

cepts and technologies being used to make these 

systems practical, and points out the implications for 

several application domains.

There are three main factors leading to, or neces-

sitating, embedded intelligence in the IoT, foremost 

among which is the  frequent requirement for wire-

less communication in these broadly distributed 

systems. Wireless communication typically imposes 
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orders of magnitude 

higher energy and time 

costs per bit than com-

putation; adva nces in 

the design of efficient 

machine-learning algo-

rithms and hardware 

have enabled embedded 

intelligence; and automated methods for feature 

definition, selection, and training have removed 

many constraints on using it, but the difficulty in 

accessing training data in the fragmented IoT mar-

ket slows progress.

Figure 1 illustrates an example IoT application 

system architecture. Several physical plants are 

sensed and acted upon by edge devices, which 

communicate with each other and/or upstream 

networking nodes, and ultimately to hubs that 

are often connected to the Internet. Thereafter, 

data may flow to private or cloud servers, which 

then transmit decisions back to edge devices. 

Without very sophisticated algorithm, software, 

and hardware designs to minimize the amount of 

data  flowing through the network (particularly 

upstream), energy consumption and throughput 

constraints will undermine many applications. For 

an efficient architecture, embedded intelligence in 

the edge devices and local networks is expected to 

solve many data-intensive inference problems, with 

the cloud being used for planning based on higher- 

order analysis products transmitted at relatively 

low data rates. It is sometimes possible to reduce 

energy comsumption, e.g., by increasing interfer-

ence latency. However, high latency is unaccept-

able for many IoT applications.
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Wireless communication trends and 
IoT implications

Were it not for the high energy consumption 

and latency of wireless communication, it is likely 

that  IoT systems would be intelligent, but it is not 

clear that the intelligence would be embedded 

instead of hosted in remote servers in the cloud. 

IoT system architectures are very heavily influ-

enced by the properties of available wireless com-

munication technologies. Table 1 indicates typical 

ranges, data rates, and power consumption of sev-

eral communication technologies. Until recently, 

few wireless communication technologies were 

appropriate for large-scale IoT deployments, espe-

cially those with battery-powered edge devices. As 

a result, most IoT system designers were forced to 

select technologies similar to the first four men-

tioned in Table 1. Each either requires high power 

consumption that complicates use in battery-pow-

ered applications or has an inadequate range for 

large-scale IoT applications.

Recently, a new class of wireless communi-

cation technology, called low-power wide-area 

networks (LPWANs) has experienced rapid devel-

opment and increasing use. The market size was 

$1.5 billion in 2018 and is expected to grow by 60% 

per year until 2025 [1]. Several companies have 

developed LPWAN communication technologies 

primarily for use in IoT applications [2], with the 

following goals:

• low enough average power consumption to sup-

port ten years of battery lifespan without having 

batteries dominating the size;

• long range, typically supporting at least a 10 km 

direct transmission range; and

• using protocols that are simple enough to sup-

port commodity embedded microcontrollers.

To achieve these goals, compromises were nec-

essary, the most common of which was tightly 

 constraining data transfer rates. Other compromises 

include restriction to very simple network structures 

such as star topology or star-of-stars topology, each 

of which requires gateways to be placed within a 

 single hop of all edge devices.

The recent explosion in IoT communication tech-

nologies (e.g., LoRaWAN [3]–[5], Weightless,  narrow 

band (NB)-IoT [6]–[8], and SigFox [9], [10]) is ena-

bling long-range deployment of battery-powered IoT 

systems. However, each faces tight constraints on 

data transfer rates and, in many cases, maximum 

data transferred per day. As a result, despite very low 

power consumption during transfer (e.g., 10 mW for 

LoRaWAN), the energy cost per bit is high. For exam-

ple, the energy cost for LoRaWAN is 500 nJ/b, which 

compares unfavorably with WiFi’s 125 nJ/b.

Taking representative examples from short-range 

and long-range non-LPWAN and LPWAN communi-

cation technologies, the energy cost per bit of data 

transfer exceeds the energy cost per bit of computa-

tion by orders of magnitude. To be specific, when 

we define energy cost per bit computed as the typ-

ical cost per arithmetic instruction on a processor 

representative of a near-future IoT microcontroller 

(e.g., an ARM Cortex A57), divided by the word 

size of the processor, we find that the non-LPWAN 

communication technologies allow communication 

to computation energy ratios ranging from 670× to 

33,000× and the LPWAN ratio ranges from 27,000× 

to 33,000×. In short, for a fixed amount of energy, 

it is possible to carry out at least two orders of mag-

nitude more bit-computations than bit-communica-

tions, with four orders of magnitude common for 

long-range LPWAN communication technologies. 

This isolating influence of energy-intensive, or slow, 

Figure 1. Overview of IoT system architecture.

 
Table 1. Comparison of wireless communication technologies.
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 communication drives the requirement for embed-

ded intelligence in the IoT including edge-node 

 signal processing, feature extraction, compression, 

and machine learning. It is a root cause of the need 

for embedded intelligence.

Remote servers and the cloud will play roles in 

many IoT systems. In some cases, where the num-

ber of computations required for analysis of a single 

upstream bit number in the thousands to tens of thou-

sands, it may be more energy efficient to transmit raw 

data to the cloud than to carry out inference locally. 

However, in these cases it will be more efficient, still, 

to do some degree of data analysis and reduction on 

the edge device, and in the network. For most IoT 

applications, naïve solutions in which edge nodes  

wirelessly transmit all raw data for analysis in the 

cloud will be impractical for all but small-scale and 

low data rate applications. IoT system designers will 

be forced to use sophisticated compression, feature 

extraction, and local inference techniques to min-

imize communication volume and dependence on 

wireless communication. Communication with the 

cloud will play an important role in aggregating infor-

mation from diverse environments and helping to 

globally coordinate IoT systems, but it is an expen-

sive resource to be economized or rationed.

To illustrate the impossibility of avoiding embed-

ding intelligence, consider the amount of data gener-

ated by a single autonomous automobile in one day: 

4 TB. Making just 1000 automobiles intelligent (0.001% 

of the 1.3 billion in the world) requires data to be pro-

cessed at the same rate as Facebook [11]. Without 

embedded intelligence, IoT systems cannot scale.

Embedded intelligence has advantages beyond 

reduction in communication. Wireless communica-

tion is not generally reliable. Data can be lost, and 

retransmission is not a robust solution: changes in 

wireless communication environments caused by 

rain, moving doors, and swaying trees isolate edge 

devices for long periods of time [12], [13]. Even 

when error detection and retransmission are feasi-

ble, they introduce latency that can produce dead-

line violations. Embedded intelligence enables local 

decision-making, thereby removing error-prone and 

unbounded-latency wireless communication from 

the sense–analyze–decide–actuate control loop. Even 

systems that rely on the cloud for most decisions will 

frequently support local decision-making capability to 

enable continued operation during network outages.

Embedded intelligence can also have privacy 

benefits relative to the alternative of transmitting 

more raw data to the cloud. Layers of analysis typ-

ically have the effect of eliminating information 

superfluous to the application goal. For example, 

a security system focused on determining whether 

a stranger is in a house can eliminate information 

about the detailed actions of residents. In general, 

the more analysis done on edge devices, the less 

superfluous and potentially privacy-adverse informa-

tion needs to be shared with the cloud [14].

Machine learning in the IoT
Although many existing IoT systems rely on 

embedded intelligence, technical barriers have 

slowed its adoption and remain in many applica-

tions. To understand the cause, consider the history 

of a highly successful branch of machine learning: 

deep learning. Many of the fundamental concepts 

enabling deep learning were developed and well 

understood in the 1990s. For example, multilayer 

perceptrons were first described in 1969 [15], 

and convolutional neural networks (CNNs) were 

invented in 1980 [16]. However, successful applica-

tion to practical problems of widespread importance 

remained rare. Almost 20 years later, LeCun et al. 

[17] described a moderately deep CNN capable of 

classifying handwritten digits. In the next decade, 

two necessary conditions were satisfied: 1) access to 

data sets large and diverse enough to enable effec-

tive training [18] and 2) computers fast enough to 

handle problems of substantial size and complexity. 

It was not until the 2010s that CNNs were often able 

to match human accuracy [19]–[21]. Improving effi-

ciency, especially energy efficiency, took a back seat 

to improving accuracy; although machine-learning 

systems had finally achieved useful accuracy, many 

of the most accurate machine-learning techniques 

(e.g., deep-learning techniques) were too compu-

tationally demanding to use on performance- and 

energy-constrained systems. Only recently did that 

begin to change.

The 2010s have seen a flurry of work reimag-

ining the design of machine-learning algorithms 

and hardware, and this activity continues. From 

algorithmic techniques that eliminate wasted 

computation and state, to hardware architectures 

tuned to the specific computational needs of deep- 

learning systems, a revolution is underway in effi-

cient automated analysis and decision-making. 
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Although these are changes in magnitude, they are 

not incremental improvements; they allow analysis 

on edge devices that a few years earlier would have 

required a datacenter, and a few years before that 

would have been impossible for automated sys-

tems. The impact of improving efficiency is most 

strongly felt in IoT applications where it is now 

becoming practical to use learned analysis and 

decision-making techniques instead of relying on 

systems in which parameters and rules are manu-

ally selected and designed by application experts.

Feature design and selection
In the general field of machine learning, the pro-

cess of feature design and selection has been evolv-

ing rapidly toward increased automation. However, 

there are special considerations in IoT applications 

that may work against this general trend.

Until recently, training and inference on large 

quantities of raw data have been too computation-

ally intensive for practical use. As a consequence, 

designers developed machine-learning algorithms 

to run on “features,” e.g., reduced, highly rele-

vant vectors produced through computation on 

sparser raw data, generally using signal-processing 

algorithms designed by domain experts, e.g., 

Kanade–Lucas–Tomasi (KLT) features [22], [23] 

and the scale-invariant feature transform (SIFT) 

[24] for computer vision. Feature vectors are gen-

erally of lower dimensionality than raw data and 

are encoded with fewer total bits, thus reducing 

the computational burden on later analysis stages, 

which generally have computational complexi-

ties scaling at least linearly in the input data size. 

This approach also has the advantage of using the 

knowledge already encoded in the memories of 

experts who have been exposed to large amounts 

of data and have internally formed models for the 

processes generating the data. Although it may be 

inferior when good, large data sets are available, it 

may be superior when data are limited.

CNNs [20], [25]–[28] provide an example of the 

trend toward integrating feature extraction into the 

automated learning process. In this case, convo-

lutional layers learn filter matrices that are applied 

to raw data to produce convolved feature maps, 

which are used in latter layers to accomplish a spe-

cialized task, e.g., classification or detection. Instead 

of defining feature extraction as something distinct 

from training and inference, it became merely the 

first few layers of the network, for which training and 

inference are consistent with other portions of the 

network. Although it increases the computational 

cost of training, this process enables higher accuracy 

and better training results if adequate data are avail-

able. Its use is now common and increasing. How-

ever, there are several reasons why the shift may not 

be as rapid in IoT applications as in more general- 

purpose applications.

Whether a better result is possible using conven-

tional feature design and selection or integrating 

these functions into machine-learning algorithms 

that take raw data as input depends on whether 

there is more relevant information available in train-

ing data sets or in heuristics arrived at by experts. 

For problem domains with broad applications, such 

as general image classification, large amounts of 

high-quality data are available [29], [30], working 

in favor of automatic feature design. However, IoT 

applications [31] are fragmented into many problem 

domains. It is also common for only small amounts 

of data to be available to several small organizations 

in competition with each other. These conditions 

complicate data sharing and undermine the devel-

opment of large, high-quality training data sets. As 

a consequence, we expect many IoT applications 

to rely on manual feature design to a greater degree 

than general- purpose applications, and for this to 

remain true for each problem domain until large, 

high-quality data sets are available.

Dependence on labeled data for automated 

feature design will also encourage use of transfer 

learning [32], [33] in the IoT and other embedded 

applications, where large labeled training data sets 

are available for related applications, but not for 

the specific application under consideration. The 

key idea is to permit knowledge of a particular task 

and/or application domain to be used to improve 

accuracy on others. One- or few-shot learning [34], 

[35], which attempts to generalize given very few 

training samples, will also be important in applica-

tions suffering from the “small data” problem, as may 

metalearning [36], [37].

State of the art and promising 
 directions

This section describes the state of practice and 

research in several domains relevant to embedded 

intelligence in the IoT. We take a top-down approach, 

starting with distributed system architectural trends 
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and ending with application-specific hardware for 

IoT systems. Finally, we discuss IoT safety and secu-

rity, which spans many levels of the IoT hierarchy.

Distributed system architectural trends

Operational technology encompasses hardware–

software systems for monitoring physical processes. 

The evolving architecture for information tech-

nology systems and the demands on operational 

technology meet in the IoT. From the informa-

tion technology perspective, architectures have 

shifted from single-user mainframe, to time-shared 

mainframe, to personal computer, and then to net-

worked computing. Today’s IoT systems are gen-

erally distributed systems, in which subsystems 

for data management, business logic, and user 

experience are physically separated. The chal-

lenge from the operational technology perspective 

is to enable these distributed systems to operate 

in unison during learning, inference, decision 

making, and actuation. Specifically, the move to  

client–server computing has been a key technology 

trend in the 1990s. It enabled thin, and therefore, 

inexpensive clients. The client–server paradigm 

allows minimal client hardware with on-demand, 

often over-the-air (OTA) software updates and infor-

mation exchange. A thin client may sense and inter-

act with users and the physical world but does little 

analysis. It primarily communicates with a server.

Cloud-centric design [38]–[40] leveraging client–

server computing systems often suffers from poor 

responsiveness. Some applications cannot tolerate 

the high or unpredictable latencies of long-range 

wired, or worse, wireless networks. Time-critical 

applications require predictability, ruling out archi-

tectures relying on unpredictable network states.

A decentralized system [41] is a distributed sys-

tem that minimizes the dependency on servers, thus 

enabling responsiveness for a wide range of server 

and network conditions. This system architecture is 

better suited to many IoT applications in which edge 

devices have intermittent connectivity or limited 

bandwidth. The need for decentralized operation is 

pushing IoT system architectures toward increased 

autonomy, i.e., toward embedded intelligence.

Efficient machine learning algorithms for 

IoT devices

There have been several recent developments 

that improve the efficiency of machine-learning 

algorithms enough for use on edge devices. Many 

are relevant to deep learning and are most naturally 

described in the context of its multilayer weighted 

networks. The trends described here are mirrored in 

other machine-learning application domains.

State-of-the-art neural networks are composed of 

at least thousands of interconnected neurons. For 

example, an early network used by LeCun et al. [42] 

for handwritten digit recognition includes 4635 units, 

98,442 connections, and 2578 independent parame-

ters with modern vision CNNs such as ResNet-152 con-

taining 60-million parameters [21]. Parameters must 

be stored in state variables; techniques that reduce 

the number of parameters or their sizes improve 

learning and computation times, memory require-

ments, and energy consumptions. Some tasks, 

such as classification, can achieve useful accuracy 

using low-resolution, highly decimated images, e.g., 

224 × 224 pixels. However, others, such as denoising 

and super-resolution, require much larger images, 

e.g., 1920 × 1080 pixels. Siu et al. [43] demonstrated 

that storing the activation values for deep CNNs run-

ning such applications would require over 500 MB 

of memory, and if this memory is not on the same 

die as the processor(s), the performance penalties 

can be substantial.

CNN optimization methods have been devel-

oped for both filter pruning and reduced-precision 

arithmetic; most methods try to reduce CNN size 

while maintaining accuracy. Guo et al. [44] com-

bined pruning and splicing to avoid local minima 

during network pruning. Zhuang et al. [45] reduced 

the precision of values and arithmetic operations 

by first quantizing weights, then activations. They 

used progressive training to incrementally refine 

bit widths and used a full-precision model to guide 

the optimization of the reduced-precision network. 

Albericio et al. [46] designed a deep neural net-

work architecture that avoids superfluous calcu-

lation of zero terms during multiplication. Coussy 

et al. [47] developed a fully binary Gripon– Berrou 

neural network, thereby transforming integer arith-

metic to logical operations. Courbariaux et al. 

[48] developed a method of training deep neu-

ral networks using binary weights during forward 

and backward propagation that makes intentional 

use of quantization noise. Yu et al. [49] imple-

mented a fully binary neural network for hand-

written digit recognition in hardware. Howard 

et al. [50] describe a method for improving CNN 
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efficiency by using an unconventional network 

structure in which parallel input channels are han-

dled by separate, isolated convolutional filters, 

the outputs of which are subsequently combined 

using another layer.

In this special issue, Imani et al. [51] describe a 

hierarchical hyperdimensional computing system 

that uses an unconventional quantizer to dramat-

ically improve efficiency on resource-constrained 

embedded systems. Also in this issue, He et al. [52] 

present a framework to optimize pruning and preci-

sion reduction to improve energy efficiency in deep 

neural networks.

Online learning, potentially by deployed systems, 

enables machine-learning systems to adapt to unique 

characteristics of their local environments and use 

cases, thereby improving accuracy and robustness 

to deception. However, it faces three challenges. 

1) It is difficult to validate information learned 

 in- network because access to appropriate labels and 

testing data sets is rare: if the appropriate testing data 

were known, then the network could have been pre-

trained. 2) Many machine learning techniques are 

susceptible to catastrophic forgetting, the loss of 

state learned from earlier training data during online 

training. 3) The computational cost of training is 

high for many machine learning systems, e.g., deep 

neural networks, preventing implementation in low-

cost, energy-constrained edge devices. The valida-

tion problem is fundamental but can be addressed 

to some degree by periodically testing accuracy on 

static labeled data sets.

Researchers have studied the catastrophic forget-

ting problem. Toneva et al. [53] studied the char-

acteristics of training instances that are likely to be 

forgotten, and those that are not. They found that 

instances may be forgotten even when there is only 

a single classification task and that difficult-to-forget 

instances may be removed from the training data 

without reducing accuracy. Work like this is build-

ing a foundation that may lead to changes in training 

strategies to reduce catastrophic forgetting. Losh-

chilov and Hutter [54] showed that ignoring samples 

with little influence on loss accelerated training on 

the MNIST data set by 5×. Developing efficient meth-

ods of estimating sample importance is an active area 

[55]–[57], and information theory-based approaches 

appear promising.

He et al. [21] address the training challenge for 

deep networks, which had historically required very 

large training times. They describe a change in net-

work structure and weight updates that enables effi-

cient (and accurate) training. By adding a shortcut 

term to the post-activation function output of neural 

network layers, they propagate the inputs of prior 

layers into layer outputs. They demonstrated that 

these residual networks can be efficiently trained 

with depths an order of magnitude greater than state-

of-the-art deep neural networks, achieving improved 

accuracy. Although the authors demonstrated that 

the approach worked, the mathematical intuition for 

why it worked was limited. However, there has been 

recent progress in this area. He et al. had observed 

that shortcut lengths of two layers resulted in reduced 

training error, which translates to reduced training 

overhead given a fixed error, but that one-layer and 

three-layer shortcut lengths did not. Li et al. [58] 

show that networks with depth-two shortcuts have 

depth-invariant loss function Hessians at the zero 

initial points. This implies that training difficulty is 

depth-invariant for such networks. These recent find-

ings demonstrate that the theoretical foundations for 

efficient learning are still under development.

A comprehensive tutorial and survey by Sze et al. 

[59] provides additional information on the topic of 

deep neural network efficiency.

Compressed sensing and inference

Researchers have developed techniques that 

reduce sensing and computational cost by carefully 

selecting samples necessary for signal reconstruc-

tion (compressed sensing) or decision making. This 

makes sampling more efficient. It can also be use-

ful in the signal processing and analysis pipeline to 

eliminate superfluous data, thereby decreasing com-

putational costs that often (superlinearly) depend 

on data volume.

When using compressed sensing [60], designers 

exploit knowledge of (potentially stochastic) restric-

tions on data to enable reconstruction using only 

sparse, but carefully selected, samples. There are 

tests for signal compressibility and sparsity. These 

approaches rely on the fact that many parameters 

describing real-world signals in commonly used (but 

naïvely chosen) domains are relatively unimportant 

in signal reconstruction. Eliminating all but the essen-

tial samples reduces data capture, communication, 

and processing rates. This approach has enabled dra-

matic reductions in data volume in real-world appli-

cations. For example, the amount of data necessary 
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to enable acceptably accurate reconstruction of 

electrocardiogram signals was found to be only 20% 

of that implied by the Nyquist frequency [61].

Compressed sensing focuses on selecting a mini-

mal set of samples capable of adequately reconstruct-

ing the original signal. Researchers have applied 

concepts from compressed sensing to the problem 

of inference, in which the relevant error metric is 

inference accuracy, not reconstruction accuracy. As 

is the case in compressed sensing, these approaches 

exploit sparsity in data. However, they also exploit 

variation in the relevance of data to the inference 

problem of interest. Put another way, they exploit 

the sparsity of input data from the perspective of 

inference accuracy.

A common idiom in the design of energy-efficient 

inference algorithms is to use a staged, hierarchical 

approach. For example, consider a system for detect-

ing vehicles that must, on average, have an accuracy 

of 97%. One might use a general-purpose vision sys-

tem composed of a single CNN. This approach may 

meet the accuracy requirement but at a high energy 

and computation time cost. Alternatively, one might 

use a subsystem with lower computational cost to 

filter out all images that are very unlikely to contain 

vehicles before running the high-cost CNN on an 

order of magnitude less data. This subsystem may 

safely have much lower accuracy than the CNN, 

provided that few of the errors are false-negatives. 

This staged analysis concept has been widely used 

in energy-efficient inference systems and it is related 

to, but distinct from, compressive inference.

In its purest form, compressive inference elimi-

nates superfluous data from all stages of the infer-

ence pipeline. Instead of capturing every bit in every 

pixel in every timestep, it captures only those bits 

necessary for accurate inference. This eliminates the 

energy and time costs of superfluous data processing 

throughout the inference pipeline. Static approaches 

to determine which data are important are challeng-

ing. However, even static approaches can improve 

full-system energy efficiency by 5× with little reduc-

tion in accuracy for useful applications [57].

Dynamic approaches are also possible and can 

be observed in energy-efficient biological vision sys-

tems such as the human vision system. This system 

uses a highly spatially heterogeneous, multiround 

approach to data capture and analysis. Only 1% of 

the human retina (the area of a thumbnail with an 

outstretched arm) is capable of spatially dense data 

capture, but 50% of later stages of the vision  pipeline 

are dedicated to processing the data it captures. 

A static, context-independent method of deter-

mining where to direct this sensor array would be 

highly inaccurate. The human vision system instead 

 enables dynamic, context-dependent capture, and 

processing by using a multiround approach to vision 

in which the sensor array is directed to the areas of 

the scene most likely to be important to the inference 

task at hand, based on feedback from later stages of 

the inference process. This concept, applied to com-

puter vision, improves energy efficiency by 5× with 

less than 1% loss in accuracy [62].

Online learning

Gradual changes in the operating environments 

and objectives of IoT applications may require learned 

models to be updated over time. Conventional batch 

learning methods are often not well suited to efficient 

relearning in such applications [63]–[65]. Incremen-

tal, online learning based on captured data has the 

potential to enable efficient adaptation of IoT systems. 

However, online learning can be energy-intensive and 

many IoT systems are broadly distributed, making 

physical maintenance such as battery replacement 

expensive or intractable [66], [67].

Several IoT communication technologies have 

been designed with these concerns in mind. For exam-

ple, NB-IoT, the cellular licensed LPWAN networking 

technology, enables device battery lifespans of up 

to 14 years from a single charge. This poses a major 

challenge for machine-learning algorithms because 

uploading raw data to the cloud is energy inefficient. 

Embedded inference has the potential to solve the 

problem, but inference alone is insufficient. Many-

year lifespans imply that operating environments 

will change substantially during deployment, mean-

ing that pretrained machine learning systems will be 

too inflexible for many applications. For example, in 

factory automation, subjects and manufacturing pro-

cesses change over time in ways that may be difficult 

to predict before system deployment. In retail, mer-

chandise changes over time. In surveillance, appear-

ances change over time. Online learning can enable 

machine learning systems to adapt to these changes.

Distributed system architectures and 

virtualized IoT infrastructure

A critical decision in the architectural design of 

IoT systems is assigning specific machine learning 
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tasks to particular components in the network archi-

tecture. In the case of classification, the location 

of the machine learning nodes may depend both 

on the sensors required and on the computational 

demands of inference algorithms. Training typically 

requires more computation than classification, 

which may lead to different functional partitions for 

training and classification.

Some IoT system use cases are well suited to mul-

titenancy architectures in which several applications 

share hardware and network connections. Those 

applications may be administered by different enti-

ties. Cherrier et al. [68] proposed a generic object 

architecture for multitenant IoT systems. They iden-

tify several issues: managing multiple control flows 

that desire to manipulate objects, controlling access 

rights, and managing conflicting orders issued by 

 different agents.

IoT-oriented machine learning systems can use 

distributed algorithms to control latency and break 

dependencies on long-range communication. For 

example, Kim and Wolf [69] developed a distrib-

uted consensus algorithm for multitarget tracking 

in camera networks. They showed that small neigh-

borhoods for consensus can enable high accuracy. 

The requirements of multitenancy—performance, 

power, and privacy—may influence the design of 

IoT nodes with machine learning capabilities.

Edge-to-cloud workload distribution

Edge-to-cloud architectures allow flexible work-

load offloading [70]. They contain a wide range of 

heterogeneous resource types, including diverse 

sensing, computational, and communication ele-

ments, and have varying design considerations. As 

a result, there is no standard platform, interface, 

or application programming interface (API) that 

can be used across heterogeneous devices in the 

 edge-to-cloud paradigm, which may include power-

ful servers in data centers, gateways in retail stores or 

households, smartphones, and cameras.

High workload complexity, use case diversity, 

and hardware heterogeneity make manual work-

load placement unrealistic, especially in large-

scale systems that may contain tens of thousands of 

edge devices. Edge-to-cloud workload distribution 

requires precision benchmarking of workloads over 

a diverse set of hardware and edge-to-cloud task, 

and communication assignments and schedules 

of interdependent tasks to interconnected devices 

[71], [72]. Workload benchmarking is a means to 

predict resource utilizations and execution times of 

individual tasks of a job. A service level agreement 

(SLA) requires precision work load benchmarking, 

especially over heterogeneous hardware resources, 

to meet performance requirements.

Existing multiprocessor schedulers do not explic-

itly take into account communication constraints 

or scale well [71], [73], [74]. In addition, workload 

benchmarking [74] is a daunting task for the rather 

broad hardware choices and their diverse charac-

teristics. In the context of the IoT, both white box 

and black box benchmarking are required in a mul-

titenant environment. Blackbox benchmarking is 

particularly challenging because the complexity of 

a workload is unknown; benchmarking over a com-

prehensive set of hardware types is required.

Given workload benchmarking data, a scheduler 

determines workload placement over devices from 

edge to cloud. Edge-to-cloud scheduling is an optimi-

zation problem, taking into account not only compu-

tational constraints but also networking constraints. 

It has the goal of finding an optimal solution for a 

predetermined objective, e.g., minimal network utili-

zation [71], [75]. The scale of the problem increases 

significantly when moving from hundreds of servers 

in a datacenter to tens of thousands of devices over 

a multitenant infrastructure. Automation is needed 

to meet the scale of IoT applications—a new area 

requiring major research investments.

Node architectures

Ultra-low power consumption enables IoT 

devices to operate in a broad range of applications. 

Installation cost is an important part of total-cost-of-

ownership for many IoT devices; wiring costs can 

far exceed the cost of the device itself [76]. Small 

batteries such as coin cells are sufficient to allow 

many such devices to operate for months or years 

but replacing these batteries is often expensive.

Energy scavenging can be used to recover energy 

from the environment [77], thereby extending  

unattended lifespan. A variety of energy sources 

can be used, e.g., radio, thermoelectric, vibration, 

movement, and light [78]. These sources vary in 

the amount of power they can harvest as well as the 

physical characteristics of the scavenging unit.

To achieve power consumption rates consist-

ent with small batteries or energy scavenging, an 

IoT device may be designed to operate at low duty 
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cycle [79]: the device turns on for a brief interval, 

performs its sensing/computing/communication 

tasks, and then goes back to sleep. Deep sleep 

modes minimize both static and dynamic power, 

thus conserving the device’s available energy. A low 

duty cycle is consistent with an event-driven archi-

tecture in which devices communicate significant 

or unpredictable changes to signals rather than the 

entirety of signals. Given that wireless communica-

tion requires orders of magnitude more energy per 

bit than computation, an event-driven architecture 

that uses local computation to identify events ena-

bles low-power operation.

Heterogeneous architectures have been widely 

used in high-performance embedded systems to 

reduce power consumption while meeting real-time 

performance requirements [80]. Given the high 

computational requirements of machine learning, 

heterogeneous architectures may provide improved 

performance/power characteristics. For example, 

Shen and Srivastava [81] used heterogeneous hard-

ware architectures to improve the energy efficiency 

of wearable devices that perform inference based 

on context.

Researchers have modeled hardware implemen-

tation platforms for machine learning systems with 

the goal of cooptimizing algorithms (e.g., deep neu-

ral network structures) and hardware. Dai et al. [82] 

developed a platform-aware neural network archi-

tecture search methodology. Cai et al. [83] devel-

oped an energy estimation methodology appropriate 

for guiding neural network architecture search.

In this special issue, Xiao and Liang [84] describe 

a framework to identify promising locations in deep 

neural network execution at which to reconfigure 

dynamically reconfigurable field-programmable 

gate arrays (FPGAs), and to optimize the specific 

configurations used. Also in this issue, Zhu et al. [85] 

present a neural network accelerator appropriate for 

both convolutional and fully-connected layers. Their 

architecture is designed to eliminate redundant 

data transfers and superfluous computations and to 

restructure the implementation to trade-off precision 

and parallelism in an application-dependent way.

Microarchitectures, circuits, and devices for 

IoT intelligence

Research on hardware for efficient machine 

learning can be divided into three main categories: 

microarchitectures, circuits, and devices. This section 

summarizes the current state of the art in each of 

these research areas.

Many practically important machine learning algo-

rithms require large amounts of memory and com-

putation. Providing adequate memory implies long 

worst-case access times. Achieving adequate compu-

tation speed requires parallelization over many pro-

cessing elements. For many real-world deep learning 

networks, there exists no possible assignment of net-

work nodes to (distributed) processing elements that 

avoids global communication or worst-case memory 

access penalties because many network nodes must 

frequently share data with many others. This makes 

such networks ill-suited for implementation on con-

ventional von Neumann architectures: serial access 

of weight values through a globally shared memory 

interface undermines performance and energy effi-

ciency. Thus, conventional central processing units 

and multiprocessor-based architectures are ill-suited 

to many machine learning tasks.

Graphics processing units (GPUs) avoid some of 

the problems of conventional instruction processor 

microarchitectures. They support highly parallel sin-

gle-instruction multiple datapath (SIMD) operation, 

which is well suited to parallelizing propagation of 

activation function calculation in deep networks, 

i.e., arithmetic operations on sums of products. 

Moreover, GPUs often support limited-width arith-

metic, making them appropriate for evaluating the 

(very common) networks in which high-precision 

weights and activations are unnecessary. GPUs pro-

vide some advantages over CPUs in systems requir-

ing high memory bandwidths and high degrees of 

parallelism. For example, the memory bus speeds 

of GPUs are often several times higher than those of 

similarly priced CPUs. For example, the Intel Xeon 

E7-2830 has a peak memory bus speed of 2.25 GB/s 

while the Nvidia Quadro Pro P6000 has a memory 

bus speed of 423 GB/s. This allows higher transfer 

rates before the bottleneck is reached. However, 

the memory architecture still requires transfers on a 

shared bus. GPU-based systems are also often more 

difficult to program than general-purpose proces-

sors, although there has been recent progress on sim-

plifying the process of implementing some classes of 

machine learning algorithms on GPU-based systems 

[86]–[91]. Notably, some of these focus on resource- 

constrained embedded platforms [92].

Many researchers have reported GPU-based sys-

tem speedups of 10×−1000× relative to CPU-based 
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systems for applications requiring high degrees 

of parallelism [93]–[96]. However, others argue 

that most of the reported speedups are the result 

of asymmetric development and optimization pro-

cesses followed when making these comparisons 

[97]. In short, they hypothesize that the lower-level 

approach to programming and memory manage-

ment required by GPUs forces developers to think 

deeply about memory management and expose 

new opportunities for algorithmic optimization that 

are not generally back-ported to CPU implementa-

tions. In their own evaluation of GPU speed-ups, they 

found that the much lower speedup of 2.5× is typical 

when comparing the similarly priced Nvidia GTX280 

GPU and Intel Core i7 960 CPU.

FPGAs have been used to accelerate machine 

learning applications, including deep learning [98], 

[99]. They enable fine-grained parallelism and there-

fore have similar advantages to GPUs. Their greater 

flexibility sometimes facilitates improved perfor-

mance and energy efficiency but also generally 

increases implementation cost relative to GPU-based 

systems, although there has been progress on librar-

ies and frameworks to ease this process [100], [101].

Although GPUs and FPGAs can be used to imple-

ment machine learning systems, they were not 

designed specifically for it. Researchers have also 

designed architectures specifically for machine 

learning. Some of their efforts focused on optimizing 

the mathematical operations common in machine 

learning systems, e.g., the vector–matrix multipli-

cation operations frequently encountered in deep 

learning. Several commercially available accel-

erators designed for neural network applications 

are already available, e.g., the Intel Movidius NCS2 

and Google Coral Dev Board (EdgeTPU) peripheral 

accelerators, the NVIDIA Tegra TX2 stand-alone 

accelerator, and the Google Pixel 3, a smartphone 

containing accelerators.

Bioinspired systems have been designed with sev-

eral goals in mind, from biological science to solv-

ing pressing engineering problems. Some systems 

were designed to better understand the operation of 

biological learning systems [102], [103]. These sys-

tems generally mimic their biological inspirations as 

closely as implementation technology permits. Oth-

ers used only those features of biological systems 

that improve performance for a particular applica-

tion of interest. One example includes systems that 

use analog voltages to represent activation function 

values within individual network nodes but reverts 

to digital signals for long-range transmission [104], 

[105]. TrueNorth is a notable brain-inspired pro-

grammable processor using a million digital neurons 

and 256-million synapses [106]. Biological learning 

systems also use a combination of analog communi-

cation for short-range connections and digital (spik-

ing) communication for long-range connections. 

Another frequent theme in bioinspired systems is 

distributing computation capability throughout 

memory to ameliorate memory access and many-  

to-many communication bottlenecks [107]. These 

processor-in-memory systems face several chal-

lenges that can be met through novel circuits and 

devices. For example, researchers have considered 

3-D integration of memory and logic to support this 

class of architecture.

A primary challenge for embedded deep learning 

systems is the difficulty of very efficiently multiplying 

inputs with vectors of weight values and accumulat-

ing the (generally nonbinary) results. Unconventional 

architectures, alone, are insufficient to optimally 

solve this problem; researchers are developing novel 

devices and circuits capable of performing efficient 

vector–matrix multiply–accumulate operations with 

locally stored scalars that can be updated through 

learning processes.

Energy efficiency, low cost, and high performance 

are all important enablers of embedded intelligence. 

Optimizing them requires innovation in each level 

of the system design process, including the design 

of devices and their support circuits. Support for 

efficient vector–matrix multiplication accounts for 

much of the existing work on using novel devices 

for machine learning. Many classes of devices have 

been evaluated for this role. The key requirement is 

that they can form circuits capable of performing 

rapid and efficient vector–matrix multiply–accumu-

late operations. The most common approach is to 

represent activation function outputs using voltages 

that are multiplied by weights and summed by arrays 

of variable-resistance devices connected in parallel. 

The weight values associated with the devices are 

programmable. In this approach, matrices are imple-

mented using physical arrays with the same number 

of rows and columns as the matrix. Devices sit at the 

row–column intersections and their analog prop-

erties are used to multiply input activation values 

with locally stored weights; typically these weights 

are resistance states of variable-resistance devices. 
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The pre-weighted values, represented as currents, 

are then aggregated, thus completing the multiply–

accumulate operation.

The devices needed to implement such efficient 

vector–matrix multiply–accumulate arrays would 

ideally have the following properties:

• more compact than digital designs capable of 

performing the same operations;

• have non-volatile, multibit state for storing weight 

variables within devices;

• support adequate output variation range to oper-

ate in the presence of noise;

• programmability, in which state change magni-

tude is ideally independent of the current state;

• energy efficiency; and

• reliability, including both controllable process-de-

pendent variation in device parameters and the 

ability to retain state for long periods of time and 

survive many reprogramming cycles.

Several contenders for this role exist, including 

memristors and floating gate transistors as well as 

electrochemical, capacitance-based, ferroelec-

tric, and optical devices [108]. However, none yet 

meets all the requirements to implement trainable, 

highly efficient, fast vector multiply–accumulate 

operations. A key problem not yet well-addressed 

by any existing memristive devices is that of train-

ing latency, with the best existing devices requiring 

a day for the relatively simple task of training a two-

layer network using 1 million images from the MNIST 

data set [17]. For additional information, see Yu’s 

survey article [108].

IoT safety and security

IoT and cyber-physical systems are designed to 

interact with the physical world. Physical safety and 

information security of IoT devices cannot be treated 

as separate requirements nor can they be pursued as 

separate design tasks [109]. Systems can be attacked 

via networks, physical components such as sensors, 

and by presenting deceptive inputs to their machine 

learning algorithms. Researchers have studied 

attacks that use the special properties of IoT systems. 

There are several properties that are unfavorable to 

security, and at least one that favors it.

IoT systems typically have large attack surfaces. 

They generally contain numerous sensors that are 

subject to a variety of attacks that can inject false 

measurements into the system [110], [111]. They also 

frequently have multiple wireless and/or wired net-

work interfaces that are vulnerable to network attacks. 

This includes interfaces used for communication 

with other edge devices, and for communication with 

the Internet. Researchers found that it was common 

for IoT systems to have default configurations that are 

highly vulnerable to infection by viruses [112].

IoT sensors enlarge the attack surface. One 

example sensor-based attack subjects Micro Elec-

tro Mechanical Systems (MEMS) accelerometers to 

sound at their resonance frequencies, thus causing 

their signal processing pipelines to record false sig-

nals at other frequencies due to aliasing [110]. The 

attackers were able to produce deceptive variation 

and offsets in the signals captured by accelerom-

eters and described both hardware and software 

modifications to guard against the attack.

The difficulty of physically accessing edge 

devices encourages support for in-network firm-

ware updates. Unfortunately, this opens powerful 

attack vectors that can enable attackers to gain com-

plete control over entire networks. Millions of IoT 

devices are publicly visible on the Internet, and thus 

exposed to network attacks [113]. Ronen et al. [114] 

demonstrated an attack on Philips Hue IoT-enabled 

lightbulbs that can gain complete control over the 

network and spread autonomously via direct com-

munication among edge devices. They exploited 

weaknesses in secret key protection and a flaw in 

the implementation of a protocol designed to ensure 

that physically distant devices be unable to control 

association with particular networks.

The Mirai botnet was one of the most consequen-

tial IoT attacks thus far. It grew to 65,000 infections dur-

ing its first 20 hours, peaked at 600,000 infections, and 

maintained a steady-state of over 200,000 [112]. The 

infected IoT devices were used for denial-  of-service 

attacks on several machines, including those owned 

by Krebs on Security, the OVH hosting provider and 

Dyn, with a peak rate of 600 Gb/s. Mirai primarily 

relied on attacks using a 62-entry dictionary of com-

mon user-password combinations, thus exploiting 

insecure, generally default, configurations.

Researchers have developed several honeypots 

to attract and observe attacks on IoT systems. These 

include IoTCandy-Jar [115], which uses machine 

learning to learn enough about IoT devices to 

build an interactive honeypot emulating them, and 

ThingPot [116], which mimics Philips Hue smart 

lighting systems.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2020 at 16:05:24 UTC from IEEE Xplore.  Restrictions apply. 



18 IEEE Design&Test

Survey

Evaluating IoT system safety and security using 

techniques that rely on formal system models is 

difficult. IoTs are extremely large-scale systems 

composed of heterogeneous components. The com-

ponents are designed by many companies at differ-

ent times, many of the designers have little exposure 

to formal security analysis methods, and different 

components are owned and governed by different 

organizations and people. This resulting lack of 

complete formal specifications by any design team 

makes it all but impossible to analyze an entire large-

scale IoT system: no single person knows the appro-

priate model. Even if a formal model were known, 

it would generally contain too many irreducible 

components for model checking to be feasible. In 

summary, formal methods such as model checking 

are generally infeasible for large-scale IoT systems.

IoT analysis challenges are compounded by the 

fact that the directed partially random fault pro-

cesses contributing to IoT failure are interdepend-

ent: stochastic independence cannot be assumed. 

Determining the parameters of the random processes 

modeling faults in IoT components is difficult; deter-

mining the correlations among these parameters 

is harder still. Components are coupled via often 

implicit or unknown environmental parameters 

including social/political events (e.g., in targeted 

attacks), and cyclical and acyclic natural phenom-

ena such as weather patterns. Identifying catastrophic 

IoT system failure modes will be more akin to predict-

ing rare, catastrophic events in financial systems than 

analyzing more isolated embedded systems. Manu-

ally characterizing indirect relationships among IoT 

component fault processes is impractical; the num-

ber of intercomponent correlations and their govern-

ing parameters is beyond the capacity of any single 

designer to manually determine and understand.

A recent report produced as a result of a work-

shop on embedded system security provides addi-

tional details on security challenges in the IoT [111].

Application domains
We now describe several IoT application domains 

for which embedded intelligence is particularly rele-

vant and point out prior work and application-relevant 

technologies supporting embedded intelligence.

Computer vision and surveillance

Computer vision has transformed numerous 

domains including security, healthcare, banking, 

and transportation. Its applications are expected to 

have a market value of $15 billion by 2022 [117]. 

Although there are many opportunities for computer 

vision in IoT applications including transportation, 

security, agriculture, and other domains, the com-

pute power and energy constraints of IoT systems 

sometimes prevent its use.

To illustrate the computational cost of a typical 

computer vision application, we will consider a 

highly optimized version of the inception neural 

network architecture [118]. Although it reduces the 

number of parameters by 2.5× relative to another 

state-of-the-art architecture (VG-GNet [119]), it still 

requires 60-billion multiply– accumulate opera-

tions per inference, i.e., 0.1 frames/s using a 20-core 

Xeon E5-2680 system, putting the frame rate for pro-

cessors typically found in commodity mass-market 

embedded vision systems such as the Raspberry 

Pi 3 at a frame every 2 minutes for a four-core Arm 

Cortex-A53 running at 1.2 GHz. Simpler networks 

and faster vision algorithms exist, especially for nar-

rowly defined applications. However, speed is often 

bought with a reduction in accuracy. In short, effi-

cient embedded computer vision is possible, but 

requires careful hardware and algorithm designs 

that account for optimization opportunities unique 

to the application of interest; the approaches used 

for highly accurate general-purpose computer vision 

(even those that have been highly optimized) are 

too energy-intensive and inefficient for use on edge 

nodes in the IoT. We describe technologies support-

ing efficient vision in the “State of the art and promis-

ing directions” section.

Video data will account for 82% of all IP traf-

fic, with a volume of 396 EB per month, by 2022 

[120]. Video analytics is becoming an increasingly 

important source for deriving business insights into 

various use cases like digital surveillance, retail 

analytics, and smart cities. Globally installed video 

surveillance cameras were estimated to generate 

more than 859 PB/day in 2017 [121]. Despite its 

abundance and ubiquity, visual data are still sig-

nificantly underutilized due to the computation 

requirements and data volume. There have been 

advances in converting video data into actionable 

information at scale, but they have often limited to 

the use of cloud infrastructure and/or focused on 

narrow applications.

Embedded intelligence with ubiquitous connec-

tivity makes multimodal inference possible. This is 
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particularly useful for inventory tracking and ware-

house management in logistics applications. In 

these applications, connected cameras and ubiqui-

tously deployed sensor tags, e.g., Bluetooth beacons 

and radio-frequency identification (RFID) tags, are 

used to track personnel and inventory and identify 

their interactions.

As a result of the data rates common for vision 

applications, multiple approaches are being used 

to optimize IoT vision systems, including special- 

purpose hardware and architectures to accelerate 

deep CNNs [122], spatial and temporal decimation, 

and using a multiphase process in which efficient, 

low-accuracy (but low false-negative rate) analysis 

algorithms are used to filter out most images, leav-

ing only a few for analysis by more computationally 

intensive but accurate algorithms.

Transportation

The automotive market is valued at over $1.5 tril-

lion [123] with the smart transportation market 

somewhere around $100 million. It is now being 

disrupted by four main trends: electrification, 

connectivity, autonomous driving, and mobility 

affordability. Electrification and connectivity make 

data sharing easier; electrification digitizes data 

in the first place whereas connectivity allows data 

sharing. Both are prerequisites of autonomous driv-

ing. Mobility affordability is a direct implication of a 

sharing economy. On-demand mobility will further 

decouple data ownership from vehicle ownership.

Autonomous driving requires an abrupt transfor-

mation to dealing with 4.5 TB of data per day [124]. 

Connectivity is a key prerequisite. It is essentially 

a multitier IoT network. In multivehicle networks, 

each car shares information with others and acts 

upon the collective information. Within each vehi-

cle, there are other networks connecting hundreds 

of electronic control units (ECUs) in a highly distrib-

uted system. In addition to the challenges of process-

ing video at high frame rates, autonomous driving 

poses a major challenge for real-time operations. 

This requires ECUs within a vehicle and across vehi-

cles to be able to sense, communicate, and act in 

real-time in a decentralized manner, driving embed-

ded in-network analysis and decision making.

Industrial automation

Networked sensors and actuators have a long 

history of use in industrial automation applications, 

and wireless networks are seeing increasing use in 

the IoT. Depending on legal requirements, the cost 

of installing cables for an industrial automation 

system ranges from hundreds to thousands of U.S. 

dollars per foot [125]. Recent advances in wireless 

network  reliability (>99.999%) and battery lifespan 

(up to 10 years) in some industrial automation 

applications allows them to be substituted for wired 

networks [126]. IEEE 802.15.4 is commonly used for 

communication in these circumstances. Wired and 

wireless, the IoT is being used to enable distributed 

plant control in industrial automation applications.

IoT security is a pressing problem for industrial 

automation and transportation systems [127]. For 

example, in 2003 the Slammer worm infected a 

nuclear power plant [128] and a computer virus 

halted passenger and freight trains. In addition, 

several attacks on general- purpose computers have 

damaged industrial automation systems. Stuxnet 

provides an example of a virus targeting a particular 

industrial material purification process [129].

Fragmentation is another substantial challenge 

for the IoT in industrial automation applications. 

There are many different communication standards 

for the heterogeneous sensors and actuators in this 

application. The need for interdomain interfaces 

results in complex network architectures.

Wearables and medical devices

Wearables are miniature embedded devices 

worn by people. They perform day-to-day data 

acquisition and analysis. Thanks to the ongoing 

miniaturization of electronics, there has been an 

increase in wearables in health, sports, surveillance, 

and social applications.

Energy consumption has been a primary con-

straint for wearable sensing and pattern recog-

nition. Their miniature form factor constrains 

battery capacity, i.e., the total stored energy. Data 

sensing and pattern recognition are the primary 

functions of wearables. Progress on low-power 

sensors, e.g., MEMS-based inertial measurement 

units (IMUs) and low-power CMOS camera sen-

sors, has made energy- efficient wearable sensing 

increasingly practical.

MEMS-based IMUs, e.g., accelerometers and 

gyroscopes, have been widely used in wearables 

for motion tracking and activity recognition for 

over a decade. The active power consumption 

of MEMS-based accelerometers can now be kept 
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under 10 pW for low-frequency sampling, e.g., the 

ST Microelectronics LIS3DH. Activity-aware adap-

tive sensing techniques can further reduce the 

power consumption of motion sensing by another 

order of magnitude. Progress has also been made 

on machine learning-based human activity pattern 

recognition [130]–[133]. A wide range of machine 

learning algorithms, such as random forest and 

Bayesian networks, have been widely adopted in 

motion-based wearable sensing systems. Existing 

commercial wearable products are capable of real-

time recognition of a wide range of human physical 

activities, such as running, cycling, swimming, and 

sleeping. High-precision quantification of human 

motion, e.g., 3-D human motion tracking, has also 

been achieved, empowering a range of sports and 

medical applications.

Compared to IMUs, wearable cameras are more 

challenging, in terms of performance requirements 

and power consumption. For example, running 

face detection on Google Glass depletes its battery 

in 38 minutes [134]. Conventional machine learn-

ing algorithms have made tremendous progress on 

human activity recognition, and recent progress 

on deep learning techniques has delivered unpar-

alleled accuracy. Deep-learning-based methods 

can automatically derive high-level features from 

raw data, hence effectively reducing the need for 

domain- specific, often handcrafted, feature design.

The medical industry has slowly started enter-

ing the connected world of IoT. Electronic medical 

records are being implemented at scale. Connected 

devices have arisen so that doctors can digitally pre-

scribe medication, and patients can easily access 

their records over the Internet. The IoT provides 

medical experts with ubiquitous, continuous, and 

remote sensing and actuation technologies. This 

enables quick turnaround of information sharing 

and processing, and may reduce clinical error rates. 

It also enables predictive medicine.

The IoT has the potential to enable continuous 

personalized automated monitoring of medical con-

ditions. Currently, most evaluation and feedback 

occur at rare appointments with nurse practitioners 

and doctors, and these events are likely to remain 

rare due to time constraints on medical practitioners 

and patients. The IoT can make this continuous, ena-

bling improved diagnoses and treatment of condi-

tions with intermittent or variable symptoms. Recent 

progress on ensembles of machine learning systems 

has enabled energy-efficient pattern recognition in 

wearable medical devices [135].

Agriculture

Wireless distributed sensing has a long history of 

use in agricultural applications, and we expect its 

use to expand. Data on the total market size are in 

disagreement, but a multibillion US dollar estimate 

for the agricultural IoT market is safe. As indicated 

in a recent survey by Ojha et al. [136], the main 

applications within agriculture are monitoring of 

automated farming systems (including irrigation 

management [137], [138]) [139]–[142], pest and 

disease monitoring [143], [144], controlled appli-

cation of soil amendments [145], livestock surveil-

lance [146], [147], water quality monitoring [148], 

[149], greenhouse gas monitoring [150], and asset 

tracking [151].

There is a wide range of agriculture-relevant 

sensing modes available, including moisture, tem-

perature, conductivity, salinity, pressure, wind, 

rainfall, and solar radiation. The states of plants 

can also be monitored, including leaf hydration 

and photosynthesis rates. Livestock [152] and pest 

[153]–[156] activities and locations can be detected 

using several sensing modes, including global posi-

tioning system (GPS) tracking, computer vision, and 

audio classification.

The agricultural sensing problem domain has 

several special characteristics. Network spans are 

often quite large, with sensors within a single net-

work spread over kilometers or more. This has 

traditionally been managed using cellular commu-

nication, or multihop networks and moderate-range 

communication technologies such as IEEE 802.15.4. 

Fortunately, many agricultural applications require 

low data rates, with each sensor providing samples 

every hour or day, not every millisecond. As a conse-

quence, LPWAN communication technologies (see 

the “Wireless communication trends and IoT impli-

cations” section) are particularly well suited to many 

agricultural sensing applications; we can expect 

their rapid expansion in this market during the next 

5 years. Pest detection applications [154]–[158] 

provide a contrasting example, with many requiring 

high data rates and complex analysis, e.g., video or 

laser-based insect detection.

Some agricultural applications benefit from subter-

ranean sensing, requiring unconventional approaches 

to wireless communication, the simplest of which is 
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designing sensor nodes that separate antennas from 

sensors by a meter or more of wires. Researchers have 

also considered using unusual communication chan-

nels such as ultralow frequency radio for short-range 

underground communication [159].

Embedded intelligence is valuable in this applica-

tion because it breaks the high-latency dependence 

on potentially multihop, long-range communication.

A thorough treatment of agricultural sensing 

research re quires a dedicated survey, and there are 

several available to the interested reader [136], [160].

Challenges
This section describes several challenges facing 

embedded intelligence in the IoT.

Small data

Data scarcity is the foremost roadblock to enabling 

edge intelligence for many IoT domains. A fundamen-

tal challenge is that accurate modeling of a complex 

system builds upon high-dimensional feature rep-

resentations. A large amount of high-quality data are 

needed to develop such models. Let us use predictive 

maintenance to illustrate the challenge. 

Predictive maintenance is a widely used embed-

ded intelligence service targeting a broad range 

of industrial domains. It uses data-driven models 

to detect progressive system defects and schedule 

maintenance in time to prevent system failures. This 

is challenging because system faults are uncommon 

and difficult to capture, so representative data are 

scarce and poorly labeled. As a result, data-driven 

system modeling methods are unable to accurately 

describe critical yet rare system states. Therefore, 

fault diagnosis and classification methods are often 

developed by experts using domain-specific knowl-

edge. This process is ad hoc and error-prone. Yield 

models are domain- specific and of limited use to 

other applications.

Recent research efforts have focused on the small 

data challenge. Learning methods, such as transfer 

learning and one-shot learning, hold the potential 

to reduce the amount of data required for model 

development. However, data scarcity will remain a 

primary challenge to embedded intelligence in the 

foreseeable future.

Cost of ownership

The total cost of ownership is an important con-

sideration for both cloud systems and edge devices. 

The components of cost of ownership in these two 

use cases are, however, very different. If wiring is 

required to supply either power or network connec-

tivity, the cost of the wire drop may exceed the cost 

of the IoT device [79]. Physical visits to the device, 

whether for maintenance or replacement, are also 

expensive. IoT devices should be designed for rela-

tively long lifetimes. One important factor is thermal 

behavior given the strong dependence of degrada-

tion rate on temperature and thermal cycling.

Power and energy consumption

Power and energy are first-order considerations 

in any battery-powered or energy-scavenging IoT 

system. Given the high computational requirements 

of machine learning systems, power and energy 

 considerations have broad impacts on system 

design. For example, they may dictate sampling 

rates for inference.

Wireless communication power consumption, 

reliability, and latency implications

Some use cases may allow wired network con-

nections. However, many IoT applications will 

require wireless operation. Wireless links generally 

provide lower bandwidth than wired links. Further-

more, the energy required to run the radio may limit 

its duty cycle, further restricting throughput. Training 

updates for machine learning systems may require 

large data transfers.

Multitenancy and heterogeneity

With the emerging trend toward distributed and 

decentralized architectures, heterogeneity is becom-

ing the norm. Specialized hardware is developed 

for resource-constrained devices at the edge while 

general-purpose processors and GPUs still remain 

dominant in the cloud. The ultimate goal is a mini-

mized total cost of ownership for an end-to-end sys-

tem. Application developers intend to save cost with 

specialized hardware at the edge and cloud service 

providers intend to provide general-purpose plat-

forms for their diverse customer bases. This implies 

a multitenant environment where multiple stake-

holders share a common infrastructure; this makes 

resource optimization even more challenging due to 

privacy and security issues. A virtualized infrastruc-

ture is required for multitenancy. On the other hand, 

scheduling of multitenant workloads over devices 

from edge to cloud is still an open problem.
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THE GROWTH OF EMBEDDED intelligence in the IoT 

is inevitable. This trend is motivated by high wireless 

communication costs, requiring analysis and poten-

tially decision making on edge devices or within 

the network instead of relying on remote servers or 

other cloud infrastructure. It is enabled by ongoing 

advances in algorithms, architectures, circuits, and 

devices supporting efficient machine learning. The 

trend will have major impacts on security and pri-

vacy, some positive and some negative. This article 

has summarized the causes and implications of this 

trend in the context of several economically impor-

tant application domains. 
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