
Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_446-2
© Springer Science+Business Media New York 2014

Optimal Two-Level Boolean Minimization

Robert P. Dick�

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA

Keywords Logic minimization • Tabular method • Quine–McCluskey algorithm

Years and Authors of Summarized Original Work

1956; McCluskey
1955; Quine
1952; Quine

Problem Definition

Find a minimal sum-of-products expression for a Boolean function. Consider a Boolean algebra
with elements False and True. A Boolean function f .y1; y2; : : : ; yn/ of n Boolean input variables
specifies, for each combination of input variable values, the function’s value. It is possible to
represent the same function with various expressions. For example, the first and last expressions
in Fig. 1 correspond to the same function. Assuming access to complemented input variables,
straightforward implementations of these expressions would require two AND gates and an OR

gate for
�
a ^ b

�
_ .a ^ b/ and only a wire for a. Although the implementation efficiency depends

on target technology, in general terser expressions enable greater efficiency. Boolean minimization
is the task of deriving the tersest expression for a function. Elegant and optimal algorithms exist
for solving the variant of this problem in which the expression is limited to two levels, i.e., a layer
of AND gates followed by a single OR gate or a layer of OR gates followed by a single AND
gate.

Key Results

This survey will start by introducing the Karnaugh Map visualization technique, which will
be used to assist in the subsequent explanation of the Quine–McCluskey algorithm for two-
level Boolean minimization. This algorithm is optimal for its constrained problem variant. It
is one of the fundamental algorithms in the field of computer-aided design and forms the
basis or inspiration for many solutions to more general variants of the Boolean minimization
problem.

�E-mail: dickrp@umich.edu

Page 1 of 6



Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_446-2
© Springer Science+Business Media New York 2014

Expression Meaning in English Boolean Logic Identity

Distributivity
Complements
Boundedness

not a and not b or not a and b
not a and either not b or b

not a and True
not a

a ∧ b ∨ a ∧ b
a ∧ b ∨ b
a ∧ True

a

Fig. 1 Equivalent representations with different implementation complexities

a
0 1 0 1

a

b

a

00 01

10 11

0

2

1

3
a

b

c

a

b

0 1

2 3

4

6

5

7 7

a

b

c a

b

c

d 0 1

2 3

5

7

4

6

8 9

10 11

31 21

51 41a

b

c

d

Fig. 2 Boolean function spaces from one to four dimensions and their corresponding Karnaugh Maps

Karnaugh Maps
Karnaugh Maps [4] provide a method of visualizing adjacency in Boolean space. A Karnaugh Map
is a projection of an n-dimensional hypercube onto a two-dimensional surface such that adjacent
points in the hypercube remain adjacent in the two-dimensional projection. Figure 2 illustrates
Karnaugh Maps of 1, 2, 3, and 4 variables: a, b, c, and d .

A literal is a single appearance of a complemented or uncomplemented input variable in a
Boolean expression. A product term or implicant is the Boolean product, or AND, of one or more
literals. Every implicant corresponds to the repeated balanced bisection of Boolean space, or of
the corresponding Karnaugh Map, i.e., an implicant is a rectangle in a Karnaugh Map with width
m and height n where m D 2j and n D 2k for arbitrary nonnegative integers j and k, e.g.,
the ovals in Fig. 3(ii–v). An elementary implicant is an implicant in which, for each variable of
the corresponding function, the variable or its complement appears, e.g., the circles in Fig. 3(ii).
Implicant A covers implicant B if every elementary implicant in B is also in A.

Prime implicants are implicants that are not covered by any other implicants, e.g., the ovals and
circle in Fig. 3(iv). It is unnecessary to consider anything but prime implicants when seeking a
minimal function representation because, if non-prime implicants could be used to cover some
set of elementary implicants, there is guaranteed to exist a prime implicant that covers those
elementary implicants and contains fewer literals. One can draw the largest implicants covering
each elementary implicant and covering no positions for which the function is False, thereby using
Karnaugh Maps to identify prime implicants. One can then manually seek a compact subset of
prime implicants covering all elementary implicants in the function.

This Karnaugh Map-based approach is effective for functions with few inputs, i.e., those with
low dimensionality. However, representing and manipulating Karnaugh Maps for functions of

Page 2 of 6



Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_446-2
© Springer Science+Business Media New York 2014

(i) (ii) (iii)

(iv) (v)

X
0

0
1

1
2

1
3

0
4

0
5

0
6

0
7

0
8

0
9

0
10

1
11

1
12

1
13

X
14

1
15a

b

c

d

X
0

0
1

1
2

1
3

0
4

0
5

0
6

0
7

0
8

0
9

0
10

1
11

1
12

1
13

X
14

1
15a

b

c

d

X
0

0
1

1
2

1
3

0
4

0
5

0
6

0
7

0
8

0
9

0
10

1
11

1
12

1
13

X
14

1
15a

b

c

d

X
0

0
1

1
2

1
3

0
4

0
5

0
6

0
7

0
8

0
9

0
10

1
11

1
12

1
13

X
14

1
15a

b

c

d

X
0

0
1

1
2

1
3

0
4

0
5

0
6

0
7

0
8

0
9

0
10

1
11

1
12

1
13

X
14

1
15a

b

c

d

Fig. 3 (i) Karnaugh Map of function f .a; b; c; d /, (ii) elementary implicants, (iii) second-order implicants, (iv) prime
implicants, and (v) a minimal cover

many variables is challenging. Moreover, the Karnaugh Map method provides no clear set of rules
to follow when selecting a minimal subset of prime implicants to implement a function.

The Quine–McCluskey Algorithm
The Quine–McCluskey algorithm provides a formal, optimal way of solving the two-level Boolean
minimization problem. W. V. Quine laid the essential theoretical groundwork for optimal two-level
logic minimization [7, 8]. However, E. J. McCluskey first proposed a precise algorithm to fully
automate the process [6]. Both are built upon the ideas of M. Karnaugh [4].

The Quine–McCluskey method has two phases: (1) produce all prime implicants and (2) select
a minimal subset of prime implicants covering the function. In the first phase, the elementary
implicants of a function are iteratively combined to produce implicants with fewer literals.
Eventually, all prime implicants are thus produced. In the second phase, a minimal subset of prime
implicants covering the on-set elementary implicants is selected using unate covering [5].

The Quine–McCluskey method may be illustrated using an example. Consider the function
indicated by the Karnaugh Map in Fig. 3(i) and the truth table in Fig. 4. For each combination
of Boolean input variable values, the function f .a; b; c; d/ is required to output a 0 (False), a 1
(True), or has no requirements. The lack of requirements is indicated with an X, or don’t-care
symbol.

Expanding implicants as much as possible will ultimately produce the prime implicants.
To do this, combine on-set and don’t-care elementary implicants using the reduction theorem
(ab _ ab D b) shown in Fig. 1. The elementary implicants are circled in Fig. 3(ii) and listed in
the second column of Fig. 5. In this figure, 0s indicate complemented variables, and 1s indicate

Page 3 of 6



Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_446-2
© Springer Science+Business Media New York 2014

Elementary
implicant
(a, b, c, d)

Function
value

(a, b, c, d)

Elementary
implicant

Function
value

0000 1000
0001 1001
0010 1010
0011 1011
0100 1100
0101 1101
0110 1110
0111

X
0
1
1
0
0
0
0

0
0
0
1
1
1
X
01111

Fig. 4 Truth table of function f .a; b; c; d /

Number
of ones

Elementary
implicant
(a; b; c; d)

0 � 00X0
1 � 001X

0011 � X011
2

1100

0010
0000

� 110X � 11XX
11X0 �

1011
1101

� 1X11
3 � 11X1 �

1110
1111

� 111X �
4 �

Second-order
implicant

Third-order
implicant

Fig. 5 Identifying prime implicants

uncomplemented variables, e.g., 0010 corresponds to abcd . It is necessary to determine all
possible combinations of implicants. It is impossible to combine nonadjacent implicants, i.e., those
that differ in more than one variable. Therefore, it is not necessary to consider combining any pair
of implicants with a number of uncomplemented variables differing by any value other than 1. This
fact can be exploited by organizing the implicants based on the number of ones they contain, as
indicated by the first column in Fig. 5. All possible combinations of implicants in adjacent subsets
are considered. For example, consider combining 0010 with 0011, which results in 001X or abc,
and also consider combining 0010 with 1100, which is impossible due to differences in more than
one variable. Whenever an implicant is successfully merged, it is marked. These marked implicants
are clearly not prime implicants because the implicants they produced cover them and contain
fewer literals. Note that marked implicants should still be used for subsequent combinations. The
merged implicants in the third column of Fig. 5 correspond to those depicted in Fig. 3(iii).

After all combinations of elementary implicants have been considered, and successful combina-
tions listed in the third column, this process is repeated on the second-order merged implicants in
the third column, producing the implicants in the fourth column. Implicants that contain don’t-care
marks in different locations may not be combined. This process is repeated until a column yielding
no combinations is arrived at. The unmarked implicants in Fig. 5 are the prime implicants, which
correspond to the implicants depicted in Fig. 3(iv).

Page 4 of 6



Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_446-2
© Springer Science+Business Media New York 2014

Requirements
Resources (prime implicants)

(elementary
implicants) 00X0 001X X011 1X11

0010
0011
1011
1100
1101
1111

� �
� �

�
�
�
�

�

�

11XX

Fig. 6 Solving unate covering problem to select minimal cover

After a function’s prime implicants have been identified, it is necessary to select a minimal
subset that covers the function. The problem can be formulated as unate covering. As shown in
Fig. 6, label each column of a table with a prime implicant; these are resources that may be used
to fulfill the requirements of the function. Label each row with an elementary implicant from
the on-set; these rows correspond to requirements. Do not add rows for don’t cares. Don’t cares
impose no requirements, although they were useful in simplifying prime implicants. Mark each
row–column intersection for which the elementary implicant corresponding to the row is covered
by the prime implicant corresponding to the column. If a column is selected, all the rows for
which the column contains marks are covered, i.e., those requirements are satisfied. The goal is
to cover all rows with a minimal-cost subset of columns. McCluskey defined minimal cost as
having a minimal number of prime implicants, with ties broken by selecting the prime implicants
containing the fewest literals. The most appropriate cost function depends on the implementation
technology. One can also use a similar formulation with other cost functions, e.g., minimize the
total number of literals by labeling each column with a cost corresponding to the number of literals
in the corresponding prime implicant.

One can use a number of heuristics to accelerate solution of the unate covering problem, e.g.,
neglect rows that have a superset of the marks of any other row, for they will be implicitly covered
and neglect columns that have a subset of the marks of any other column if their costs are as high,
for the other column is at least as useful. One can easily select columns as long as there exists
a row with only one mark because the marked column is required for a valid solution. However,
there exist problem instances in which each row contains multiple two marks. In the worst case,
the best existing algorithms are required to make tentative decisions, determine the consequences,
and then backtrack and evaluate alternative decisions.

The unate covering problem appears in many applications. It is NP-complete [5], even for
the instances arising during two-level minimization [9]. Its use in the Quine–McCluskey method
predates its categorization as an NP-complete problem by 16 years. A detailed treatment of this
problem would go well beyond the scope of this entry. However, Gimpel [3] as well as Coudert
and Madre [2] provide good starting points for further reading.

Some families of logic functions have optimal two-level representations that grow in size
exponentially in the number of inputs, but have more compact multilevel implementations. These
families are frequently encountered in arithmetic, e.g., a function indicating whether the number of
on inputs is odd. Efficient implementation of such functions requires manual design or multilevel
minimization [1].

Page 5 of 6



Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_446-2
© Springer Science+Business Media New York 2014

Applications

Digital computers are composed of precisely two things: (1) implementations of Boolean logic
functions and (2) memory elements. The Quine–McCluskey method is used to permit efficient
implementation of Boolean logic functions in a wide range of digital logic devices, including
computers. The Quine–McCluskey method served as a starting point or inspiration for most
currently used logic minimization algorithms. Its direct use is contradicted when functions are
not amenable to efficient two-level implementation, e.g., many arithmetic functions.

Cross-References

� Greedy Set-Cover Algorithm

Recommended Reading

1. Brayton RK, Hachtel GD, Sangiovanni-Vincentelli AL (1990) Multilevel logic synthesis. Proc
IEEE 78(2):264–300

2. Coudert O, Madre JC (1995) New ideas for solving covering problems. In: Proceedings of the
design automation conference, San Francisco, pp 641–646

3. Gimpel JF (1965) A reduction technique for prime implicant tables. IEEE Trans Electron
Comput 14(4):535–541

4. Karnaugh M (1953) The map method for synthesis of combinational logic circuits. Trans AIEE
Commun Electron 72:593–599

5. Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds)
Complexity of computer computations. Plenum Press, New York, pp 85–103

6. McCluskey EJ (1956) Minimization of Boolean functions. Bell Syst Tech J 35(6):1417–1444
7. Quine WV (1952) The problem of simplyfying truth functions. Am Math Mon 59(8):521–531
8. Quine WV (1955) A way to simplify truth functions. Am Math Mon 62(9):627–631
9. Umans C, Villa T, Sangiovanni-Vincentelli AL (2006) Complexity of two-level logic minimiza-

tion. IEEE Trans Comput-Aided Des Integr Circuits Syst 25(7):1230–1246

Page 6 of 6

http://dx.doi.org/SpringerLink::ChapterTarget

	Optimal Two-Level Boolean Minimization
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Karnaugh Maps
	The Quine–McCluskey Algorithm

	Applications
	Cross-References
	Recommended Reading




