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Abstract—Thermal problems are important for integrated circuits with
high power densities. Three-dimensional stacked-wafer integrated circuit
technology reduces interconnect lengths and improves performance
compared to two-dimensional integration. However, it intensifies thermal
problems. One remedy is to redistribute white space during floorplanning.
In this paper, we propose a two-phase algorithm to redistribute white
space. In the first phase, the lateral heat flow white space redistribution
problem is formulated as a minimum cycle ratio problem, in which the
maximum power density is minimized. Since this phase only considers
lateral heat flow, it also works for traditional two-dimensional integrated
circuits. In the second phase, to consider inter-layer heat flow in three-
dimensional integrated circuits, we discretize the chip into an array
of tiles and use a dynamic programming algorithm to minimize the
maximum stacked tile power consumption. We compared our algorithms
with a previously proposed technique based on mathematical program-
ming. Our iterative minimum cycle ratio algorithm achieves 35% more
reduction in peak temperature. Our two-phase algorithm achieves 4.21×
reduction in peak temperature for three-dimensional integrated circuits
compared to applying the first phase, alone.

I. INTRODUCTION

Increasing power densities are making thermal problems more

important during integrated circuits (IC) design. Three-dimensional

(3D) ICs, which are commonly composed of vertically stacked

dies, have the potential to improve integration density and reduce

interconnect delay [1]. However, 3D IC designers face a major

challenge in controlling temperature due to the high power densities

possible in stacked-wafer integration [1], [2]; thermal issues are

a central concern during 3D IC design. We consider the problem

of automatically distributing white space among blocks to reduce

the peak temperature in 2D and 3D ICs. The proposed technique

can work with existing 2D/3D floorplanning algorithms to help to

optimize chip temperature.

Many existing floorplanning algorithms consider temperature but

do not explicitly optimize the insertion of white space to control

temperature. In some search-based algorithms such as simulated

annealing [3], [4], the peak temperature is included in the cost

function. Zhou et al. [5] developed a force-directed algorithm for 3D

floorplanning. It treats thermal gradient as a force on blocks to repel

them from high-temperature regions, but does not currently use ther-

mal gradient information to insert white space. A temperature-driven

white space redistribution algorithm can be used to appropriately add

white space, either by embedding it within an existing floorplanner

or by using it in a post-processing step.

2D and 3D white space redistribution algorithms have been devel-

oped for different goals. Tang, Tian, and Wong [6] formulate white

space redistribution as a min-cost flow problem with the objective of

minimizing half-perimeter wirelength.
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Researchers have also considered 3D IC white space redistribution.

Li et al. [7] describe an integrated white space and thermal via

planning algorithm. In each iteration, the algorithm computes the

amount of white space around a each block required for temperature-

constraining thermal vias. Then, white space is budgeted among

blocks using linear programming. The objective is to minimize the

sum of required area minus actually assigned area. However this

objective does not prevent scenarios in which one block is allocated

too much white space and another allocated too little white space.

Wong and Lim [8] describe a mathematical programming formula-

tion that iteratively repels blocks from hot tiles. They only consider

the closest block for each tile, and may ignore blocks with much

higher power densities that are only slightly farther away. Their

formulation also contains numerous non-linear constraints, increasing

computational cost.

Yan et al. [9] describe a method to iteratively insert white space

to the block with the highest temperature. They use block-level

spatial discretization during temperature computation, which may be

inappropriate because it neglects intra-block temperature variation.

They insert white space evenly at the four boundaries of the block,

although in reality an uneven insertion may be better.

These existing techniques consider only the heat flow among

blocks on the same layer, i.e., they consider lateral heat flow but

neglect the stronger vertical inter-block thermal relationships in 3D

ICs. Temperature is governed by the following differential equation:

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= −

p

k
, (1)

where T is the spatial thermal profile, p is power density profile, and

k is thermal conductivity. The first two terms on the left-hand side

represent lateral heat flow and the third term represents vertical heat

flow.

Thermal problems are especially important in 3D ICs because

blocks on different layers may overlap. In the overlap region, the

power sources on different layers all contribute to the temperature in

layers farther from the heat sink. Therefore, in order to achieve lower

peak temperature, vertical heat flow must be considered.

The contribution of our work is a two-phase algorithm that

considers both lateral and vertical heat flow. In the first phase, the

lateral heat flow problem is formulated as a minimum cycle ratio

problem that is solved optimally and efficiently. The second phase

considers vertical heat flow. We discretize the chip area into tiles and

use a dynamic programming algorithm to optimize tile stacked power

consumptions.

II. LATERAL HEAT FLOW OPTIMIZATION WITH MINIMUM CYCLE

RATIO ALGORITHM

This section describes our problem formulation and solution for

white space insertion considering lateral thermal interaction. We

generalize to inter-layer thermal interaction in Section III.
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Fig. 1. Illustration of rectangular window for average power density
calculation.

II.A. Problem Formulation

A stacked-layer 3D IC consists of L layers, D1, D2, . . . , DL.

Blocks in a layer are placed in the x–y plane and layers are stacked

on the z axis. In each layer Dk, there is a set of rectangular blocks

Bk
1 , B

k
2 , . . . , B

k
nk

. Each block Bk
i has a fixed shape (wk

i , h
k
i ), where

wk
i and hk

i are width and height. The tuple (xk
i , y

k
i ) represents

the coordinates of the center of block Bk
i . Each block Bk

i is also

assigned a fixed power consumption P k
i . When referring to blocks

on the same layer, we omit the layer index in our notations. The

dimensions of stacked layers are given by W (width) and H (height).

The topology of each layer, i.e., the relative locations of blocks, is

described by constraint graphs generated by a floorplanner, e.g., a

sequence pair [10].

Net heat flow proceeds laterally from power sources to surrounding

lower-temperature regions. Inserting white space around a particular

block increases the area available for its heat to spread laterally, which

eventually flows vertically toward the heat sink. Our problem in this

phase is to assign more white space to blocks with higher power

densities and less white space to blocks with lower power densities

for a given block topology.

Our approach requires the use of a closed-form expression for

estimated temperature within our MCR formulation. This makes

it challenging to use conventional thermal analysis algorithms. To

support rapid inner-loop estimation, we estimate the impact of local

design decisions on local thermal profile with an expression based on

average power density, i.e., the total power consumption of a chosen

region divided by its area. We treat x and y directions separately in

redistribution. Taking x direction for example, given a layer and the

topology of blocks on this layer, if blocks Bi and Bj are adjacent

on the x-axis, we can draw a rectangular power density window

spanning the regions between the midpoints of these two blocks. We

use x1, x2, y1 and y2 to represent coordinates of left, right, lower,

and upper edges of this window. We have x1 = xi, x2 = xj ,

y1 = max(yi − hi, yj − hj) and y2 = min(yi + hi, yj + hj).
Figure 1 gives an example of two blocks and their power density

window, which is represented by the dashed rectangle. Within the

window Bi and Bj , are the only heat sources. When we redistribute

white space on the x-axis, the average power density of this window

is primarily affected by the x-axis separation between these blocks.

Since the height of the rectangle does not change during x-axis white
space redistribution, we can approximate thermal impact with power

density, i.e., the total power consumption in the window divided by

its width. The total power consumption in this window also depends

on y-axis block positions. In order to separate the x- and y-axis
white space insertion problems, we use Pi/2 + Pj/2 for the power

consumption within the window, which gives an upper bound the

power density in x direction:

pdxij = (Pi/2 + Pj/2)/(xj − xi). (2)

We define the linear power density between a block and left (right)
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Fig. 2. Example block relationships and remaining white space flexibility.

boundary of the layout as follows:

pdxiL = (Pi/2)/xi and (3)

pdxiR = (Pi/2)/(W − xi). (4)

Our objective is to minimize the maximum pdxij , which is equivalent

to maximizing the minimum reciprocal of pdxij . Let lx = min 1/pdxij .
We formulate the Maximum Linear Power Density Minimization

(MLPDM) problem as follows.

Problem MLPDM: Given a topology of a set of blocks and a fixed

chip area, our objective function is

max lx. (5)

The following constraints are considered: ∀i ∈ 1...n

xi −
wi

2
≥ 0 and (6)

xi +
wi

2
≤ W. (7)

If block i is to the immediate left of block j,

xj − xi ≥
wi

2
+

wj

2
and (8)

xj − xi

Pi/2 + Pj/2
≥ lx. (9)

Constraints (6) and (7) state that all blocks should be placed within

fixed chip area. Constraint (8) ensures that any pair of blocks that have

a horizontal relationship do not overlap with each other. Constraint

(9) ensures that lx is the minimum reciprocal of linear power density.

The y-axis formulation is analogous.

II.B. Solving MLPDM Problem by Minimum Cycle Ratio Algorithm

In this subsection, we solve MLPDM problem by converting it to

minimum cycle ratio (MCR) problem, which can be solved efficiently

and optimally. The MCR problem is defined as follows. Given a

digraph G = (V,E), each edge e has a weight we and a non-negative

transit time te. The cycle ratio λ of a cycle C is the ratio of its sum

of weights to its sum of transit times:

λ(C) =

∑
e∈C

we∑
e∈C

te
. (10)

The smallest ratio λ∗ among all cycles in the graph G must be found.

We rearrange Eq. (6)–(9) as follows:

0− xi ≤ −
wi

2
− 0 · lx, (11)

xi −W ≤ −
wi

2
− 0 · lx, (12)

xi − xj ≤ −(
wi

2
+

wj

2
)− 0 · lx, and (13)

xi − xj ≤ 0− rjilx. (14)

where rji = (Pi/2+Pj/2). Note that these constraints coincide with
the form of the dual of the MCR problem [11], indicating that we can
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Fig. 3. MCR graph in x direction for the block relationships in Fig. 2.

construct the graph for the MCR problem GMCR
H in the following

way.

1) If Bj has an incident edge from Bi in the constraint graph GH ,

we add two directed edges in GMCR
H from Bj to Bi; one has

weight wji = −(wi

2
+

wj

2
) and transit time 0 and the other

has zero weight and transit time rji.
2) We add two vertices s and t to the graph, which represent the

right and left boundaries respectively. We add two edges from

s to each block Bi if it does not have any incoming edges from

any other blocks, and two edges from Bi to t if the block does

not have any outgoing edges. The weights and transit times of

the two edges are (−wi

2
, 0) and (0, ri) with ri = Pi/2.

3) We add one more edge from t to s with weight W and zero

transit time to ensure that there exist cycles in the graph GMCR
H

and all blocks are placed within the layout boundary length W .

The MCR graph for y-axis constraints (GMCR
V ) can be constructed

in a similar way. Figure 3 gives an example of the MCR graph in

x direction for the blocks in Figure 2(a). The objective functions lx
and ly become the minimum cycle ratio in the graph GMCR

H and

GMCR
V .

II.C. Further Improvement by Iterative MCR Algorithm

Solving the MCR problem obtains the maximal lx for GMCR
H and

a critical cycle. We define the cost of an edge ce as follows:

ce = we − lx · re. (15)

A critical cycle is a cycle in the graph for which the sum of the costs

of edges is zero, which means that lx cannot be further increased for

this cycle, i.e., no more white space can be further inserted without

violating the constraints. In our problem, critical cycles always start at

s, travel through some blocks, reach t, and return to s. For example,

see s → b → a → t → s in Figure 3. The location of each

block in the critical cycle can be computed by adding the location

of its predecessor in the critical cycle and the cost of the edge to its

predecessor (the cost is negative except for ets).
The locations of the blocks outside the critical cycle are determined

by using the shortest path algorithm to find the cost of the shortest

(most negative) path from s to the block; the block location is given

by W plus the most negative cost. However, the locations of the

remaining blocks are still flexible. For instance, in Figure 2(b), block

c is allowed to be moved within Rc as long as its local power density

for neither block a or the right boundary exceed 1/lx.
To determine the locations of the remaining blocks, we iteratively

fix the blocks in the current critical cycle and then solve MCR

problem for the remaining flexible blocks until all blocks are fixed.

When the location of block Bi is fixed at xi, two operations are

required to update the graph:

Algorithm 1 Iterative MCR Algorithm

1: Given an MCR graph GMCR

H or GMCR

V .

2: while there exist flexible blocks do

3: Solve MCR problem in current graph.

4: Fix the blocks in the critical cycle.

5: Update graph: do OP1 and OP2 on every recently fixed block.

6: end while

7: Output locations of each block.

1) OP1, which removes all edges between Bi and all other fixed

blocks, and

2) OP2, which adds an edge with weight −xi and zero transit

time from Bi to t and an edge with weight xi + err and zero

transit time from t to Bi, where err is a small positive number

we add to the weight to prevent the ratio of cycle Bi → t→ Bi

from being 0/0.

The iterative MCR algorithm is summarized in Figure 1.

The iterative MCR algorithm only considers blocks on the same

layer and can be applied to traditional 2D floorplans. For 3D

floorplans, the iterative MCR algorithm can be applied to each layer

separately, but this is suboptimal. It appears challenging to extend

the iterative MCR algorithm to solve multiple layers simultaneously

because the algorithm requires that each pair of blocks have fixed x-
axis or y-axis relationships. For multiple layers, blocks on different

layers do not necessarily have such fixed relationships.

There exist many algorithms for solving the minimal cycle ratio

problem [12]. We choose Howard’s algorithm [12] due to its effi-

ciency. The run time of Howard’s algorithm is O(nmN2) where n
is the number of vertices, m is the number of arcs, and N2 is the

number of simple cycles in the graph. The number of iterations is at

most n. Therefore, the total run time of iterative MCR algorithm is

O(n2mN2).

III. INTER-LAYER HEAT FLOW OPTIMIZATION WITH DYNAMIC

PROGRAMMING

The iterative MCR algorithm treats each layer separately, assigning

more white space between blocks with higher power densities.

However, in 3D ICs, blocks on different layers may overlap with

each other. Inter-layer heat flow heavily influences thermal profile,

introducing a problem not addressed by the Iterative MCR algorithm.

We now describe a method of extending our iterative MCR algorithm

to consider inter-layer heat flow optimization.

III.A. Problem Formulation of Inter-Layer Heat Flow Optimization

In this phase, we discretize the IC layout into M ×N tiles in M
rows and N columns. We assume that each tile is small enough that

very few will overlap more than one block within a layer. A block

may span several tile grid rows and columns. We also assume that the

left (lower) boundary of each block coincides with the left (lower)

boundary of the leftmost (lowest) occupied column (row). When tile

Tileli,j overlaps with block Bl
k, we define tile power consumption

in Tileli,j to be

PT l
i,j = pdlk ×Overlap

l
i,j(k), (16)

where Overlapl
i,j(k) is the area that T ileli,j overlaps with block Bl

k

and pdlk is the power density of that block.

We use a compact resistive thermal model to model inter-layer

heat flow [13], [14]. Each tile is an isothermal node in the thermal

model. Adjacent nodes have thermal conductances. Power sources in

this model are analogous to current sources in electrical networks,

thermal conductance is analogous to electrical conductance, and heat



flow is analogous to electrical current. In this phase, we consider only

inter-layer heat flow, and consider only inter-layer thermal resistances

RL and RH , where RL is the thermal resistance of dielectric layers

in z direction and RH is the thermal resistance of the heat sink.

Temperature Ti,j on the top layer at tile T ileLi,j can be expressed in

the following form:

Ti,j =
L∑

l=1

[(l − 1)RL +RH ]PT l
i,j . (17)

Eq. (17) shows that power sources on all layers contribute to the

temperature of the layer farthest from the heatsink. We define

weighted power density pd′
l

k for blocks as follows:

pd′
l

k = [(l − 1)RL +RH ]pdlk. (18)

Weighted overlapped power consumption OP ′l
i,j(k) and weighted

tile power consumption PT ′l
i,j are calculated in a similar way, but

using pd′ instead of pd.
Our goal in this phase is to minimize the maximum chip

temperature Ti,j by adjusting the locations of blocks. Because

we start with the solution given by the iterative MCR algorithm

described in Section II-B, we must constrain the locations of blocks

in order to preserve high-quality characteristics of the MCR solution.

We therefore impose a motion range constraint, MR. Blocks may

only be moved within the range [−MR,MR] with respect to

the original (MCR) block location in both x and y directions.

Minimizing maximum chip temperature, according to Eq. (17),

is equivalent to minimizing the maximum
∑L

l=1 PT ′l
i,j over all

tiles. However, it is difficult to consider all layers simultaneously.

We therefore consider layers sequentially. On each layer, we also

separate x and y directions. In the following subsections, we only

illustrate the algorithm in x-axis. The y-axis solution is analogous.

We formulate our problem as follows.

Inter-Layer Heat Flow Optimization on Individual Layer Problem:

We define the Stacked Tile Power Consumption STPC i,j as the sum

of PT ′l
i,j of the layers for which a dynamic programming solution

has already been obtained. STPC i,j is initialized to zero since at the

beginning no layer has been processed. Given an original floorplan

for layer l, the problem is to adjust x (or y) coordinates for all blocks
on layer l, within a motion range [−MR,MR], such that maximum

of STPC ′

i,j is minimized, where STPC ′

i,j = STPC i,j + PT ′l
i,j .

The order in which layers are processed influences solution quality.

Our strategy is to choose the layer with the block of the highest

weighted power density among all the remaining blocks at each

iteration. By giving priority to blocks with higher weighted power

densities, white space insertion decisions for other layers can be made

in context of these prior decisions, i.e., overlapping with high power-

density blocks can be more easily avoided.

III.B. Inter-Layer Heat Flow Optimization

In this subsection, we describe a dynamic programming algorithm

to solve the inter-layer heat flow optimization problem. We first

provide some useful definitions.

• GH is the x-axis constraint graph for the given floorplan. We

add a source vertex s and a sink vertex t representing the left

and right boundaries.

• L(k) is the number of tiles that block k spans on the x-axis,
i.e., L(k) = ⌈wk/wtile⌉, where wtile is the tile width.

• If there is a path in GH from block k′ to block k, then k′ is

a predecessor of k and k is a successor of k′. If the path only

contains one edge, k′ is a direct predecessor of k and k is a

direct successor of k′.

• We define a dependence set D(k) of block k, which includes

all blocks that are predecessors of k in GH .

• prev(k) denotes the set of vertices that are direct predecessors

of vertex k.
• We define block cost cost(k, i) as the maximum of STPC ′

among all the tiles overlapped by block k if the right boundary

of block k is located at column i. If i is out of motion range

MR, the cost is unacceptable (infinite).

• f(k, i) is the minimal maximum of STPC ′ among all the tiles

overlapped by blocks in D(k) when the right boundary of block

k is placed before or at column i.

Definition 1: A set of blocks S is said to be constrained by a

value f if the cost of any block in S is less than or equal to f .
Definition 2: A floorplan for a set of blocks S is said to be a

“feasible floorplan” constrained by a value f if the following two

constraints are satisfied:

1) blocks in S do not overlap each other and

2) S is constrained by f .

Next, using the above notations and definition, we introduce two

lemmas that will help us prove the correctness of the recursion

equation for a dynamic programming solution of the inter-layer heat

flow optimization problem.

Lemma 1: Given two dependence sets D(k1) and D(k2), and

their corresponding feasible floorplans constrained by f(k1, i1) and

f(k2, i2), respectively. There exists a feasible floorplan for set

D(k1) ∪D(k2) constrained by the value max{f(k1, i1), f(k2, i2)}.
We call such a feasible floorplan a combined feasible floorplan.

Proof: We combine two feasible floorplans by following the

following rules.

1) If block k′ appears only once in either D(k1) or D(k2), in
combined floorplan it is still placed at the same location as in

the original floorplan of either D(k1) or D(k2), where block

k′ appears.

2) If block k′ appears in both dependence sets, it has two

candidate locations. In the combined floorplan, it is placed at

the left-most candidate location.

We first prove there is no overlap in the combined floorplan. If

block k′ is placed using Rule 1, all of block k′’s successors must

appear only once and in the same original floorplan as block k′ does.

Otherwise, by the definition of dependence set, block k′ must be a

predecessor of both k1 and k2. Thus, it must be in both dependence

sets, which results in a contradiction. k′ and all of its successors are

in the same feasible floorplan. In the combined floorplan, they are

placed at the same locations they had in the original floorplan.

If block k′ is placed by Rule 2, obviously the left candidate location

does not overlap with direct successors in either of the original

floorplans. Therefore, there is no overlap with direct successors in

the combined floorplan. It is easy to extend this argument to all

successors by induction. Therefore, we have also proven that Rule 2

does not induce overlaps.

Costs of blocks in the combined floorplan do not exceed

max{f(k1, i1), f(k2, i2)} because we do not create new locations

for blocks. Any location in combined floorplan is covered by at

least one of the two original floorplans. Thus no cost exceeds

max{f(k1, i1), f(k2, i2)}.
We have shown that by following Rules 1 and 2, we can construct

a combined feasible floorplan from two feasible floorplans. If we

combine multiple floorplans iteratively, this immediately leads to the

following Lemma.



Lemma 2: Given several dependence sets D(k1), D(k2), . . . ,
D(km) and their corresponding feasible floorplans constrained by

f(k1, i1), f(k2, i2), . . . , f(km, im), there exists a combined feasible

floorplan for set D(k1) ∪D(k2) ∪ . . . ∪D(km) constrained by the

value max{f(k1, i1), f(k2, i2), . . . , f(km, im)}.
We are now ready to derive the recursion equation for our dynamic

programming based inter-layer heat flow optimization technique.

Theorem 1: f(k, i) can be computed by the following recursion

equation:

f(k, i) = min{f(k, i− 1),

maxk′∈prev(k){f(k
′, i− L(k)), cost(k, i)}}, (19)

with initial conditions

f(s, i) = 0 : 1 ≤ i ≤ N and (20)

f(k, i) = ∞ : i ≤ 0, (21)

where N is the total number of columns.

Proof: Eq. (21) implies that all blocks must be placed in the IC

bounding box. Eq. (20) is the initial condition that sets the source

node, since the source node is not a real block. f(s, i) is zero. Now
we will prove Eq. (19) by induction.

When calculating f(k, i), there are only two cases to consider:

the right boundary of block k is placed at column i or to the

immediate left of column i. Each alternative results in a STPC ′

less than D(k). Obviously, f(k, i) should be the smaller value

for the two alternatives. If being placed left of column i results

in a smaller value, we have f(k, i − 1) = f(k, i). Note that a

feasible floorplan constrained by f(k, i− 1) must also be a feasible

floorplan constrained by f(k, i). If placing the block at column i
results in a smaller value, the right boundaries of all blocks in

prev(k) must be placed to the left of or at column i − L(k). By
Lemma 2, we can combine all feasible floorplans of D(k′), where
k′ ∈ prev(k). The combined floorplan is constrained by the value

maxk′∈prev(k){f(k
′, i − L(k))}. We then add block k, resulting in

a maximum STPC ′ of maxk′∈prev(k){f(k
′, i−L(k)), cost(k, i)}}.

Therefore, both of these alternatives have a corresponding feasible

floorplan, D(k). By the definition of f(k, i), f(k, i) should be the

smallest value yielded by these two cases.

After f(k, i)’s have been computed, the following theorem gives

the value of minimal maximum STPC ′.

Theorem 2: The minimal maximum STPC′ is given by

max{f(t, L),max{STPC}} (22)

Proof: Tiles on current layer can be divided into two classes:

those that overlapped with another block on the current layer

and those that do not overlap another block. We know that

max{STPC ′} ≥ max{STPC} and D(t) includes all blocks on this

layer. Thus, f(t, L) gives the minimum maximum of STPC ′ among

all overlapped tiles. If f(t, L) ≤ max{STPC}, the minimal maxi-

mum of STPC ′ must be at a non-overlapped tile, i.e., max{STPC},
otherwise, it is determined by f(t, L).

The locations of blocks can be determined by combining the

feasible floorplans described in Lemmas 1 and 2. Note that this is

not the only feasible solution because there still remains flexibility

in block positions as long as their costs do not exceed the minimal

maximum STPC ′. Our approach processes layers iteratively without

information about later layers so it cannot guarantee optimality.

Given n blocks and N discretized rows (columns), f(k, i) must

be computed n ·N times and there are at most n direct predecessors

at each recursion step. Therefore, the run time of the dynamic

programming algorithm is O(n2N) for each layer.

Algorithm 2 Complete Two-Phase Algorithm Flow for 3D ICs

1: Run Iter-MCR algorithm for x- and y-axes on each layer.

2: Initialize STPC to zero.

3: UL← all layers.

4: while UL 6= ∅. do
5: CL← the layer in UL containing the block with the highest

weighted power density among all blocks on unlabeled layers.

6: if CL is not the first chosen layer. then

7: Run DP algorithm on CL.
8: end if

9: UL← UL/{CL}.
10: Update STPC .

11: end while

IV. COMPLETE TWO-PHASE ALGORITHM FLOW FOR 3D ICS

This section summarizes the two-phase MCR and dynamic pro-

gramming 3D white space insertion algorithm. In the first phase, we

run Iter-MCR on each layer. Next, choose an unlabeled layer to apply

the dynamic programming algorithm to. The chosen layer contains

the block with the highest weighted power density among all blocks

on the unlabeled layers. After running the dynamic programming

algorithm, the current layer is labeled. This process repeats for all

layers. STPC is updated at the end of each iteration. The algorithm

is described in Algorithm 2, where UL is the set of unlabeled layers

and CL represents the current layer.

V. EXPERIMENTAL RESULTS

We implemented our algorithm in C++ using GCC 4.3.2. Howard’s

algorithm [12] was used to solve the MCR problem in Phase 1.

Since Phase 1 only considers lateral heat flow, we test it on one-

layer floorplans. The floorplans are generated by temperature-aware

3D floorplanner 3D-STAF [5] based on one-layer MCNC and GSRC

benchmarks for which each block has been assigned a random power

consumption in the range [106–107]W/m2 [5]. Since 3D-STAF does

not take white space into consideration, the floorplan initially has

little white space. We need to enlarge the chip area with more white

space before starting white space redistribution. The ISAC-II [15]

thermal analysis software is used to compute thermal profiles and

peak temperatures. In all the following experiments, the chip area is

enlarged to 150% that given by the white-space-unaware floorplanner

and the environment temperature is set to [318.15]K. The original

Tmax is the peak temperature calculated for the original floorplan

centered in the enlarged chip area.

For comparison, we implemented an Even White-space Insertion

(EWI) algorithm that inserts white space evenly between every pair

of adjacent blocks on x and y axes. The widths and heights of white

space are determined by a binary search that finds the maximal

width/height under the constraint that no block be placed beyond

chip area. We also implemented the Mathematical Programming

(MP) based algorithm described by Wong and Lim [8]. In our

implementation, the CPLEX solver is used.

Table I shows the experimental results for Phase 1. “Tmax Red.” is

the reduction in peak temperature compared to the original Tmax . The

results show that on average EWI only improves peak temperature

45% as much as MCR. MP improves peak temperature 65% as

much as MCR. The run time of iterative MCR is much lower than

that of MP, because the MP algorithm iteratively solves a non-linear

mathematical program with a large number of constraints. There are

on the order of O(NM) constraints, whereN is the number of blocks

and M is the number of tiles (10 by 10 in our implementation).

To test Phase 2, we follow the algorithm flow described in Algo-

rithm 2. The flow is run on 3D floorplans with four layers generated



TABLE I
EXPERIMENTAL RESULTS FOR ITERATIVE-MCR ALGORITHM ON SINGLE-LAYER FLOORPLANS

EWI Algorithm MP Algorithm Iter-MCR Algorithm

Circuit Original Tmax Tmax (K) Tmax Red. Tmax (K) Tmax Red. Run time(s) Tmax (K) Tmax Red. Run time(s)

ami33 367.97 365.21 2.76 362.80 5.17 591 361.48 6.49 0.15

ami49 420.10 407.34 12.76 414.45 5.65 1147 406.76 13.34 0.41

n100 362.15 360.96 1.18 357.45 4.70 2247 354.07 8.08 4.31

n200 357.68 354.46 3.22 349.87 7.81 8070 345.36 12.32 64.9

n300 356.63 350.96 5.67 346.46 10.17 21429 344.47 12.16 288

Average ratio 0.45 0.65 1491.53 1.00 1.00

TABLE II
EXPERIMENTAL RESULTS OF DYNAMIC PROGRAMMING ALGORITHM FOR FOUR-LAYER FLOORPLANS

Iter-MCR Only Iter-MCR+DP

Circuit Original Tmax Tmax (K) Tmax Red. Tmax (K) Tmax Red.

ami33 395.50 393.42 2.08 391.09 4.41

ami49 450.65 449.64 1.01 438.48 12.16

n100 416.07 401.12 14.94 379.78 36.29

n200 450.68 430.09 20.59 402.97 47.72

n300 452.96 431.28 21.68 406.76 46.2

Average ratio 1.00 4.21

by 3D-STAF. In Phase 2, the chip is divided into 500 rows and 500

columns. The motion range is set to 1/10 the layout width (or height),

i.e., 50 tiles. RL and RH are calculated by dividing the material

height by its thermal conductivity. Thermal conductivities of heat sink

and dielectric layer are [237]Wm−1K−1 and [142.3]Wm−1K−1. The

heat sink is [800]µm high and the dielectric layer is [200]µm high.

Table II shows the experimental results for Phase 2. The “Iter-MCR

Only” column shows the results of only applying Iter-MCR to each

layer and the “Iter-MCR+DP” column is the results of applying DP

after Iter-MCR. The table shows that Iter-MCR+DP achieves 4.21

times reduction in peak temperature on average compared to Iter-

MCR alone.

VI. CONCLUSION

In this paper, we described a two-phase white space redistribution

algorithm for 2D and 3D IC temperature optimization. We first used

an MCR problem formulation for the lateral heat flow temperature

minimization problem. This formulation supports an efficient and

optimal solution. This first solution can be applied to traditional

2D floorplans or to each layer separately in 3D floorplans. We

then considered the problems introduced by inter-layer heat flow in

3D ICs. We discretized floorplans into arrays of tiles. A dynamic

programming algorithm was developed to minimize the maximum

stacked tile power consumption. We tested our iterative MCR algo-

rithm on 2D floorplans and tested our two-phase MCR and dynamic

programming algorithm on multi-layer 3D floorplans. Compared with

even white space insertion and a mathematical programming based

white space insertion algorithm, our MCR algorithm achieved the

lowest peak temperatures. The MCR and dynamic programming

algorithm for 3D ICs reduced peak temperature by more than four

times compared to an approach ignoring inter-layer heat flow.
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