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Abstract—This paper describes an off-chip memory access-aware run-
time DVFS control technique that minimizes energy consumption subject
to constraints on application execution times. We consider application
phases and the implications of changing cache miss rates on the ideal
power control state. We first propose a two-stage DVFS algorithm based
on formulating the throughput-constrained energy minimization problem
as a multiple-choice knapsack problem (MCKP). This algorithm uses
a power model that adapts to application phase changes by observing
processor hardware performance counter values. The solutions it pro-
duces provide upper bounds on the energy savings achievable under a
performance constraint. However, this algorithm assumes a priori (oracle
or profiling-based) knowledge of application phase change behavior. To
relax this assumption, we propose P-DVFS, an predictive DVFS algorithm
for on-line minimization of energy consumption under a performance
constraint without requiring a priori knowledge of an application’s be-
havior. P-DVFS uses hardware performance counter based performance
and power models. It predicts remaining execution time online in order to
control voltage and frequency settings to optimize energy consumption
and performance. The P-DVFS problem is formulated as a multiple-
choice knapsack problem, which can be efficiently and optimally solved
online. We evaluated P-DVFS using direct measurement of a real DVFS-
equipped system. When bounding performance loss to at most 20% of
that at the maximum frequency and voltage, P-DVFS leads to energy
consumptions within 1.83% of the optimal solution for our problem
instances on average with a maximum deviation of 4.83%. In addition to
producing results approaching those of an oracle formulation, P-DVFS
reduces power consumption for our problem instances by 9.93% on
average, and up to 25.64%, compared with the most advanced related
work.

I. INTRODUCTION AND RELATED WORK

Energy consumption is important in both portable computer sys-

tems, due to its impact on battery lifespan, and high-performance

stationary computers, due to its impact on energy and cooling costs.

Prior work has considered minimizing processor energy consumption.

Chang et al. proposed a dynamic programming energy minimization

technique for multiple supply voltage scheduling in both pipelined

and non-pipelined datapaths [1]. Zhang et al. developed a two-

phase technique that integrates task assignment, task scheduling,

and voltage selection for energy minimization [2]. Varatkar et al.

proposed a communication-aware task scheduling and voltage selec-

tion algorithm to minimize the overall system energy consumption

in a multiprocessor environment [3]. However, the goal of these

techniques is to minimize energy without affecting performance;

trade-offs between performance and energy consumption were not

considered.

Other researchers have considered power management mechanisms

that trade off performance and power consumption. One of the most

promising of these is dynamic voltage and frequency scaling (DVFS).

Two characteristics are important to DVFS control policies. First,

a well-designed DVFS control policy must model and react to the
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dynamically changing trade-offs between application performance

and power consumption. A reduction in processor voltage and

frequency has very different energy and performance impacts on

applications that are heavily accessing off-chip memory, and those

that are consistently hitting in cache and therefore have performance

constrained only by the current frequency of the processor. A well-

designed DVFS policy must continuously monitor and adapt to the

behavior of applications. Second, if a DVFS control policy is to

guarantee that a particular application consistently runs with adequate

performance, e.g., honoring an instruction throughput constraint,

it should maximize energy consumption savings by predicting the

distribution of future instructions among different memory access

behaviors categories. This allows the control policy to increase

processor voltage and frequency when the performance benefit per

lost energy unit is the highest and reduce frequency and voltage when

the energy benefit per lost performance unit is the highest.

A number of researchers have worked on DVFS-related control

to optimize power and energy consumption. Isci et al. proposed

a runtime phase monitoring and prediction technique to reduce

power consumption using DVFS [4]. However, this technique does

not bound performance degradation. Wu et al. proposed dynamic

compiler driven DVFS for controlling microprocessor energy and

performance [5]. However, their work requires changes to the un-

derlying compilation infrastructure. In addition, their technique does

not attempt to honor performance constraints. Liu et al. proposed a

technique to optimize peak temperature subject to a real-time perfor-

mance constraint using DVFS [6]. However, their assumption that the

execution time of a task is inversely proportional to CPU frequency is

correct only for systems in which all layers of the memory hierarchy

operate at the same frequency, as we will demonstrate in Section II-A.

The technique proposed by Choi et al. is the closest to ours [7]. The

goal of their technique is to minimize energy consumption under a

constraint on the total program execution time. Detailed comparisons

with their work can be found in Section IV-B. Their DVFS policy

considers the impact of application phases and off-chip memory

accesses. However, it considers only immediate application behavior

instead of adaptively controlling power state using predictions based

on long-term behavior history.

Our work differs from prior work in the following main ways.

1) We propose a two-stage DVFS algorithm that allows us to

formulate the throughput-constrained energy minimization problem

as an MCKP problem, solve it optimally, and use the solution to

guide online frequency and voltage control. This algorithm builds

on an application phase-dependent power model, taking advantage

of processor hardware performance counters. The solutions obtained

using the two-stage algorithm determine the optimal energy savings

under a performance degradation ratio, for our formulation and

problem instances. However, it assumes access to oracle or profiling-



based information about application behavior. In the rest of the

paper, we will use “optimal solution” in the context of our problem

formulation when this does not introduce ambiguity.

2) We also propose P-DVFS, a predictive online DVFS algorithm

that requires no a priori knowledge of application behavior. P-DVFS

uses hardware performance counter based power and performance

models to adapt to the behavior of running applications. It predicts

remaining execution time online in order to control voltage and

frequency to minimize energy consumption under application-level

performance constraints. Like the two-stage oracle DVFS algorithm,

P-DVFS is also formulated as a multiple-choice knapsack problem.

This formulation permits rapid, optimal, on-line solution of real

problem instances.

3) In contrast with all related work, except that of Choi et al. [7],

we consider the dependence of the power consumption performance

tradeoffs available via DVFS upon application memory access be-

havior, i.e., phase. By adapting to application phase, our technique

supports more aggressive power management settings when they have

the least negative performance impact. To this end, we describe a

method of modeling the performance and power consumption of the

processor using built-in hardware performance counters.

4) In contrast with all past work, our problem formulation supports

application-level throughput requirement, not instantaneous instruc-

tion throughput requirement. This is supported by on-line monitoring

of application behavior as well as prediction of application run times.

We evaluated P-DVFS via direct measurement during operation on a

real system. When limiting performance loss to at most 20% of that

possible at the maximum frequency and voltage, P-DVFS leads to

energy savings within 1.83% of optimal on average with a maximum

deviation of 4.83%, for our problem instances. It improves energy

consumption by 9.80% on average, and up to 29.86%, compared to

the most advanced related DVFS control technique. P-DVFS also

reduces power consumption by up to 25.64% (9.93% on average)

compared with the most advanced related work.

II. MOTIVATION AND PROBLEM FORMULATION

In this section, we first describe how the trade-offs between per-

formance and energy consumption change depending on application

off-chip memory access behavior. We then present the problem

formulation for energy minimization given a user-specified constraint

on application execution time. Finally, we present a dynamic power

state control policy that adjusts CPU frequency based on off-chip

memory access patterns.

II.A. Performance and Energy Trade-Offs

The execution time of a task can be decomposed into on-chip and

off-chip latencies. The latencies of on-chip components scale linearly

with CPU frequency, because they share the same clock with the

processor. In contrast, off-chip latencies, caused by accesses to off-

chip resources such as main memory and disk, are independent of

CPU frequency, because the off-chip resources have one or more

separate clock.

The power consumption of a task can be divided into dynamic

power and static power. Dynamic power consumption is caused by

switching transistors charging and discharging capacitive loads. It

generally scales superlinearly with CPU clock frequency [8]. Static

power consumption is primarily due to gate and subthreshold leakage

currents of transistors. It does not directly depend on CPU frequency

but depends on the voltage. In general, reducing frequency and

voltage reduces both dynamic and static power consumption.

Many modern processors support dynamic voltage and frequency

scaling (DVFS) capability. The typical voltage change overhead for

our evaluation platform is 50 µs. Given an application with some

phases in which instruction throughput is limited largely by processor

core performance and other phases in which instruction through-

put is limited largely by (processor frequency independent) off-

chip memory access latency, we can maximize energy consumption

improvement and minimize performance overhead by using a low

CPU frequency during memory-bound application phases and a high

CPU frequency during core-bound application phases. What temporal

granularity should this control use? The DVFS switching overhead

of 50 µs (see Section IV) implies that adjustments should happen no

more frequently than once every hundred microseconds, thus limiting

overhead.

II.B. Problem Formulation

The performance-constrained energy minimization problem can be

formulated as follows: Given that α is the user-specified performance

degradation ratio relative to the maximum performance of a given task

and Tfmax is the execution time of the task running at the highest

frequency, find the optimal CPU frequency as a function of time t,
such that the total energy consumption of the task is minimized and

the actual execution time of the task subject to DVFS, is no larger

than (1+α)Tfmax . Note that this performance constraint is soft, i.e.,

it is highly desirable to meet it. However, violating the constraint

does not mean failure: a cost function may be associated with the

degree of constraint violation.

As indicated in Section II-A, the energy saving potential directly

relates to the proportion of total execution time resulting from waiting

for off-chip data access, which are primarily L2 cache misses in our

experiments. We assume that each L2 cache miss takes the same

amount of time. Hence, the number of L2 cache misses per instruc-

tion (MPI), is a good indicator of the potential for saving energy.

Intuitively, it is beneficial to assign higher frequencies for intervals

with low MPIs (to improve performance) and lower frequencies for

intervals with high MPIs (to save energy).

In real operating systems, power control policies are usually

implemented using adjustments at discrete time intervals. Discretized

MPI values are used. We define a control point as a time at which

control decisions are made and a scaling point as a time at which

the CPU frequency is modified. The control period is the duration

between two consecutive control points and the scaling period is

the duration between two consecutive scaling points. Note that these

periods need not be the same. In fact, it is reasonable to use a much

larger control period than scaling period to minimize performance

overhead incurred by the controller and use time multiplexing to

emulate continuous DVFS within a control period.

Given an MPI distribution within a control period, S is the set of

all MPI slots and F is the set of all available frequency levels. Our

goal is to find the correct frequency level fi for each slot i ∈ S
such that the total energy consumption Etotal is minimized and the

actual execution time Tact satisfies Tact ≤ (1 + α)Tfmax . Therefore,

assuming the distribution is independent of frequency, for each i ∈
S with frequency fi, given that SPIi(fi) is the number of seconds

per instruction at frequency fi, Pi(fi) is the power consumption,

and poi i is the percentage of instruction associated with slot i, the

objective function and the constraint can be expressed in terms of total

number of instructions Itotal and total energy consumption Etotal , i.e.,

Etotal = Itotal ·
X

i∈S

Pi(fi) · poi i · SPIi(fi) and (1)

Tact ≤ (1 + α)Tfmax . (2)

The goal is to minimize Etotal subject to Equation 2. Since the DVFS

switching overhead ranges from 50 µs to 200 µs, the performance (or

energy) overhead due to a frequency change is less than 0.7%, given

a scaling period of 30 ms. Therefore, we ignore its impact in our



problem formulation. Note that Pi(fi) in Equation 1 depends on

both the CPU frequency and application behavior, e.g., the number

of last-level cache misses per second (see Section III-B).

III. SYSTEM MODELING

In this section, we first explain our task performance and power

models. We then formulate the energy minimization problem as a

multiple-choice knapsack problem (MCKP) and solve it optimally,

assuming knowledge of the average SPI at the maximum frequency

(SPIfmax ) and the exact application MPI distribution. We then relax

our assumptions and propose an execution time predictor that is ac-

curate at the highest frequency. This allows us to formulate the online

DVFS problem again as an MCKP, which can be solved efficiently

on-line. Finally, we explain the software system architecture used

to control DVFS in order to accurately adjust the trade-off between

performance and energy consumption.

III.A. Performance Modeling

Equation 2 depends on a formula that accurately expresses the

relationship between SPI, MPI, and CPU frequency. Intuitively, the

amount of time consumed per instruction can also be decomposed

into on-chip and off-chip latencies. On-chip latency is inversely

proportional to frequency, while off-chip latency, captured by MPI,

is independent of frequency. Prior work has reached the same

conclusion [4]. SPI can be expressed as

SPI(MPI, f) = c1 · MPI + c2/f, or equivalently, (3)

CPI(MPI) = c1 · f · MPI + c2, (4)

where CPI is the number of cycles per instruction, f is the CPU

frequency, and c1 and c2 are constants to be determined via fitting.

Most modern processors have built-in hardware performance coun-

ters that record information about architectural events, e.g., number

of instructions retired and cache misses [9]. By gathering these

two event counts, we can compute SPI and MPI during application

execution. Therefore, given the last N data points reported by

hardware performance counters, we can determine c1 and c2 can

be determined using linear regression. The relevant formulæ follow.

c1 =
N · (

PN

i=1 xi · yi) − (
PN

i=1 xi) · (
PN

i=1 yi)

N · (
PN

i=1 x2
i ) − (

PN

i=1 xi)2
and (5)

c2 =

 

N
X

i=1

yi − c1 ·
N
X

i=1

xi

!

/N, (6)

where xi denotes the product of MPI and CPU frequency for the ith
data point and yi represents the CPI for the ith data point. Note that

N should be carefully chosen to capture changes in memory access

pattern quickly and support accurate regression-based modeling. In

our experiments, varying N between 10 and 50 has insignificant

impact on energy consumption (a variation of 0.5% in total energy

was observed). However, if N is smaller than 10, e.g., 4, we see an

4% energy consumption increase due to inaccuracies in the linear

regression model. In our experiments, we set N to 20.

III.B. Power Modeling

Equation 1 indicates the necessity of having an accurate formula to

describe the relationship between power consumption and MPI. Since

an L2 cache misses are time consuming, the power consumption

is higher for larger MPI values and smaller for lower MPI values.

However, the power consumption also depends on other architectural

events such as number of floating point instructions executed and

number of L1 data cache accesses. We experimented with different

combinations of hardware performance counter events and observed

that following five were sufficient to permit accurate estimation of

power consumption:

1) number of L1 data cache references per second (L1DPS),

2) number of L2 cache references per second (L2PS),

3) number of L2 cache misses per second (L2MPS),

4) number of floating point instructions executed per second

(FPPS), and

5) number of branch instructions retired per second (BRPS).

As a first-order approximation, we assume each access to system

components such as L1 caches and L2 cache consumes a fixed

amount of energy. Therefore, the total power consumption depends

linearly on these five events. In addition, the dynamic power con-

sumption depends nonlinearly on CPU frequency [10]. Given that f
is the CPU frequency, the power consumption can be estimated as

follows:

P = b0 + b1 · L1DPS + b2 · L2PS + b3 · L2MPS +

b4 · FPPS + b5 · BRPS + b6 · f
1.5, (7)

where bi, i = 0, · · · , 6 are task-specific constants that can be de-

termined during pre-characterization. The frequency exponent of 1.5

was determined empirically. It is worth mentioning that b0 accounts

for system idle and leakage power. For example, the formula for the

“mcf” benchmark (see Section IV) follows:

P = 4.778 + 2.2864 × 10−9 · L1DPS+

6.517 × 10−8 · L2PS − 3.596 × 10−7 · L2MPS+

0.6342 · FPPS − 3.136 × 10−9 · BRPS + 4.308 · f1.5. (8)

For all the benchmarks we evaluated, the application-dependent

power models have an average error of 6.67% and a maximum

error of 12.2% across all four CPU frequencies. Note that if the

processor has built-in power sensors [11], the pre-characterization

phase can be eliminated and the constants can be determined during

execution using a regression-based approach such as that described

in Section III-A.

III.C. Cost Minimization

This section describes formulation of the DVFS power manage-

ment state control problem as a multiple-choice knapsack problem

(MCKP). Given multiple sets, each containing multiple items, each

of which is associated with a profit and a weight, MCKP requires the

selection of one item from each set. The selection is optimal when

the total profit is maximized and the total weight of the selected items

is below a constraint. The DVFS problem instance can be converted

into an MCKP instance by treating each potential frequency level as

an item. The weight of the item is the expected throughput at the

associated frequency level. The profit of the item is the associated

reduction in expected energy consumption compared to the energy

at the highest frequency. Note that, depending on whether we have

a priori knowledge SPIfmax and the MPI distribution throughout

program execution, the DVFS problem instance can be formulated

as different MCKP instances, as explained in Section III-C2 and

Section III-C3.

III.C.1) Cost Function: Equations 3 and 7 can be substituted into

Equation 1. For each slot i ∈ S within a control period where S is

the set of all MPI slots, SPIi and Pi depend only on the frequency

level assigned to MPI slot i. However, both are nonlinear due to the

nonlinearity of SPI and power consumption in CPU frequency. The

resulting nonlinear optimization problem cannot be efficiently solved

online.

We use a binary variable xij to indicate whether the frequency fj

is assigned to MPI slot i.

xij =

(

1, fj is assigned to MPI slot i and

0, otherwise.
(9)



Note that
P

fj∈F
xij = 1, ∀ slot i ∈ S. Therefore, for each slot

i ∈ S, SPIi can be expressed as follows.

SPIi =
X

fj∈F

xij · (c1 · MPIi + c2/fj)

= c1 · MPIi +
X

fj∈F

c2/fj · xij . (10)

Since constants c1, c2, and F are known at the control point,

Equation 10 can be simplified as follows.

Letting s0 = c1 · MPIi and

sj = c2/fj , ∀fj ∈ F,

SPIi = s0 +

|F |
X

j=1

sjxij . (11)

where |F | is the number of elements in F . Similarly, the value of

the five events in Equation 7 are also known at the control point.

It is worth mentioning that the five event counts are also frequency

dependent. We therefore normalize event count to instruction count

instead of time. For example, for L1 data accesses, we record the

number of L1 data cache accesses per instruction (L1DPI), which is

independent of frequency. Hence, for MPI slot i with frequency fj ,

we have

L1DPSi(fj) = L1DPIi/SPIi(fj) , mij,1. (12)

Similarly, we use mij,2, mij,3, mij,4, and mij,5 to represent

L2PSi(fj), L2MPSi(fj), FPPSi(fj), and BRPSi(fj). Defining w0 =
b0 and wij =

P5
k=1 bi ·mij,k + b6 ·f

1.5
j , ∀fj ∈ F , allows the power

consumption for MPI slot i to be expressed as follows:

Pi = w0 +

|F |
X

j=1

wijxij . (13)

Combining Equations 11 and 13, Equation 1 can be rewritten as

follows:

Etotal = Itotal

X

i∈S

poi i · (w0 +

|F |
X

j=1

wijxij)(s0 +

|F |
X

k=1

skxik). (14)

Note that poi i is known at the control point. In addition,

xij · xik =

(

xij , if and only if j = k and

0, otherwise.
(15)

Therefore, Equation 14 can be simplified as follows.

Letting e0 = Itotal · w0s0 and

eij = poi i(w0sj + wijs0 + wijsj),

Etotal = e0 +
X

i∈S

X

fj∈F

eijxij . (16)

III.C.2) Performance Constraint – the Oracle Solution: We

first assume that we have a priori knowledge of SPIfmax and the

MPI distribution throughout the program execution and demonstrate

we can solve this problem optimally. Our solution has two stages:

profiling and evaluation. During profiling, we record the necessary

information, e.g., SPIfmax as well as the percentage of instructions

and the hardware performance counter values, for each MPI slot.

This allows an optimal solution to the problem. During evaluation,

we use the optimal solution obtained in the profiling stage to adjust

the frequency dynamically to minimize energy consumption while

honoring the performance constraint. The formulation we have just

described computes the optimal solutions an oracle would yield.

It therefore allows us to determine an upper bound on the energy

savings given a particular performance constraint. We will later

propose an on-line DVFS technique requiring no application pre-

characterization. We will evaluate the quality of this prediction-based

technique, called P-DVFS, by comparing its results with those of the

optimal oracle formulation.

Assuming the number of instructions associated with MPI slot i is

denoted as Ii, Equation 2 can be rewritten as
X

i∈S

X

fj∈F

Ii · SPIi(fj) · xij ≤ (1 + α)Tfmax . (17)

Dividing both sides by Itotal yields
X

i∈S

X

fj∈F

poi i · SPIi(fj) · xij ≤ (1 + α)SPIfmax . (18)

Although we can use Equation 3 to express SPI as a function of

MPI and frequency, in reality we record SPIi(fj) during profiling

to eliminate the impact of linear regression error on the quality of

the optimal solution. More specifically, at each scaling point during

profiling, the frequency is reduced to the closest lower level. When

the frequency cannot be reduced further, we increase the frequency

to the highest level. This process is repeated until the program under

profiling finishes. We then compute the average SPIi(fj) associated

with each MPI slot i and each frequency fj . Hence, we can treat

SPIi(fj) as a constant kij . Equation 18 thus becomes
X

i∈S

X

fj∈F

poi i · kij · xij ≤ (1 + α)SPIfmax . (19)

Itotal and e0 are constants. Thus, the problem can be formulated as

follows:

Minimize
P

i∈S

P

fj∈F
eijxij (20)

Subject to
P

i∈S

P

fj∈F
poi i · kij · xij ≤ (1 + α)SPIfmax and

xij ∈ {0, 1},
P

fj∈F
xij = 1, ∀i ∈ S (21)

Note that xij are binary integer variables and eij , poi i, and ki,j are

positive constants. Therefore, by scaling the constants with a large

positive number, we can make the coefficients eij , poi i, and ki,j

and the right hand side of the constraint in Equation 21 positive

integers. Thus, the formulation can be treated as an multiple-choice

knapsack problem (MCKP) [12]. We solve this problem optimally

using “lp solve” [13]. We record the frequencies assigned to each

MPI value in an |S| × |F | lookup table. During evaluation, we use

the current MPI value to look up and adjust the frequency at each

scaling point.

III.C.3) Performance Constraint – P-DVFS: For this formula-

tion, we assume that the MPI distribution is unknown. However, our

MPI distribution prediction technique relies on the similarity between

present and future MPI distributions. It is known that most programs

have repeated phases with periods ranging from 200 ms–2 s [14].

Therefore, this assumption holds given a reasonable observation

duration. In our experiments, we use performance counter values

during the most recent control period when deriving the optimal

frequency settings for the next control period. We will also discuss

our using solutions when the total number of instructions are known

or unknown. In the rest of the paper, we will use P-DVFS (predictive

DVFS) to indicate the online predictive DVFS technique.

At each control point, the number of instructions retired is known.

It is therefore natural to use the remaining number of instructions Ir

and remaining energy consumption Er instead of Itotal and Etotal

in our problem formulation. We first note that Equation 16 is still

applicable, except that Etotal and Itotal should be replaced with Er

and Ir . Given that Telap is the elapsed time and Tr is the remaining



execution time, Equation 2 can be written as

Tr = Ir ·
X

i∈S

poi i · SPIi(fi) ≤ (1 + α)Tfmax − Telap . (22)

Equation 3 allows us to rewrite the left side of Equation 22 as

Ir ·
X

i∈S

poi i · SPIi(fi) = Ir ·
X

i∈S

X

fj∈F

dijxij , (23)

where dij = poi i/ (c1 · MPIi + c2/fj) , ∀fj ∈ F . Therefore, Equa-

tion 22 can be simplified as follows:

X

i∈S

X

fj∈F

dijxij ≤
(1 + α)Tfmax − Telap

Ir

. (24)

Execution Time Prediction: Equation 24 requires an accurate

prediction of Tfmax at each control point. By comparing Telap with

(1 + α)Tfmax , we can roughly estimate how aggressively we should

adjust the CPU frequency during the remaining execution time. If

Telap << (1 + α)Tfmax , we can reduce the CPU frequency to a

much lower level than that if Telap >> (1+α)Tfmax . However, it is

challenging to predict Tfmax accurately online because (1) the control

algorithm changes the CPU frequency very rapidly, thus resulting in

rapid and significant performance fluctuations and (2) the prediction

algorithm should impose little overhead.

In order to derive a fast and accurate prediction method, we fist

decompose Tfmax into two parts: the amount of time it takes to

execute the instructions retired when running at the highest frequency

Telap,max and the remaining time to finish execution when running

at the highest frequency Tremain,max . We can derive Telap,max using

Equation 26. fk is the frequency used for scaling period k, Tk,fk

is the amount of time elapsed at frequency fk, fmax is the highest

frequency, and MPIk is the average MPI value, i.e., the amount of

time required to execute the same number of instructions in period

k when the highest frequency is employed.

Tk,max = Tk,fk
·

SPI(MPIk, fmax )

SPI(MPIk, fk)
. (25)

Therefore, Telap,max can be expressed as

Telap,max =
X

k

Tk,max =
X

k

„

Tk,fk
·

SPI(MPIk, fmax )

SPI(MPIk, fk)

«

. (26)

In order to determine Tremain,max , we first assume the instruction

count of the current task is known, e.g., by examining the input

data file size or history information. This assumption holds for most

data processing applications such as image encoding and decoding,

data compression, and placement and routing, whose run times are

generally functions of input file size. Given that Itotal is the total

instruction count, Ielap is the number of instructions retired, Ir is

the remaining number of instructions to be executed, and SPI(f) is

the amount of time per instruction at frequency f , we can express

Tremain,max as follows.

Ir = Itotal − Ielap and (27)

Tremain,max = Ir · SPI(fmax ) (28)

Combining Equations 26 and 28, Tfmax can be expressed as

Tfmax = Telap,max + Tremain,max . (29)

We also consider the scenario in which the total instruction count

is unknown before the task is executed. We use Ir to denote the

remaining number of instructions, in billions. We start with an Ir

of 1. At every scaling point, we subtract, from the current Ir , the

number of instructions retired since the last reset of Ir . If the result

is smaller than 1, we reset Ir to the number of instructions retired

since the task started. If the resulting Ir exceeds an upper bound Iup ,

t1 = Tcontrol?
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{ sj }
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timer interrupt

Reset t2 = 0
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by elapsed time

Update Tfmax

Power model

Available 
frequencies

Figure 1. System architecture for P-DVFS.

we set Ir to Iup . Ir is then substituted into Equation 28 to estimate

the remaining execution time. Note that Iup should be large enough to

permit aggressive frequency control and yet small enough to preserve

accuracy. We use an Iup of 30 (billion) in our experiments. We

experimentally determined that the energy consumption is relatively

insensitive to changes in Iup : a variation of only 0.8% in total energy

consumption is observed when varying Iup from 5 to 500. In our

experiments, given a performance degradation ratio of 0.2, the energy

consumptions only deviate by 2% from those if Itotal is known

beforehand, i.e., from pre-characterization, file size based estimates,

or assuming an oracle with knowledge of future application behavior.

Given that Tfmax and Ir can be estimated online, the energy

minimization problem can then be formulated as an MCKP.

Minimize
P

i∈S

P

fj∈F
eijxij (30)

subject to
P

i∈S

P

fj∈F
dijxij ≤

(1+α)Tfmax−Telap

Ir
and (31)

xij ∈ {0, 1},
P

fj∈F
xij = 1, ∀i ∈ S. (32)

We can treat the right hand side of the constraint in Equation 31

as positive. Otherwise, the constraint is trivially satisfied. Unlike

the oracle scenario, the P-DVFS technique requires solving MCKP

online. Although MCKP is NP-hard, there exist algorithms that can

solve it in pseudo-polynomial time [15], [12]. We used “lp solve” to

obtain optimal solutions online. Our experiments had 15 MPI slots

and 4 frequency levels. For each of the evaluated benchmarks, it took

less than 1 ms to obtain the optimal solution, which is fast enough

for online control. Note that this also indicates the energy overhead

of the MCKP solver is approximately 0.1%, given the control period

of 1 s in our experiments. Pisinger’s MCKP solver implementation

would permit an even more efficient solution in a production version

of the control software [15].

III.D. P-DVFS System Architecture

We have integrated the performance model, power model, exe-

cution time predictor, and MCKP solver to accurately control the

CPU frequency for a fine-grained trade-off between performance

and energy. Figure 1 illustrates the system architecture for the P-

DVFS technique. We use Tcontrol and Tscaling to represent the control

and scaling periods. As indicated in Figure 1, whenever a timer

interrupt occurs, we increment the time counters t1 and t2. We first

determine whether t1 has reached Tcontrol . If so, we analyze MPI-

related statistics, i.e., divide the range of MPI values into distinct MPI

slots and calculating the percentage of instructions (poi i) associated

with each MPI slot i, and determine the values of coefficients such as

{sj} in Equation 11 and {wij} in Equation 13 using the performance

and power models. We also gather information about the available



processors frequencies fj . These values are translated to {eij} and

{dij} in Equations 30 and 31, which are then provided to the MCKP

solver along with estimates of Tfmax and Ir in Equation 27 and

28. The optimal solutions are then stored in a mapping table and

time counters t1 and t2 are reset to 0. When t1 < Tcontrol, we

continue to check whether t2 has reached Tscaling and if so, we set

the CPU frequency to the value corresponding to the current MPI

in the mapping table and reset the time counter t2. Otherwise, the

Tfmax estimate is updated. The task then continues executing until

the next timer interrupt occurs. Note that the DVFS algorithm is

implemented in software and has very low performance and energy

overhead (approximately 0.3%).

IV. EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup and

implementation details of the proposed techniques. We then present

the experimental results for both P-DVFS and the optimal two-stage

solution. Finally, we compare the results produced by P-DVFS with

those produced by the optimal oracle solution and the most advanced

previous work [7].

IV.A. Experimental Setup

We implemented our techniques on a Pentium Dual Core E2220

processor running Linux 2.6.25 and operates at 1.2, 1.6, 2.0, and

2.4 GHz. Experimental results indicate the switching overhead ranges

from 50 µs to 200 µs. We use PAPI 3.6.2 [16] for hardware perfor-

mance counter measurement and experimentally determined that the

performance overhead for accessing hardware performance counter

is negligible. Due to hardware limitations, we can only sample

two architectural events at a time. Therefore, we time multiplex

architectural event sampling to obtain all the values needed for power

calculation. The switching interval is 10 ms and five architectural

event counters are monitored, yielding a scaling period, (Tscaling )

of 30 ms. The control period Tcontrol is set to 1 s, i.e., we solve

the MCKP formulation every 1 s such that we can obtain a stable

MPI distribution and capture changes in memory access behavior

quickly enough for accuracy. We use a sliding window of 2 s to

build the MPI distribution histogram. 15 MPI slots are used to

permit different memory access behaviors to be distinguished while

controlling MCKP solver overheard. We experimentally determined

that energy consumption is relatively insensitive to changes in the

number of MPI slots: a variation of less than 0.5% in total energy

was observed when varying the number of slots from 5 to 30. The

same MPI slots are used throughout the execution of a benchmark.

To determine power consumption, we use a Fluke i30 current

clamp on the 12 V processor power supply lines, the output of which

is sampled at 10 kHz using a National Instruments USB6210 data

acquisition card. This approach permits processor power consumption

measurement without requiring printed circuit board rework or access

to internal metal layers. An on-chip voltage regulator converts this

voltage to the actual processor operating voltage. We assume a

regulator efficiency of 90%.

IV.B. Comparison with Prior Work

Choi et al. [7] proposed a fine-grained runtime DVFS technique

that minimizes energy consumption while meeting soft timing con-

straints. We will use “F-DVFS” to refer to their technique. In order to

adapt to changes in the rate of off-chip accesses, F-DVFS dynamically

constructs a performance model and uses it to calculate the expected

workload for the next slot; frequency and voltage levels are adjusted

accordingly. F-DVFS ignores long-term behavior such as the total

application execution time. For example, at each scaling point,

it considers only an immediate, local, user-specified performance

TABLE I
PERFORMANCE DEGRADATIONS OF F-DVFS AND P-DVFS IN TERMS OF

TOTAL EXECUTION TIME

Benchmark F-DVFS (%) P-DVFS (%)

Goal 5% 10% 15% 20% 5% 10% 15% 20%

gzip 0.27 0.34 1.36 10.59 4.74 8.03 10.82 16.62

vpr 0.00 1.91 10.06 11.62 4.83 9.93 14.05 19.39

mcf 2.02 4.51 6.61 7.78 4.50 6.50 13.50 17.00

bzip2 0.51 0.62 0.67 17.9 3.11 6.09 10.76 15.36

twolf 0.0 1.87 16.31 17.9 4.13 7.92 12.40 17.23

art 0.0 4.47 5.20 5.85 3.09 6.85 13.16 16.83

equake 0.0 0.0 0.0 9.64 3.04 7.59 11.72 15.42

ammp 0.23 0.93 7.18 16.13 4.24 10.40 14.41 19.29

facerec 0.0 4.09 10.12 20.2 3.19 7.65 13.65 18.38

sphinx3 0.0 0.54 1.48 9.34 2.80 7.50 11.10 13.84

tachyon 0.0 5.91 6.83 16.4 3.22 8.41 13.57 18.43

Average 0.28 2.29 5.98 13.03 3.72 7.90 12.65 17.10

constraint. However, sometimes even setting the frequency to the

lowest level still results in a performance level higher than the user-

specified constraint due to large number of off-chip accesses, opening

the opportunity to improve energy savings when the MPI becomes

lower later during execution. Neglecting total execution time makes

it impossible to take advantage of such energy saving opportunities.

Note that this sort of time-varying application behavior is very

common for scientific computing applications, which commonly read

a large amount of data into memory before processing. Moreover,

F-DVFS neglects the relationship between frequency and energy

consumption, assuming that reducing frequency is always beneficial

to energy. However, this is not true when leakage power consumption

is significant or the overall optimization goal is to minimize sys-

tem energy consumption instead of processor power consumption.

In contrast, P-DVFS automatically models and optimizes leakage

power consumption and can be easily extended to handle the energy

consumptions of other components such as main memory and disk.

IV.C. Experimental Results

We evaluated P-DVFS on the 8 SPEC2000 benchmarks that com-

piled on our evaluation platform and 3 ALPBench benchmarks [17],

[18]. We did not consider the remaining 2 benchmarks (“MPGenc”

and “MPGdec”) in the ALPBench benchmark suite because they are

very disk I/O intensive: we are presently interested in evaluating the

impact of off-chip memory access on energy savings. We considered

3 floating point programs and 8 integer programs. The execution time

of each benchmark ranges from 40–425 s. For each benchmark, we

specify a performance degradation ratio (the maximum increase in

execution time relative to that at the maximum frequency and voltage)

ranging from 5% to 20% with a step of 5%. The actual execution time

and the average energy savings are reported compared to a scheme

without DVFS (N-DVFS), F-DVFS, and the optimal oracle solution;

we use the same window size for each to permit a fair comparison.

Both techniques use 4 discrete frequency levels.

Table I shows the actual performance degradation for both F-DVFS

and P-DVFS compared with the user-specified performance degrada-

tion ratios. The first column specifies the benchmarks we evaluated.

The “P-DVFS” and “F-DVFS” columns indicate the performance

degradation ratios resulting from using the two techniques, with

the user-specified performance degradation constraint listed on the

second “Goal” row. Given that the performance constraint is satisfied,

a larger performance degradation usually corresponds to more energy

savings; this was confirmed by our experiments. Experimental results

indicate that P-DVFS approaches the user-specified performance level

more closely than F-DVFS, implying greater energy savings. P-DVFS

has finer-grained control over the trade-offs between performance and

energy given a user-desired performance constraint. F-DVFS does



 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  20  40  60  80  100  120

F
re

q
u
e
n
c
y
 (

G
H

z
)

Instruction Count (Billion)

(a) Optimal solution

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  20  40  60  80  100  120

F
re

q
u
e
n
c
y
 (

G
H

z
)

Instruction Count (Billion)

(b) P-DVFS

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  20  40  60  80  100  120

F
re

q
u
e
n
c
y
 (

G
H

z
)

Instruction Count (Billion)

(c) F-DVFS

Figure 2. Processor frequency as a function of the number of instructions retired for (a) the oracle solution, (b) P-DVFS, and (c) F-DVFS for “mcf” with a
performance degradation ratio of 20%.

TABLE II
DEVIATION OF ENERGY CONSUMPTIONS FROM THE OPTIMAL SOLUTION

WHEN USING USING N-DVFS, F-DVFS, AND P-DVFS

Benchmark Eopt (J) N-DVFS (%) F-DVFS (%) P-DVFS (%)

gzip 804 7.88 6.88 0.12

vpr 1520 21.91 8.09 3.36

mcf 2401 71.10 29.86 4.83

bzip2 1345 8.18 1.93 0.30

twolf 5281 12.61 1.50 1.38

art 1810 52.49 23.20 4.42

equake 2736 14.58 7.20 1.90

ammp 7344 12.15 2.08 0.14

facerec 2621 12.59 6.37 0.04

sphinx3 1428 19.54 11.13 3.64

tachyon 2210 15.43 9.55 0.05

Average 2682 22.59 9.80 1.83

not reach the user-specified performance degradation ratio partially

because the number of available frequencies is limited: whenever

the calculated frequency fcalc does not correspond to any available

frequency, F-DVFS uses the closest frequency that is larger than

fcalc to approximate it. This may reduce the energy benefit when

the number of available frequency is small. Switching between two

closest available frequencies may address this problem. However,

there are more fundamental reasons why F-DVFS does not work

as well as P-DVFS, as we will explain later in this section. Note

that both techniques may violate the soft timing constraint due to

inaccuracies in the online performance model. However, for P-DVFS,

the maximum violation for these benchmarks is less than 1%, which

could be eliminated by using a 1% guard band for the constraint.

We compared the energy savings of N-DVFS, F-DVFS, and P-

DVFS with those of the optimal oracle solution, which might be better

than the actual optimal on-line solution. For performance degradation

percentages of 5%, 10%, and 15%, N-DVFS generates solutions that

deviate from the optimal solution by 9.31%, 12.81%, and 18.46%,

with maximum deviations of 22.29%, 33.72%, and 56.55%; F-DVFS

leads to energy consumptions that deviate from the optimal solution

by 7.1%, 8.23%, and 9.51%, with maximum deviations of 16.84%,

15.89%, and 29.8%; and P-DVFS results in energy consumptions

that deviate from the optimal solution by 1.43%, 1.16%, and 1.59%,

with maximum deviations of 2.80%, 3.88%, and 4.63%. Since

the results are similar for different performance degradation ratios,

we only present the energy numbers for a maximum performance

degradation ratio of 20% in Table II. The first column specifies

the application being evaluated. The second column indicates the

optimal, i.e., minimum, energy consumption for each benchmark

with a performance degradation ratio of 20%. The third, the fourth,

and the fifth columns represent the deviation in energy consumption

from that of the optimal oracle solution when using N-DVFS, F-

DVFS, and P-DVFS. As indicated in Table II, the energy consumption

deviates from the optimal oracle solution by 22.59% on average

when no DVFS is used, with a maximum deviation of 71.1%. F-

DVFS produces solutions that deviate 9.80% from the optimal oracle

solution on average, with a maximum deviation of 29.86%. Among

the three candidates, P-DVFS achieves the best solution quality, i.e.,

an average of 1.83% deviation from the optimal oracle solution with

a maximum deviation of 4.83%. Therefore, we conclude that P-DVFS

can very closely approximate optimal solutions. It is also worth noting

that for performance degradation ratios of 5%, 10%, 15%, and 20%,

P-DVFS has average power savings of 8.3%, 11.31%, 12.3%, and

9.93% and maximum power savings of 15.94%, 12.69%, 27.36%,

and 25.64% compared to F-DVFS.

For benchmarks “mcf” and “art”, F-DVFS leads to solutions

that are far worse than those using P-DVFS (25.03% and 18.78%

difference, respectively). We now analyze their results for these

benchmarks.
Analyzing Mcf Results: Figure 2 illustrates the dynamic pro-

cessor frequency changes for the optimal oracle solution, P-DVFS,

and F-DVFS during execution of the “mcf” benchmark, given a

performance degradation ratio of 20%. The X-axis indicates the

number of billion instructions retired and the Y-axis indicates the

frequency. Figure 2(a) suggests that the optimal solution is to always

set the frequency to the lowest level. While P-DVFS yields a near-

optimal solution, F-DVFS behaves very differently. We note that

“mcf” is a two-phase benchmark: the cache miss rate is very high

during the first 20 billion instructions and alternates between a high

value and a low value afterwards. In both phases, F-DVFS leads to a

higher frequency on average. Recall that F-DVFS requires accurate

model estimation and accurate individual coefficients so that it can

correctly estimate the ratio of off-chip to on-chip memory accesses.

Although the former is generally true for linear regression, the second

assumption does not necessarily hold. In this case, since the MPI and

CPI values do not change much in the first phase, the coefficients

derived using linear regression can be inaccurate, causing F-DVFS to

significantly over-estimate the average on-chip latency and thus limit

itself to a relatively high frequency (2 GHz). Note that the output

of the performance model, or CPI, is still accurate. In contrast, P-

DVFS only requires that the output of the model match the real CPI

value: the individual coefficients in the regression formula do not

matter. Therefore, P-DVFS allows the CPU frequency to be decreased

to a lower level, alternating between 1.6 GHz and 1.2 GHz most of

the time. The frequency does not stay at the lowest level due to

inaccuracies in the online performance model and the remaining

execution time predictor. In the second phase, F-DVFS increases

the frequency when the cache miss rate is lower and decreases the

frequency when the miss rate is higher. This happens because F-

DVFS considers only immediate application behavior and ignores

long-term behavior. P-DVFS takes history and long-term behavior

into account, allowing it to correctly determine that the frequency

can be set to the lowest level even when the cache miss rate is low.

Therefore, P-DVFS achieves much larger energy savings in this case,

which approach those of the optimal oracle solution.



 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  20  40  60  80  100  120  140  160

F
re

q
u
e
n
c
y
 (

G
H

z
)

Instruction Count (Billion)

(a) Optimal solution

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  20  40  60  80  100  120  140  160

F
re

q
u
e
n
c
y
 (

G
H

z
)

Instruction Count (Billion)

(b) P-DVFS

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  20  40  60  80  100  120  140  160

F
re

q
u
e
n
c
y
 (

G
H

z
)

Instruction Count (Billion)

(c) F-DVFS

Figure 3. Processor frequency as a function of the number of instructions retired for (a) the optimal solution, (b) P-DVFS, and (c) F-DVFS during “art”
execution with a performance degradation ratio of 20%.

Analyzing Art Results: Figure 3 illustrates the dynamic processor

frequency changes for the optimal oracle solution, P-DVFS, and F-

DVFS during the execution of the “art” benchmark, given a perfor-

mance degradation ratio of 20%. P-DVFS closely approximates the

optimal oracle solution and F-DVFS does not. This can be explained

as follows. “Art” has periodic cache access behavior with a period

of approximately 300 ms at the highest frequency. In each period,

the MPI value starts from a low value (0.003 in our experiments)

and gradually increases before it reaches the point with the highest

MPI (0.005 in our experiments). Then, the MPI value starts to

decrease until it returns to the previous value of 0.003. F-DVFS

gathers the sampling points within the most recent second to build

the performance model. The coefficients in the regression formula

remain nearly constant due to the small period and large window

size. Therefore, the frequency was set to a fixed number (2 GHz in

our case) for all the sampling points in each period. In contrast, P-

DVFS builds the MPI distribution based on the sampling points from

the most recent second, translates the energy minimization problem

into an MCKP instance, and solves it to get the optimal solution.

This solution uses high frequency (2 GHz) for sampling points with

low MPI and low frequency (1.2 GHz) for sampling points with

high MPI. This permits significant reduction in energy consumption

compared to F-DVFS. Since F-DVFS is not distribution-oriented, it

cannot determine how SPI and power consumption change with MPI.

Therefore, it cannot assign different frequencies to sampling points

with different MPIs while still meeting the performance constraint.

For the rest of the benchmarks, P-DVFS slightly outperforms F-

DVFS. This is because both consider the effects of off-chip memory

access latencies on energy. P-DVFS achieves the greatest energy

savings compared to past work for applications with phases during

which the energy cost per instruction differ.

V. CONCLUSIONS

This paper has described a new power state control technique

that adapts to the time-varying memory access behaviors of appli-

cations. We first proposed a two-stage DVFS algorithm based on

formulating the throughput-constrained energy minimization problem

as a multiple-choice knapsack problem (MCKP), assuming a priori

characterization-based or oracle knowledge of application behavior.

This algorithm builds on an application phase-dependent power

model, which can be constructed offline using processor hardware

performance counters. We then present an online DVFS technique,

called P-DVFS, that predicts remaining execution time in order

to control voltage and frequency to minimize energy consumption

subject to a soft performance constraint. P-DVFS requires no a priori

knowledge of application behavior. P-DVFS also uses a model that

accurately captures the relationship between performance and off-

chip memory access rate. These two models, combined with an

execution time predictor, allow us to formulate the energy minimiza-

tion problem as a multiple-choice knapsack problem, which can be

efficiently and optimally solved online. Experimental results indicate

that given a performance degradation ratio of 0.2, P-DVFS leads to

energy consumptions within 1.83% of the optimal oracle solutions

on average with a maximum deviation of 4.83%, whereas the most

advanced related DVFS control technique (F-DVFS) results in energy

consumptions within 9.80% of the optimal oracle solution on average

with a maximum deviation of 29.86%. For the same performance

constraint, we found that P-DVFS also reduces power consumption

by 9.93% on average and up to 25.64% compared to F-DVFS. These

energy and power savings are all directly measured on a real system.
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