
Temperature-Aware Scheduling and Assignment for

Hard Real-Time Applications on MPSoCs

Thidapat Chantem
Department of CSE

University of Notre Dame

Notre Dame, IN 46556

tchantem@nd.edu

Robert P. Dick
Department of EECS

Northwestern University

Evanston, IL 60208

dickrp@northwestern.edu

X. Sharon Hu
Department of CSE

University of Notre Dame

Notre Dame, IN 46556

shu@nd.edu

Abstract—Thermal effects in MPSoCs may cause the violation
of timing constraints in real-time systems. This paper presents
a mixed integer linear programming based solution to this
problem. Tasks are assigned and scheduled to an MPSoC to
minimize peak temperature, subject to real-time constraints.
The proposed approach outperforms existing methods, reducing
peak temperature by up to 24.66 ◦C and by an average of
8.75 ◦C when compared to minimal-energy solutions. We also
present a heuristic for use on large problem instances. Steady-
state thermal analysis is used for tasks with long execution
times compared to the RC thermal time constants of the cores.
Transient analysis is used otherwise. The steady-state analysis
based heuristic finds solutions with at most 3.40 ◦C deviation from
optimal peak temperature (0.22 ◦C on average) while improving
upon existing technique by as much as 25.71 ◦C and 10.86 ◦C on
average. The transient analysis based heuristic further reduce
peak temperature by 1 ◦C in the best case and 0.17 ◦C on average.

I. INTRODUCTION AND CONTRIBUTIONS

In the near future, multiprocessor-system-on-chips (MP-

SoCs) will likely be used in many applications, as they often

permit higher performance and better power efficiency than

uniprocessor architectures. However, MPSoCs can have high

power density and temperature, which degrade reliability and

increase packaging and cooling cost. A 10–15 ◦C difference

in operating temperature can result in a 2× difference in the

lifespan of a device [1]. The cost of cooling solutions increases

super-linearly in power consumption [2]. This makes designing

packages and cooling solutions for the worst-case temperature

prohibitively expensive. For these reasons, techniques such as

processor throttling must be used to prevent the chip from

reaching an unsafe temperature at run-time. However, run-

time throttling can have undesirable consequences for real-

time applications, which demand predictable timing behavior.

Existing power-aware techniques, such as energy minimiza-

tion, peak power minimization, as well as dynamic voltage

and frequency scaling (DVFS), cannot solve the temperature

problem in MPSoCs because they do not consider spatial

thermal variation; heat generated by an active core also affects

other neighboring thermal elements, be they other cores or

portions of the heatsink. The net heat flow from one thermal

element to another depends on the conductance parameters and

the current temperature of these thermal elements. Ignoring

spatial thermal variation can lead to unnecessarily-high peak

temperatures.

Researchers have recently started working on temperature-

aware assignment and scheduling on MPSoCs [3], [4], [5]. Lit-

This work was supported in part by NSF under grant numbers CNS-0410771,
CNS-0347941, and CNS-0702761, and in part by SRC under grant number
2007-HJ-1593.

tle work has been done on the use of MPSoCs for temperature-

aware design of real-time systems. Xie and Hung were the first

to study this problem [6]. However, their technique can deviate

significantly from optimality (Section VI-B).

We present the first mixed-integer linear programming

(MILP) formulation for assigning and scheduling tasks with

hard real-time constraints on an MPSoC to minimize peak

temperature. Our formulation considers spatial and temporal

variations in power density. It relies on a phased steady-

state thermal analysis technique that is directly integrated

within the MILP formulation. This analysis approach produces

a separate thermal profile for each power profile occurring

during the schedule using steady-state analysis. Extensions for

temperature-dependent leakage power modeling and DVFS are

given. Experimental results show that our approach outper-

forms existing power-aware techniques in reducing the chip

peak temperature and produces optimal solutions for small

problem instances in which task execution times are long

enough to neglect the dynamic effects resulting from heat

capacity.

To solve problem instances that are large or for which the

effects of heat capacity are significant, we propose a task

assignment and scheduling framework in which the actual

method for computing the temperature profile can be selected.

Specifically, phased steady-state analysis is used when task

durations are long relative to the thermal RC time constants

of the cores. Transient analysis, in which temperatures are

time-dependent, is used otherwise. Experimental results show

that our heuristics produce results with small deviations from

the optimal phased steady-state solutions.

II. SYSTEM MODEL AND PROBLEM DEFINITION

The system model and the temperature-aware real-time MP-

SoC assignment and scheduling problem are now described.

II.A. Task Model

Let J be the set of tasks to be executed. For each task

j ∈ J , its execution time when running on core m is denoted

by E(j, m), its deadline by D(j), and its release time by

R(j). (R(j) = 0 and D(j) = ∞ if no release time and

deadline constraints are associated with task j.) To capture

dependencies among tasks, we use a directed acyclic graph in

which nodes represent tasks and directed edges indicate data

dependencies between pairs of tasks. Further, let

Γj1,j2 =

{

1 if task j1 is an immediate predecessor of j2

0 otherwise.

A task j may execute only after all its predecessor tasks have

completed and j has been released. For periodic systems, we

guarantee schedule validity by scheduling out to the hyper-

period of all graphs. The hyperperiod is the least common

multiple of the periods of all periodic tasks in the system.

II.B. Thermal Model

We model an MPSoC with a set of cores, M . The width,

height, and location are specified for each core m ∈ M .

Based on the floorplan, the set of neighbors of m, Nm,

thermal conductance to a neighbor, Gn(m,n), and thermal

conductance to the heatsink element above it, Gh(m), can be

calculated. P (j, m) indicates the power consumption of core

m when executing task j. We discuss an extension to this

model to account for leakage power in Section IV-B.

Our thermal analysis method is based on the classical

Fourier heat flow model. Each core corresponds to a discrete

thermal element. (Section IV-B discusses how our approach

can be modified to support finer-grained thermal element

modeling.) The heatsink on top of the cores is modeled using

multiple thermal elements and its partitioning corresponds to

the layout of the cores. Since the heatsink is usually larger

than the processor itself, we model heatsink overhang using

additional thermal elements; the heatsink overhangs the chip

by 25% of its length and width. The interface layer is included

within the heatsink instead of being modeled explicitly. It

is usually very thin, therefore lateral heatflow within it can

be neglected. Lateral heatflow between cores and heatsink

elements is modeled. Figure 1(a) depicts the corresponding

circuit representation.
At time t, we compute the temperature at core m, T (i, m):

0 =
X

n∈Nm

(T (t, m) − T (t, n)) · Gn(m, n) + C(m) ·
dT (t, m)

dt

+ (T (t, m) − T (t, h)) · Gh(m) −
X

j∈J

α(t, j, m) · P (j, m) (1)

0 =
X

g∈Nh

(T (t, h) − T (t, g)) · Gnh(h, g) + C(h) ·
dT (t, h)

dt

+ (T (t, h) − T (t, m)) · Gh(m) + (T (t, h) − TA) · GA(h), (2)

where T (t, h) is the temperature of the heatsink element

h directly above core m at time t, C(m) is the capacitance

at core m, and α(t, j,m) = 1 if task j is active on core

m at time t. Gnh(h, g) is the lateral conductance between

two heatsink elements h and g, C(h) is the capacitance of

heatsink element h, and GA(h) is the vertical conductance

between heatsink element h and the ambient temperature TA.

All material thermal conductance parameters can be calculated

as described in a standard physics textbook. We assume that

the thickness of silicon is 0.6 mm and that of copper is 1 mm.

The thermal conductivity of silicon and copper are set to

148 W/mK and 400 W/mK, respectively. Lastly, we use 45 ◦C

for TA and 90 ◦C for active layer temperature.

Problem Definition: Consider the floorplan of a chip

containing a set of cores, M , and a set of real-time tasks,

J as described above, determine a static assignment of tasks

1/GA(k)

Tm

Tn

1/GH(m)

1/GH(n)

TA

1/GA(h) Th

Tg1/GA(g)

1/GNH(h,g)

Pm

Pn

+

-
1/GN(m,n)

Tk

C(m)

C(n)

CH(h)

CH(g)

(a) Equivalent circuit diagram of the
thermal model.

m1 m2

m3
m4

7 W

5 W10 W

10 W

E = 2ms

E = 2ms

E =3ms

E = 5ms

(b) Floorplan for the mo-
tivating example with task
execution time (E) for each
core. Diagram not to scale.

Fig. 1. Circuit and floorplan

to cores and a static, non-preemptive schedule of tasks on

the cores such that all precedence constraints and real-time

deadlines are met, and the chip peak temperature, Tmax , is

minimized.

III. MOTIVATING EXAMPLE

We illustrate the benefit of directly minimizing peak tem-

perature using an example. Consider a task set containing two

identical tasks, j1 and j2, each with a deadline of 5 ms. For this

example, the MPSoC is arranged as shown in Figure 1(b). To

minimize energy, tasks j1 and j2 are both assigned to core m2
with a peak temperature of 65.30 ◦C. To minimize peak power,

task j1 is assigned to core m2 and task j2 to core m1, resulting

in the same peak temperature. If task j1 were executed on core

m4 and task j2 on core m1, the peak temperature would be

reduced to 65.16 ◦C, 0.14 ◦C cooler. While this improvement

may not seem significant, the power density of the chip in the

above example is only 0.19 W/mm2. The power density can be

as high as 0.79 W/mm2 for 90 nm processors, 2.02 W/mm2 for

65 nm processors, and 7.24 W/mm2 for 45 nm processors [7].

To obtain similar power densities, we increase each core power

consumption by factors of 2, 5, 10, 15, and 20. Cores with high

power density can are used in high-performance computing

and signal processing applications. The resulting chip power

densities are between 0.39 W/mm2 and 3.89 W/mm2. For

such cores, peak temperature minimization results in a peak

temperature reduction from 2–20 ◦C.

IV. MILP-BASED APPROACH

This section presents our solution to the problem defined

in Section II-B, describes extensions for leakage power and

DVFS, and discusses limitations of the MILP formulation.

IV.A. MILP Formulation

MILP formulations have long been proposed for model-

ing the heterogeneous multiprocessor task assignment and

scheduling problem [8]. However, energy minimization has

often been the main objective. Such solutions ignore both

temporal and spatial thermal variation. Even peak power

minimization only considers temporal thermal variation. To

consider both types of thermal variations, we directly mini-

mize the chip peak temperature, Tmax, which is the highest

temperature at any position on the chip during a schedule of

duration SL, i.e.,

Tmax = max
m∈M,t∈[0,SL]

τm(t), (3)

Using Eq. 1 and 2 to compute the temperature at each node

at a given time instant corresponds to dynamic or transient

thermal analysis, which is computationally expensive, making

its use in an MILP impractical. If transient analysis were

incorporated into the MILP formulation, its use would be

limited to very small problem instances. For these reasons,

we set the capacitance values in Eq. 1 and 2 to zero to obtain

the steady-state temperature at each node when predicting

temperatures in our MILP formulation. In Section IV-B, we

indicate the situations in which the MILP-based approach

with steady-state analysis is appropriate and inappropriate. In

addition, we present a solution to the more general dynamic

temperature optimization problem in Section V.

One way to compute Tmax in Eq. 3 is to discretize time.

However, since real-time tasks can execute for hundreds of

thousands or millions of time units, doing so can be costly.

To overcome this difficulty, we observe that (i) core power

consumptions only change at the beginning or end of task

execution, and (ii) the temperature of a core only experiences

a rapid change soon after the power consumption of at least

one core on the chip changes. Hence, we only evaluate the

temperature of each core m immediately after any task i

starts executing on any core m in the MPSoC and denote this

temperature by T (i,m). Therefore, we write the objective of

the MILP as

min Tmax, where Tmax ≥ T (i,m),∀m ∈M,∀i ∈ J.

In addition, T (i, m) satisfies the constraints in Eq. 1 and Eq. 2,
which are rewritten as

T (i, m) ≡ THS (i, h) +
1

GH(m)

"

X

j∈J

β(i, j, m) · P (j, m)

#

+
1

GH(m)

X

n∈Nm

GN (m, n) · [T (i, n) − T (i, m)] (4)

0 = (THS (i, h) − T (i, m)) · GH(m) + (THS (i, h) − TA)

· GA(h) +
X

g∈Nh

(THS (i, h) − THS (i, g)) · GNH (h, g).

(5)

where

β(j1, j2,m) =











1 if task j2 executes on core m,

precedes and overlaps with task j1

0 otherwise

(6)

We use ts(j) and tf (j) to denote the start and finish times

of task j, respectively, and tf (j) ≡ ts(j) +
∑

m∈M δ(j, m) ·
E(j,m). Eq. 4 implies that if core m is executing task i then

β(i, i, m) = 1. More generally, β(i, i, m) ≡ δ(i, m). Consider

a situation where tasks i and j execute on cores m and n, re-

spectively. Further, task i precedes task j and their executions

overlap. At the start of task i, we only need to consider the

power consumption of core m. However, at the start of task

j, we must take into account the power consumptions of both

cores. For this reason, we must ensure that β(j1, j2,m) = 1
only when δ(j2,m) = 1 and ts(j2) ≤ ts(j1) ≤ tf (j2) − ǫ,

where ǫ is a small constant used to prevent imprecise floating

point computations from making it appear as if contiguous

tasks overlap in time. Therefore,

∀m ∈M,∀j1, j2 ∈ J, j1 6= j2

tf (j2) ≥ ts(j1) + (β(j1, j2,m)− 1) · Λ (7)

ts(j2) ≤ ts(j1) + (1− β(j1, j2,m)) · Λ (8)

1 ≥ β(j1, j2,m) + δ(j1,m) (9)

tf (j2)− ǫ− (1− η(j2, j1)) · Λ− (1− δ(j2,m)) · Λ

≤ ts(j1) + β(j1, j2,m) · Λ (10)

where

δ(j,m) =

{

1 if task j is assigned to core m

0 otherwise
(11)

η(j1, j2) =

{

1 if task j1 is executed before task j2

0 otherwise
(12)

The constraints used to guarantee schedulability can be found

in an extended technical report [9]. Note that Eq. 4 is only

linear if we can treat P (j, m) as a constant given task j and

core m. We now assume this to ease explanation, but will

relax this assumption in Section IV-B.

The above MILP formulation is guaranteed to find an

assignment and schedule that minimize the peak temperature

of the chip. Our formulation can readily be modified to

produce an assignment and schedule that minimize peak power

or total energy.

IV.B. Extensions and Limitations

The assumption that P (j, m) is a constant is no longer valid

if leakage power is significant. Leakage power is a superlinear

function of temperature and ignoring this dependency may

lead to underestimation of the chip peak temperature. It has

been observed that leakage power can be approximated by

a a linear function in the operating temperature ranges of

integrated circuits with roughly 5% error [10]. We use the

following model:

P (j, m) = K1(j, m) · T (j, m) + K2(j,m),

where K1(j, m) and K2(j,m) are constants that depend on

core m and task j. Consequently, from Eq. 4,
∑

j∈J

β(i, j, m) · P (j, m) =
∑

j∈J

(λ(i, j, m) + β(i, j, m) ·K2(j,m))

where

λ(i, j, m) =

{

K1(j,m) · T (i,m) if β(i, j, m) = 1

0 otherwise
(13)

(13) can be replaced by the following contraints

∀i, j ∈ J,∀m ∈M

λ(i, j, m) ≥ 0 (14)

λ(i, j, m) ≤ β(i, j, m) · Λ (15)

λ(i, j, m) ≥ (K1 j,m · T (i,m))− (1− β(i, j, m)) · Λ (16)

λ(i, j, m) ≤ (K1 j,m · T (i,m))− (β(i, j, m)− 1) · Λ (17)

If the cores are equipped with DVFS capability, further

peak temperature reductions, as well as energy savings, can be

achieved by modifying the solution in Section IV-A. For each

core m, the set of discrete voltage levels, Km, is specified.

We redefine E(j, k,m) to be the execution time of task j on

core m at voltage level k and P (j, k,m) to be the power

consumption required to execute task j on core m at voltage

level k. The binary variables δ(j, k,m) are also redefined

to be 1 if task j is assigned to core m at voltage level k.

Consequently, from Eq. 4,
∑

j∈J

β(i, j, m) · P (j, m) =
∑

k∈K

∑

j∈J

ν(i, j, k,m) · P (j, k,m)

where

ν(j1, j2, k,m) =

{

1 if δ(j2, k, m) = 1, β(j1, j2,m) = 1

0 otherwise

The extended formulation can be obtained by adding the

constraints for the variables defined in the above equation.

The thermal model (Section II-B) can further be refined

by using multiple thermal elements for each core, where each

thermal element may have different power consumption and/or

correspond to a particular functional unit of the core. (A finer-

grained thermal model in which a core is partitioned into many

small thermal elements may further improve accuracy.) We

omit this refinement due to lack of realistic benchmarks for

which power profile variations within cores are known. When

such benchmarks become available, only minor modifications

to the solution in Section IV-A will be needed. Specifically,

the binary variables δ(j,m, x) must be redefined as 1 if task

j1 executes on core m and x is a thermal element belonging

to m, and the variables in Eq. 6 must be modified accordingly.

There are two limitations to the MILP-based approach: (i)

the MILP formulation cannot be used to efficiently solve large

problem instances (the problem is NP-hard) and (ii) due to

the use of steady-state analysis, the MILP formulation may

overestimate the chip peak temperature when task execution

times are short compared to the RC thermal time constants of

the cores (i.e., the constants influencing the rate of tempera-

ture change in response to power consumption change). We

will use an efficient heuristic framework to overcome these

challenges.

V. SCHEDULING HEURISTIC FRAMEWORK

To trade off accuracy in temperature estimation with running

time, we propose a scheduling framework where either steady-

state or transient analysis can be used, depending on the

characteristics of the tasks under consideration.

Our framework uses a binary-search based approach to

iteratively improve the solution. It takes as inputs upper and

lower temperature bounds, as well as the maximum number of

iterations, maxIter. It then uses the average of the upper and

lower bound on the peak temperatures as the target temperature

to find an assignment and schedule. If it succeeds, the current

target temperature is used as the upper temperature bound for

the next iteration of the binary search. Otherwise, it is used

as the lower temperature bound.

To find an assignment and schedule for a given target

temperature, we introduce the list scheduling [11] algorithm

shown in Algorithm 1. ThermalSched() returns a schedule

that honors the specified target temperature, if possible. Our

Algorithm 1 ThermalSched(G(V,E), targetTemp)

1: compute EST(j), for all tasks // earliest start time

2: compute LST(j), for all tasks // latest start time

3: mobility(j) ← LST(j) - EST(j), for all tasks

4: currentTime ← 0

5: busy(m) ← 0, for all cores

6: while there are unscheduled tasks do

7: RT ← ready tasks in non-decreasing order of mobility

8: for each j ∈ RT do

9: invalidCount ← 0

10: fastestCore ← −1
11: bestExeTime ←∞
12: for each m ∈M do

13: δ(j, m)← 0

14: endTime ← E(j,m) + currentTime

15: if not busy(m) and endTime ≤ D(j) then

16: compute projected temperature profile

17: peakTemp ← maxm∈M T (j, m)
18: if peakTemp < targetTemp then

19: if E(j,m) < bestExeTime then

20: fastestCore ← m

21: bestExeTime ← E(j,m)

22: else if not busy(m) then

23: invalidCount ← invalidCount + 1

24: if invalidCount = |M | then

25: return INFEASIBLE

26: else if fastestCore 6= −1 then

27: δ(j, fastestCore)← 1
28: ts(j) ← currentTime

29: tf(j) ← ts(j) + E(j, fastestCore)

30: busy(fastestCore) ← 1

31: update EST(j), for all unscheduled tasks

32: update mobility(j), for all unscheduled tasks

33: update busy(m), for all cores

34: currentTime ← min{tf (j) : tf (j) > currentTime}

search-based scheduling approach permits the use of an effi-

cient list scheduler without global knowledge of temperature

variation.

For a given task j, its earliest start time EST(j) and latest

start time LST(j) are computed. The mobility of task j can then

be calculated as the difference between LST(j) and EST(j). A

potential challenge in computing EST(j) and LST(j) is that the

execution time of task j is unknown prior to assignment to

a core. The earliest start time EST(j) of each task j ∈ J is

computed using the As Soon As Possible (ASAP) scheduling

algorithm [11]. For each task, we use the execution time on

the fastest core in order to prioritize tasks based on maximal

mobility. The same is true for computing the LST(j), for all

j ∈ J .

Task assignment and scheduling proceed as follows. Ready

tasks are ordered by non-decreasing mobility. A ready task is

a task whose predecessors have finished executing. Given a

ready task j, ThermalSched() selects the fastest available core

that allows task j to meet its deadline while keeping the peak

temperature below the target temperature. The fastest available

core is chosen to maximize the mobility of the successors of

50

55

60

65

70

75

80

85

90

2x
2v

1

2x
2v

2
2x

3
3x

3

2x
2v

1

2x
2v

2
2x

3
3x

3

2x
2v

1

2x
2v

2
2x

3
3x

3

2x
2v

1

2x
2v

2
2x

3
3x

3

Office Consumer Networking Telecom

Benchmarks

P
e
a
k
 T

e
m

p
e
r
a
tu

r
e
 (

C
e
ls

iu
s
)

Temperature

Peak Power

Energy

Fig. 2. Peak temp. minimization vs. energy and peak power minimization

task j, thereby improving schedulability. If no core is fast

enough to execute task j by its deadline, ThermalSched()

terminates.

Observe that Algorithm 1 does not provide any details

regarding the method for computing the thermal profile (Line

16). We propose to use two techniques based on the ob-

servations made in Section IV-B, to balance accuracy and

time complexity. If task execution times are long compared

to the RC thermal time constants of the cores, phased steady-

state analysis will generally be accurate. The steady-state

temperature profile can be computed by expressing Eq. 1 and

2 as a system of linear equations of the form A ·T + B = 0,

and of size |E| × |E|, where |E| is the total number of

thermal elements in the system. Since the thermal conductivity

matrix A is fixed when a floorplan is given, the inverse of the

matrix can be pre-computed once. In addition, computing the

temperature profile in each iteration takes O(|M |2). Therefore,

the time complexity of the steady-state thermal analysis

based heuristic (SSAB) is O(|J |2 · |M |3 ·maxIter).
If task execution times are short relative to core thermal

RC time constants, transient analysis should be used to

compute the projected temperature profile, as explained in

Section IV-B. Any existing thermal analysis technique can be

used in our task assignment and scheduling framework. To

validate our transient analysis based heuristic (TAB), we

used HotSpot [12] in our experiments. The time complexity

of the TAB algorithm is O(|J |2 · |M | ·maxIter ·O(HotSpot)).
As a final remark, verification using dynamic thermal analy-

sis may be desirable even for systems with long task execution

times to ensure the peak temperature bound is honored.

VI. EXPERIMENTAL RESULTS

We used the Embedded System Synthesis Benchmarks Suite

(E3S) [13], which follows the organization of the EEMBC

benchmarks [14]. We experimented with floorplans with dif-

ferent number of cores, power densities and areas.

VI.A. MILP Formulation Performance

We used CPLEX 10.1 with AMPL to solve instances

of the MILP formulation (Section IV-A) for optimal peak

temperature, energy, and peak power. The benchmarks were

run using two 2×2, one 2×3, and one 3×3 floorplans.

We compared the temperature differences between using

peak temperature minimization and using energy or peak

45

50

55

60

65

70

75

80

85

90

2x
2v
1

2x
2v
2
2x
3

3x
3

2x
2v
1

2x
2v
2
2x
3

3x
3

2x
2v
1

2x
2v
2
2x
3

3x
3

2x
2v
1

2x
2v
2
2x
3

3x
3

Office Consumer Networking Telecom

Benchmarks

P
e
a
k
 T

e
m

p
e
r
a
tu

r
e
 (

C
e
ls

iu
s
) MILP

SSAB

X&H

Fig. 3. Peak temp. minimization vs. energy and peak power minimization
for higher power density chips

power minimization. The solutions from the MILP are shown

in Figure 2. The x-axis shows the different benchmarks and

floorplans. The y-axis shows the resultant peak temperatures.

Some results are unavailable due to the MILP solver run-

ning out of memory before finding a solution. Our approach

achieves a peak temperature reduction of up to 24.66 ◦C,

and 8.75 ◦C on average, when compared to the method

that minimizes energy. Such a significant difference in peak

temperatures occurs because energy minimization does not

consider the effects of temporal thermal variations.

Our approach did not yield significant improvements over

peak power minimization because the cores used in the above

experiment have low power densities. For example, the chip

power density for the Consumer benchmarks ranges from

0.27 W/mm2 to 0.36 W/mm2 with the average chip power

density of 0.32 W/mm2. These results confirm the observations

of Coskun et al. for low power density MPSoCs. However,

higher power densities change the problem. To obtain chip

power densities similar to those described in [7] for 65 nm

processors, we multiplied each core’s power consumption by

10. As shown in Figure 3, for these cores our method achieves

a peak temperature reduction of up to 23.25 ◦C, and 9.24 ◦C

on average when compared to peak power minimization and

further proves that spatial thermal variations need to be con-

sidered.

VI.B. Heuristic Performance

We assess the performance of our SSAB algorithm (Sec-

tion V) by comparing its solutions to the ones from MILP

(Section IV-A) as well as Xie’s and Hung’s Heuristic 1 [6],

which we refer to as the X&H heuristic. The X&H heuristic

calls HotSpot to compute the temperatures. Figure 4 compares

the the results from the SSAB and X&H heuristics to the

optimal solution from the MILP formulation. We used HotSpot

to compare the peak temperatures for a fair comparison.

Results for benchmarks that were not successfully solved by

the X&H algorithm are omitted.

The X&H heuristic deviates from the optimal solution by

11.10 ◦C on average and 25.71 ◦C in the worst case. The

SSAB heuristic finds an optimal solution in many cases while

giving results that deviate by at most 3.40 ◦C from optimality

(and 0.22 ◦C on average) requiring at most 50 binary search

iterations for each run. Both heuristics require similar running

45

50

55

60

65

70

75

80

85

90

2x
2v
1

2x
2v
2
2x
3

3x
3

2x
2v
1

2x
2v
2
2x
3

3x
3

2x
2v
1

2x
2v
2
2x
3

3x
3

2x
2v
1

2x
2v
2
2x
3

3x
3

Office Consumer Networking Telecom

Benchmarks

P
e
a
k
 T

e
m

p
e
r
a
tu

r
e
 (

C
e
ls

iu
s
) MILP

SSAB

X&H

Fig. 4. Perf. of steady-state analysis based heuristics (based on HotSpot)

times, but the SSAB heuristic never performs worse than the

X&H heuristic.

To show the scalability of the SSAB heuristic, we ran a

benchmark with 30 tasks on a system with 4×4 homogeneous

core arrangement. The MILP solver could not solve the

problem because the 3.58 GB RAM workstation ran out of

memory. However, the SSAB heuristic found a solution using

no more than 50 binary search iterations within 9 s.

We now assess the performance of the TAB heuristic

(Section V) using the same set of benchmarks. The TAB

heuristic calls HotSpot to determine transient temperatures.

Since the original task execution times for the E3S benchmarks

tend to be short, the significance of dynamic thermal effects

can be significant. We compare the peak temperatures obtained

by the MILP and the TAB heuristic, as shown in Figure 5.

(Note the difference in the y-axis scale between Figure 4 and

Figure 5.) The reduction in peak temperatures for the TAB

heuristic relative to the MILP solver is just under 1 ◦C in the

best case, and 0.17 ◦C on average. This is because transient

analysis can, at times, more accurately predict temperatures

when task durations are short.

The TAB heuristic also improve the benchmark finishing

times. Let the speedup be the ratio between the end of the

MILP schedule and that of the TAB schedule. The maximum,

minimum, and average speedups are 63.29×, 0.87×, and

9.02×, respectively. Such speedup is due to the fact that the

latter is much less pessimistic in estimating temperatures and

hence schedules more tasks in parallel. However, the SSAB

heuristic is much more efficient than the TAB heuristic. Specif-

ically, the SSAB heuristic is about 175× faster than the TAB

heuristic on average for benchmarks with short task execution

times; this difference further increases for benchmarks with

longer task execution times.

VII. CONCLUSIONS

We have presented an assignment and scheduling technique

that uses an MILP solver to optimize chip peak temperature

under hard real-time constraints based on phased steady-state

thermal analysis. Our technique outperforms existing power-

aware techniques with a peak temperature reduction of up to

24.66 ◦C, and 8.75 ◦C on average, for embedded processors

compared to the method of energy minimization.

To efficiently solve this NP-hard assignment and schedul-

ing problem, we propose a scheduling heuristic framework in

45

46

47

48

2x
2v
1

2x
2v
2
2x
3
3x
3

2x
2v
1

2x
2v
2
2x
3
3x
3

2x
2v
1

2x
2v
2
2x
3
3x
3

2x
2v
1

2x
2v
2
2x
3
3x
3

Office Consumer Networking Telecom

Benchmarks

P
e
a
k
 T

e
m

p
e
r
a
tu

r
e
 (

C
e
ls

iu
s
) MILP

TAB

Fig. 5. Perf. of transient analysis based heuristic (based on HotSpot)

which the actual method for temperature prediction depends

on task durations. Phased steady-state analysis is appropriate

when task execution times are long and transient analysis

should be used otherwise. Our phased steady-state analysis

based heuristic finds an optimal solution in many cases, with

a maximum deviation from optimality of 3.40 ◦C. When com-

pared to previous work, the heuristic achieves a temperature

reduction of 10.86 ◦C on average. The transient analysis based

heuristic accurately models and exploits the transient thermal

effects of short tasks to further improve on the existing

solutions by just under 1 ◦C in the best case.

REFERENCES

[1] R. Viswanath, et al., “Thermal performance challenges from sili-
con to systems,” Intel Technology Journal, vol. 4, no. 3, pp. 1–16,
Aug. 2000.

[2] S. H. Gunther, et al., “Managing the impact of increasing micro-
processor power consumption,” Intel Technology Journal, vol. 5,
no. 1, pp. 1–9, Feb. 2001.

[3] A. K. Coskun, T. S. Rosing, and K. Whisnant, “Temperature aware
task scheduling in MPSoCs,” in Proc. Design, Automation & Test
in Europe Conf., Apr. 2007, pp. 1659–1664.

[4] R. Rao, S. Vrudhula, and C. Chakrabarti, “Throughput of multi-
core processors under thermal constraints,” in Proc. Int. Symp.
Low Power Electronics & Design, Aug. 2007, pp. 201–206.

[5] S. Murali, et al., “Temperature-aware processor frequency assign-
ment for MPSoCs using convex optimization,” in Proc. Int. Conf.
Hardware/Software Codesign and System Synthesis, Oct. 2007,
pp. 111–116.

[6] Y. Xie and W.-L. Hung, “Temperature-aware task allocation and
scheduling for embedded multiprocessor systems-on-chip (MP-
SoC) design,” J. VLSI Signal Processing, vol. 45, no. 3, pp. 177–
189, Dec. 2006.

[7] G. Link and N. Vijaykrishnan, “Thermal trends in emerging
technologies,” in Proc. Int. Symp. Quality of Electronic Design,
Mar. 2006, pp. 625–632.

[8] L.-F. Leung, C.-Y. Tsui, and W.-H. Ki, “Simultaneous task alloca-
tion, scheduling and voltage assignment for multiple-processors-
core systems using mixed integer nonlinear programming,” in
Prof. Int. Symp. Circuits and Systems, May 2003, pp. 309–312.

[9] T. Chantem, R. P. Dick, and X. S. Hu, “Temperature-aware
scheduling and assignment for hard real-time applications on
MPSoCs,” Tech. Rep., 2007, University of Notre Dame.

[10] Y. Liu, et al., “Accurate Temperature-Dependent Integrated Cir-
cuit Leakage Power Estimation is Easy,” in Proc. Design, Automa-
tion & Test in Europe Conf., Mar. 2007, pp. 204–209.

[11] G. De Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill Book Company, NY, 1994.

[12] K. Skadron, et al., “Temperature-aware microarchitecture,” in
Proc. Int. Symp. Computer Architecture, June 2003, pp. 2–13.

[13] R. P. Dick, “E3S: The embedded system synthesis benchmarks
suite,” E3S link at http://robertdick.org/tools.html.

[14] “Embedded microprocessor benchmark consortium,” http://www.
eembc.org.

