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Abstract—Detecting and reacting to faults is an indispensable ca-
pability for many wireless sensor network applications. Unfortunately,
implementing fault detection and error correction algorithms is chal-
lenging. Programming languages and fault tolerance mechanisms for
sensor networks have historically been designed in isolation. This is
the first work to combine them. Our goal is to simplify the design
of fault-tolerant sensor networks. We describe a system that makes
it unnecessary for sensor network application developers and users to
understand the intricate implementation details of fault detection and
tolerance techniques, while still using their domain knowledge to support
fault detection, error correction, and error estimation mechanisms. Our
FACTS system translates low-level faults into their consequences for
application-level data quality, i.e., consequences domain experts can
appreciate and understand. FACTS is an extension of an existing sensor
network programming language; its compiler and runtime libraries have
been modified to support automatic generation of code for on-line fault
detection and tolerance. This code determines the impacts of faults on
the accuracies of the results of potentially complex data aggregation and
analysis expressions. We evaluate the overhead of the proposed system on
code size, memory use, and the accuracy improvements for data analysis
expressions using a small experimental testbed and simulations of large-
scale networks.

I. INTRODUCTION

This work is part of a project that aims to develop easy-to-use pro-

gramming languages for novice programmers in order to open sensor

network design to application experts, such as geologists, biologists,

and farmers, who generally have little programming experience.

Programming a wireless sensor network is essentially the design

of a resource-constrained distributed software system operating on

fault-prone sensor nodes and wireless links. It can therefore require

expertise in distributed embedded system design. High-level sensor

network programming languages [1]–[6] can simplify the design of

sensor networks; programmers can ignore low-level implementation

details and focus on application-level logic. Our previous study has

demonstrated that with a compact and high-level language, even

novice programmers can specify real sensor network applications

correctly and efficiently [7], [8]. Although many sensor network

programming languages spare designers from explicitly describing

low-level details such as data transmission and network topology

management, support for fault detection and error correction is

seldom considered.

It is important for a sensor network program to be capable of

detecting and reacting to faults. Sensor nodes are composed of fault-

prone components and they often operate in harsh environments.

Experience from prior deployments [9]–[11] has demonstrated that

deployed nodes can fail or produce erroneous results. A fault is an

incorrect state of hardware or software resulting from failures of

components, physical interference from the environment, or incorrect

design. For example, a sensor node may experience a fault when

water leaks through its package and damages sensors. A system

failure occurs when faults prevent the system from providing a
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required service. Embedding fault detection, fault recovery, and

error estimation functionalities in a program makes it more robust

and allows more accurate interpretation of data gathered by the

application.

Many researchers have proposed methods for fault detection and

fault correction for sensor networks [12]–[17]. These technologies

may be readily used by experienced sensor network developers.

However, it requires tremendous efforts for novice programmers to

learn and use these techniques, especially in the context of wireless

sensor network design.

I.A. Goals and Contributions

Reliability is a central concern for wireless sensor networks,

and developing fault-tolerant distributed applications is challenging,

especially for those with professions other than software engineering,

i.e., most people with a need for distributed sensing. Our goal is

to combine high-level programming languages and automatic fault-

aware code transformation techniques to empower novice program-

mers to develop sensor networks that can operate reliably, potentially

in harsh environments. Our work is based on three insights. (1)

Novice programmers tend to assume a fault-free system during pro-

gramming. (2) Application experts care primarily about application-

level performance; they should be informed about the impact of errors

on the end products of an application, but reporting every detail about

low-level sensor network faults imposes great burden with little value.

(3) The knowledge of application experts about expected behaviors

and environmental conditions can be used to allow more effective

fault detection and correction.

We have designed, implemented, and evaluated a system, called

FACTS (Fault-Aware Code Transformation for Sensor networks), to

simplify programming faulty sensor networks. FACTS hides faults

from programmers but indicates the impact of low-level faults on ap-

plication outputs, i.e., the end results of data processing expressions in

the application specification. We implemented FACTS by extending

an existing high-level programming language for sensor networks.

The current design of FACTS focuses on data-acquisition applica-

tions and sensor data faults. Programmers provide specifications of

application logic as well as of expected environmental conditions.

The compiler automatically generates fault-aware code to which fault

detection, error correction, and error estimation functionalities have

been added. During network operation, sensor faults are detected by

identifying sensor readings that fall outside of application-specific

ranges. In case of sensor faults, the ranges of actual data values

are estimated using temporal and spatial correlation. The ranges of

end results produced via potentially complex expressions are then

computed.

Our work makes three main contributions.

1) We describe an approach to simplify programming of poten-

tially faulty sensor networks by automatically generating code

for fault detection, error correction, and error estimation.

2) We develop an error estimation technique to calculate the error

bounds for application data as a result of faults.



Fig. 1. Overview of FACTS system.

3) We implement this approach in a real system by modifying the

compiler and runtime library for a high-level sensor network

programming language.

We evaluate the overhead of our system on code size, memory

use, and improvement in end result accuracy using a small-scale

testbed and simulation of larger-scale networks. The average code

size overhead is 15% and the average memory overhead is 3.6%.

The resulting intervals produced by FACTS always contain the

actual value, while the fault-unaware program can produce substantial

errors. Interested readers can learn more about FACTS at our project

website [18].

I.B. Related Work

Numerous high-level programming languages have been proposed

for wireless sensor networks to ease their development process.

These languages share a common strategy: they provide appropriate

abstractions to hide low-level implementation details from program-

mers. For example, macro-programming languages let programmers

treat the whole network as a single machine, thus hiding node-level

communication details from programmers [1]–[4]. Domain-specific

languages target a certain type of application and provide commonly

used algorithms in their libraries [19]. Other languages [5], [6] based

on commercial data processing tools let programmers describe how

data are processed without concerning themselves with the details of

data gathering. Though these languages have reduced programming

complexity compared to node-level programming languages, none

provide support for fault detection and error correction. Even if

programmers are willing to deal with greatly increased implementa-

tion complexity, some macroprogramming languages do not provide

node-level communication primitives, making it intractable for the

programmer to implement fault detection and correction techniques.

To the best of our knowledge, only one sensor network language

explicitly supports fault tolerance [20]. It provides declarative anno-

tations to specify checkpointing recovery strategies. In contrast, our

system (FACTS) does not require programmers to explicitly deal with

faults, making it accessible even to sensing application experts with

limited programming experience. The approach used in FACTS can

also be applied to other languages.

Bai et al. developed a language called WASP that allows novice

programmers to specify periodic data collection applications [7].

The application implementation success rates and development times

of novice programmers using this, and alternative sensor network

programming languages have been experimentally evaluated. Un-

fortunately, WASP did not support fault modeling or management.

Faulty sensor readings have the potential to distort aggregated results.

Worse yet, allowing users to concern themselves with only the

end results of data processing makes it less likely that sensor-level

faults will be noticed. We implemented FACTS by extending WASP,

as well as its compilation and runtime system, to support code

transformations for fault tolerance.

Researchers have identified and classified various types of faults in

sensor networks and proposed numerous approaches for fault detec-

TABLE I
EXAMPLE OF FAULT CORRECTION

Node 1 Node 2 Node 3 Average

True value (◦C) 10 12 14 12

Sensor reading (◦C) 10 12 0 7.3

Corrected reading (◦C) 10 12 [10, 16] [10.7, 12.7]

tion [12], tolerance [13], [14], diagnosis [15], [16], and recovery [17],

[20]. These papers concentrate on minimizing the impact of faults on

system performance and availability. Our goal is to support reliability

management techniques without requiring programmers to understand

the their implementation details. We also propose an error estimation

technique to provide application experts with a more accurate and

informative view of data gathered from a network.

II. FAULT-AWARE CODE TRANSFORMATION FOR SENSOR

NETWORKS (FACTS)

We now describe the FACTS architecture.

II.A. FACTS System Architecture

The purpose of FACTS is to shift responsibility for the mechanical

aspects of fault management from programmers to the programming

language, compiler, and run-time libraries. In this paper, we focus on

data acquisition applications. The left hand side of Figure 1 illustrates

how application experts use our system. An application expert speci-

fies application functionality and expected environmental conditions.

FACTS uses this information to generate an implementation that

is capable of fault detection, fault recovery, and error estimation.

The application expert then deploys a network running the generated

code. FACTS indicates the application-level impact of faults, i.e., the

error range for the end results of potentially complex data processing

expressions, while hiding component-level implementation and fault

details from the application expert.

The right hand side of Figure 1 shows the system components

and their purposes. The original compiler generates node-level code

that implements sensing, data transmission, and data aggregation

algorithms. FACTS provides a runtime library to detect faults and

estimate errors. The FACTS compiler modifies and augments the

original compiler in the following ways to generate fault-aware code.

(1) It changes the types of some variables in the program to include

extra information about error estimates. (2) It transforms arithmetic

expressions to interval arithmetic expressions so the implications of

faults can be propagated to the end results. (3) It inserts calls to fault

detection and error estimation functions.

We now use an example to demonstrate the key ideas of our

approach. Consider the application that monitors redwood tree mi-

croclimates [21]. Biologists deploy sensor nodes on a redwood tree

to gather temperature and humidity data. The application periodically

samples temperature and humidity, averages readings from nodes at

similar heights, and sends the results to a base station. Assume at

one height, there are three nodes with identifiers 1, 2, and 3. Table I

shows an example of data gathered during one sampling cycle. The

second row shows the ground truth values for each node. The third

row shows the sensor readings. Node 3 is faulty: the fault results

in an erroneous sensor reading of 0 ◦C. Without any fault tolerance

mechanisms, the average of the three values in the second row, 7.3 ◦C,

is returned to the user. Unfortunately, the user is unaware that 7.3 ◦C

is an erroneous result that underestimates the average temperature by

4.7 ◦C.

With FACTS, the expert designing the application provides some

information about the environment in a simple format. For example,

the expected temperature range is 10–30 ◦C. The code generated by

FACTS uses this information to detect the fault at node 3. Instead

of using the incorrect value of 0 ◦C, it indicates that the value is in



the range 10–16 ◦C based on historical readings and readings from

other nearby nodes. FACTS then propagates this interval through the

expressions to produce the value of interest for the network (i.e.,

the average), indicating that it is in the range 10.7–12.7 ◦C. The

user is made aware of the system-level implications of the low-

level fault. This error information can be further used by application

experts during their data analysis and help them draw more accurate

scientific conclusions. The actual techniques used in FACTS are more

sophisticated than those considered in this explanatory example. For

example, FACTS considers the influence of spatial and temporal

correlation as well as the impact of expressions predicated on faulty

variables.

Our approach has the following features.

1) Application experts do not need to understand the intricacies

of sensor network faults or explicitly manage them.

2) The domain knowledge of application experts is used to allow

fault detection and error estimation, without imposing much

additional specification burden.

3) System-level error bounds are provided to application experts

to allow more thorough understanding of data.

II.B. Specification of Environmental Conditions

Application experts’ knowledge of environmental conditions can

be used for two purposes: detecting sensor faults and correcting for

faulty sensor readings. Sensed data characteristics can be determined

based on sensor specifications and environmental conditions such

as data value range, temporal gradient (change in value per time

unit), temporal correlation, spatial variance (change in value per

distance unit), and spatial correlation. In this work we use range,

maximum temporal gradient, and maximum spatial gradient to de-

scribe the environmental conditions; however, these concepts can be

extended to use other parameters. We extend WASP programming

language to let programmers specify an expected range and maximum

temporal/spatial gradient for each environmental parameter. After

the programmer provides the application specification, a list of

relevant physical parameters is extracted to produce a template for the

programmer to input information about their expected behaviors. The

programmer need only read the template and enter a few numbers.

II.C. Fault Detection and Sensor Error Estimation

In this work, we focus on methods that can be implemented

efficiently in software and detect a commonly occurring class of

faults. Although the proposed error estimation technique will work

with any hardware or software fault detection mechanism, we use

the following detection criteria in our FACTS system prototype:

(1) are the sensor data within the expected range? and (2) are the

environmental conditions within the operating range of the sensors?

It is common for faulty sensor nodes to produce abnormal readings.

For example, developers of a habitat monitoring network observed

abnormally large or small sensor readings (light, temperature, and

humidity) when water penetrated the enclosure of the sensor node

and affected the power supply [10]. Developers of a redwood tree

macroclimate monitoring network associated out-of-range sensor

readings with node faults caused by a drop in battery voltage [21].

Such faults can be detected via range checking.

As sensors cannot work properly in certain environmental condi-

tions, sensor faults can also be detected by checking whether the

current environmental conditions are within the sensor’s operating

range. If either requirement is violated, the sensor reading is deemed

incorrect. Consider an application that gathers light level readings

using TelosB sensor nodes. The S1087 light sensor on TelosB nodes

has an operating temperature range of -10–60 ◦C. Both the light and

temperature sensor readings are checked to detect light sensor data

Fig. 2. Design options for error estimation based on spatial data.

faults. A fault is likely to occur if either the light sensor reading is

out of the expected range or the temperature sensor reading is out

of the -10–60 ◦C range. Note that when an undetected fault occurs

in the temperature sensor, we may (conservatively but sometimes

mistakenly) deem the light sensor to be faulty. Faults in sensors on the

same node may be correlated because they share many hardware and

software components; the developers of the habitat monitoring sensor

network observed this correlation [10]. Therefore, the false positive

rate due to faults in the sensor monitoring the operating environment

is likely to be lower than would be the case in the absence of sensor

fault correlation.

Local error estimation is used to indicate the intervals of actual

data elements and expressions when faults are detected. Faulty sensor

readings are estimated based on bounds on environmental parameters

and their spatial and temporal gradients. Data gathered from a sensor

network often change gradually with time and location. Temporal and

spatial variations can be bounded for many applications. We use such

bounds to replace erroneous values with ranges. For example, given a

maximum temporal gradient for temperature of 1 ◦C per minute, the

range of a faulty temperature reading can be estimated as 19–21 ◦C

if the most recent correct reading of 20 ◦C was taken one minute

ago. In other words, in case of an erroneous reading, the possible

temperature range is estimated based on other data. The FACTS

compiler creates data buffers to store historical data. The buffer size is

determined based on the user-specified bounds and sampling periods.

For example, if the temporal variation of temperature is at most 5 ◦C

over one hour and the temperature sampling period is 10 minutes,

then a buffer of size 6 is used.

A bound on spatial gradient indicates the maximum change per

meter. Error estimation using spatial gradients requires knowledge

of distances between sensor nodes. If node locations are known at

design time, the locations of nearby nodes can be stored in a table and

used for error estimation at runtime. If node locations are unknown

until deployment, distances between nodes can be estimated using

node localization algorithms [22].

Error estimation using spatial gradients requires data from other

nodes and may therefore introduce communication overhead. The

locations where the implications of faults are estimated and the

amount of spatial data used impact energy overhead and the tightness

of the resulting error bounds. Figure 2 shows examples of three

design options for a network composed of six nodes. A dotted arrow

represents a communication link in the routing tree, originating from

a child node and ending at a parent node. F indicates where a fault

occurs and C indicates where the error resulting from this faulty

reading is estimated. The center node has a faulty sensor reading. To

simplify explanation, we ignore error estimation based on temporal

changes in this example. Sensor data from the shaded nodes are used

to estimate the interval for incorrect readings gathered by the faulty

sensor. A solid arrow indicates the links on which the corresponding

design option produces communication overhead.

In design (a) (in Figure 2), the parent node estimates the value

interval for the faulty node by based on the parent node’s sensor

value. In design (b), the value interval at the faulty node is estimated



using its children’s readings. In design (c), the value interval at the

faulty node is estimated using all its neighbors’ readings. Design (a)

uses only one neighboring node (parent node) for estimation, design

(b) uses all children nodes, and design (c) uses all neighboring nodes.

Design (a) imposes communication overhead on the link from a faulty

node to its parent, design (b) requires every node to always send its

own raw sensor readings to its parent, design (c) requires the faulty

node to broadcast requests to which its neighbor nodes reply with

their sensor readings. The more information used in estimating an

interval, the tighter the bound is; design (a) provides the loosest bound

with the lowest communication overhead and design (c) provides the

tightest bound with the highest communication overhead. We choose

design (b) in the FACTS system implementation. This option requires

the least modification to the network protocol, and supports the use

of multiple spatial readings for error estimation. Specifically, each

node sends the aggregated results of the subtree it is the root for and

its own raw sensor reading.

II.D. Error Propagation

The WASP programming language supports node-level data pro-

cessing functions and network-level aggregation functions. FACTS

computes the errors in expression results based on the sensor read-

ings they depend on. Specifically, FACTS returns estimated ranges

associated with each requested datum, i.e., every data element in the

COLLECT statement for network-level data gathering and aggregation

in a WASP program. As described in Section II-C, faulty sensor

readings are replaced with estimated ranges. The errors are then

propagated to final results using interval arithmetic. Error estimation

for network-level aggregation results can occur either in the network

or at the base station. The former approach aggregates correct and

faulty variables in the network and estimates the associated error. The

latter approach aggregates only correct variables in the network and

forwards faulty variables to the base station, where the error of the

final results are computed. We adopt the former approach in FACTS

because it implies smaller data transmission overhead and scales with

network size and fault rate.

Errors caused by faulty sensor readings can propagate to end results

via mathematical operations such as addition. The error estimation

problem can be defined as follows. Given y = f(x1, x2, · · · , xn)
and the range of each xi, estimate the range of y. Each xi represents

a potentially erroneous variable. y represents the returned result. This

can be solved with interval arithmetic [23], in which arithmetic op-

erations are applied to operand intervals to calculate result intervals.

Interval arithmetic has been applied to rounding error estimation and

circuit timing analysis. In contrast to these uses, maintaining low

overhead is more important for our (on-line) application because

error estimation may execute on energy- and time-constrained sensor

nodes. Fortunately, for the built-in functions supported by the WASP

programming language, it is easy to find the range of an output

given ranges of inputs. For example, the frequently used aggregation

functions such as MAX, MIN, and AVG are all monotonic, allowing

the extremes of an output to be computed directly by applying the

operation on extremes of inputs. The mathematical expressions and

functions used in the majority of published wireless sensor network

deployments can also be efficiently computed following interval

arithmetic rules.

Errors can also propagate to end results via their influence on

control flow. When a faulty variable is used in a predicate expression

and its estimated range spans the predicate threshold, the range of the

result is computed by combining the ranges that would result from

either branch. For non-aggregating data collection applications, the

predicates determine whether data should be sent to the base station.

For applications with in-network spatial data aggregation, the predi-

cates determine whether data should be included in the network-level

aggregation operations. For example, COLLECT AVG(y) WHERE

x > 100 requires the y variable of a particular node to be included

in the averaging operation if that node’s x value is above 100. When

a fault results in the interval for x spanning 100, the range of interval

AVG(y) (the average of all node y values) should span the results

calculated with and without including y from the faulty node. The

error estimation problem can more formally be defined as follows.

Given that y = f(x1, x2, · · · , xn) where f is an aggregation

function for which xi may or may not be included in the argument

list and n is number of variables, compute the range of y. The range

of y can be naı̈vely obtained by computing the ranges for the 2n cases

separately and calculating their union. The computational complexity

may be acceptable for a sparse network since n is bounded by

the maximum number of immediate children nodes. Fortunately,

for the aggregation operations commonly used in wireless sensor

network deployments, the computational complexity is less than

O (n log n). For MAX and MIN operations, including one more

argument only monotonically affects the upper or lower bound of the

result. Therefore, the range of the result can be easily calculated by

iteratively considering each of the n variables. For AVG, adding one

more variable may increase or decrease both lower and upper bounds.

However, the range of the result can still be computed in O (n log n)
time. For example, to get the lower bound of the AVG result, first

order the lower bounds of the intervals associated with the nodes

that may meet the selection requirements (but are not certain to meet

them) in increasing order. Incrementally scan the ordered list, add

each value to the set of values to average, and recompute the result

until the local minimum for the result is reached. To get the upper

bound of the AVG result, use a similar technique, but instead scan

the upper bounds of the intervals in decreasing order. Consider the

expression COLLECT AVG(y) WHERE x > 100 as an example.

Assume a network of five nodes. Their x ranges are [120], [90, 110],

[80, 120], [83, 102], and [130]. Their y values are 2, 4, 6, 3, and

8. To compute the upper bound of AVG(y), we order the y values

except 2 and 8 (they must be involved in computing the average) in

descending order. The average of 2 and 8 is 5. After including 6,

the average becomes 5.3. After including 4, the average becomes 5.

Therefore, the upper bound for AVG(y) is 5.3.

II.E. Automated Code Transformation

We now describe a software implementation to support automatic

online fault detection and error estimation. The following steps will

be used to generate fault-aware code. (1) Replace sensor readings

and the variables that depend upon them with tuples containing two

variables of the same type. (2) Insert calls to fault detection functions

after sensor readings are obtained. The fault detection methods have

been described in Section II-C. (3) Insert calls to temporal gradient-

based error estimation functions after error detection function calls to

calculate ranges for faulty variables. (4) Insert calls to spatial gradient

based error estimation functions before a node aggregates its received

data. (5) Convert mathematical expressions involving possibly faulty

variables to interval arithmetic operations. For example, z = x + y

is converted to z.low = x.low+ y.low; z.high = x.high+ y.high.

III. EXPERIMENTAL EVALUATION

We evaluated the accuracy of the value estimates provided by

FACTS, as well as its impact on code size and memory use. Our

evaluation uses a small-scale experimental hardware testbed and

simulations of a larger-scale network composed of 74 sensor nodes

with real-world data traces. This section describes the experimental

setup and the results.
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TABLE II
FAULT-AWARE AND UNAWARE IMPLEMENTATIONS

Code size (B) Memory usage (B)

App.1 App.2 App.3 App.1 App.2 App.3

Fault-unaware 32,556 33,060 27,722 2,130 2,134 2,038

Fault-aware 37,358 37,740 32,088 2,212 2,224 2,096

Overhead (%) 14.7 14.2 15.7 3.8 4.2 2.7

III.A. Prototype Evaluation

We implemented a prototype of the proposed system and tested

it in a small-scale sensor network consisting of four TelosB nodes.

Each node samples temperature every 2 s. The average across all

nodes is returned to the base station. The results contain a tuple for

each sampling cycle indicating the upper and lower bounds on the

average temperature. Figure 3 displays the temperature upper and

lower bounds as functions of time. We injected intermittent sensor

faults by shorting the terminals of the thermal sensor to produce

readings of -39.6 ◦C (from a 0 V analog-to-digital converter input),

e.g., at 22 s. In the absence of faults, the upper and lower bounds

in Figure 3 are identical. The estimated bounds become looser over

time when the intermittent fault persists, due to the use of temporal

correlation to calculate the temperature interval. This section serves

primarily to demonstrate that a functioning prototype of the FACTS

system has been implemented, and explain its operation.

III.B. Evaluation of Code Size and Memory Use Overhead

To evaluate the impact of using FACTS on code size and memory

requirements, we compared the code generated with the original

WASP compiler and the extended FACTS compiler. Table II shows

the code size and memory use for the three representative examples

based on deployed sensor network applications [7]. Application 1

periodically gathers temperature and light data. Application 2 pe-

riodically samples light and averages data among nodes at similar

heights. Application 3 periodically samples temperature and sends

data only when the increase in temperature exceeds a threshold. The

average code size overhead across the three applications is 15% and

the average memory overhead is 3.6%.

We compare the lines of code for the high-level specification input

to FACTS as well as the generated node-level code to give some

evidence of its impact on programming complexity. The results are

shown in Table III. The applications are the same as those used for

code size and memory use estimation. FACTS only requires three to

six additional lines of code in the high-level specification, depending

on how many physical parameters are sensed. Note that the syntax of

TABLE III
LINES OF CODE FOR FAULT-AWARE AND UNAWARE IMPLEMENTATIONS

High-level specification Emitted NesC code

App.1 App.2 App.3 App.1 App.2 App.3

Fault-unaware 6 7 7 489 495 484

Fault-aware 12 10 10 621 585 545
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the FACTS specifications is at least as simple as that for functionality.

Therefore, we argue that the programming complexity only increases

slightly. Given that researchers have previously demonstrated via

user studies that novice programmers can use WASP correctly and

efficiently [7], and the additional specifications required by FACTS

have low complexity and length, we believe that the FACTS system

will remain accessible to novice programmers. In contrast, the low-

level NesC code (excluding library code) increases in length by 61,

90, or 132 lines of code depending on application. This implies that

the extra programming efforts required to manually and explicitly

handle sensor faults is potentially high. With FACTS, the increased

implementation complexity is not exposed to programmers.

III.C. Simulation of Large-Scale Network to Evaluate Impact of

Varying Fault Rates

Simulation environment: We use the SIDnet-SWANS simula-

tor [24] and temperature measurement time series from a real

network deployment [9] to model a network of 74 nodes that sample

temperature every 29.3 seconds and aggregate data in the network.

We assume two aggregation expressions: average and minimum.

Environmental data generation: We use the data from the LUCE

deployment at the EPFL campus [9] to provide environmental data for

our simulation. The LUCE deployment contains 97 weather stations

that span a 500 m×300 m area and ran for 6 months. We take the

following steps to generate fault-free data traces from the original

data set. (1) It is important that faults be rare in our input data so

that we can determine the actual ground truth data values with which

our fault correction system ranges and estimates will be compared.

We identified a time interval in which the data drop rate from most

of the nodes is small and eliminated from consideration 23 nodes

that have high drop rates in that time interval. We used a one-

hour trace containing 9,028 data samples from 74 nodes. (2) The

original data set has a period of 29.3 s with small jitter. We parse the

data to produce synchronized periodic time series. Multiple samples

associated with the same period are averaged, while periods without

data are recovered by selecting from the valid data value distribution

for the application. Combined, these faults only affected 3.7% of

the time series data. (3) We determine the lower and upper bounds

based on the histogram of temperature data from the 74 nodes. The

histogram is shown in Figure 4, where 99.4% of the data are in the

5–30 ◦C range. Inspection indicates that data outside this range are

associated with spikes in the time series. We treat data outside this

range as outliers. (4) We analyze the temporal and spatial correlation

ignoring outliers and compute the bounds on temporal and spatial

gradients. The results are 3 ◦C per 29.3 s and 5 ◦C per 50 m. (5)

We replace faulty and missing data (only 3.7% of the original data

traces) with values that are generated based on spatial and temporal

correlation. The resulting data set complies with the bounds on data

range, temporal gradient, and spatial gradient.

Fault injection during evaluation: We model sensor transient faults

using Poisson processes, primarily because many transient fault pro-

cesses are memory-less. This influences only our simulation results,

not the design of the FACTS system, which can handle fault processes

with arbitrary temporal density functions. We use independent but
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equal-rate fault processes for different sensor nodes. Faulty sensor

readings are generated by sampling from the set of outliers extracted

from the original data set; this was done so that the simulated and

actual faulty data would have the same distribution, which is shown in

Figure 5. We run simulations with multiple fault rates, ranging from

0.1 to 0.5 per minute, to study the impact of fault rate on accuracy.

The tested fault rates are selected based on a survey on sensor network

data faults by Ramanathan et al. [16]. The sensor fault durations in

the original data are generally less than 29.3 s (one sampling cycle),

supporting the injection of transient faults. For each fault rate, we run

5 simulations with different random seeds and average the results.

Results: Figure 6 shows an example simulated time series for a

fault rate of 0.1 per minute. The shaded area shows the value intervals

produced by FACTS. The curve inside it shows ground truth results

from the original time series. The figure shows that the original fault-

unaware program can produce substantial errors (0.7 ◦C on average

and 2.7 ◦C maximum) and that the intervals produced by FACTS

always contain the actual value.

If the midpoints of the intervals produced by FACTS are used

as value estimates, the error relative to ground truth values can

be computed. Figure 7 shows aggregate error for simulation runs

with different fault rates. The root mean square errors relative to

the ground truth data are computed for the fault-aware and fault-

unaware programs. FACTS min and FACTS avg represent the results

for the minimum expression application and the average expression

application. Orig min and Orig avg represent the results for the

fault-unaware versions of these applications. FACTS results have an

average error of 0.02 ◦C and fault-unaware results have an average

error of 3.86 ◦C. The worst-case errors are 5.95 ◦C and 36.40 ◦C for

FACTS and the fault-unaware systems.

IV. CONCLUSIONS

Detecting and reacting to faults are important capabilities for

many sensor network applications. Requiring application experts to

explicitly program fault detection and error estimation algorithms

imposes implementation burden and increases the probability of intro-

ducing software errors. We have described an approach to simplify

fault detection and management in wireless sensor networks. This

approach, called FACTS, is designed to be accessible to application

experts who may not be expert programmers. Users of FACTS only

need to specify high-level application functionalities and expected

environmental conditions. FACTS is implemented by extending an

existing high-level sensor network language, compiler, and run-time

system. It uses easily specified domain-specific expert knowledge to

support on-line detection of some classes of sensor faults. When faults

are detected, FACTS adjusts the accuracy intervals of data analysis

expressions to make the system-level impact of faults clear to sensor

network users. A small-scale hardware testbed and simulations of a

74-node network using real-world sensor data show that FACTS sub-

stantially increases estimation accuracy and imposes little overhead

compared to fault-unaware programs.
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