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Introduction




Photovoltaics

e Process of converting light into electricity, often light from the sun
o Generally uses semiconductor electron generation

e Modern mass-production solar cells are generally made of Silicon
o Creating doped P-N Si junctions is cheap, easy to manufacture

o Crystals are grown, doped, and then the ingoft is cut into wafers

e Higher-performance cells use other technologies
o Generally significantly more expensive (>1 order of magnitude)

o Significantly more fragile Y
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Solar Power

e Solar Power rapidly gaining traction

o Cost rapidly decreasing "
o Efficiency increasing ' $76.00
m Approxing theoretical maximum

Price history of silicon PV cells
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Automotive Uses

e Solar power can also be useful to vehicles
o Even before EVs, used to keep A/C running while parked

o With the rise of EV popularity, can be used to increase range

e Cars have been made that operate on solar power for decades
o First street-legal solar car registered in the UK in 1976

o Many solar-powered racing cars built in the years since

e Inthe near future, solar panels will likely be an option on many cars
o Lightyear, Aptera, Sono, Squad commercializing around solar

o Tesla, Hyundai, and more adding panels to supplement EVs



Automotive Challenges

e Remains unlikely most people will ever drive fully on solar power
o Can work for small cars commuting in sunny areas, but

m Silicon solar cell theoretical max efficiency is under 34%

m Standard car sizes have considerable power requirements
e Drag, rolling resistance, comfort features, autonomy

m Cars have aerodynamic curvature and are shaded

e However, reducing reliance on fossil fuels is of vital importance
o Any range increase from solar power is a reduction on the grid

e As such, seek to maximize power generation from solar cells



.
How Embedded Systems Can Help

e Power produced by a solar array subject to a number of loss factors
o Base Efficiency - nominal efficiency of the cells being used

o Cosine Loss - difference in normal vector of cell and sunlight
o Thermal Loss - cell efficiency decreases with temperature

o Shading Loss - cell generation decreases if sunlight blocked
o Remember, cells in series are affected by each other’s losses!

e Arrays also do not necessarily operate at their most efficient point
o Specific voltage/current combination will produce max power

o However, cells dont magically operate at this point on their own
e These are areas that embedded systems can help address
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Solar Cell Maximum Power Point
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Maximum Power Point Tracking

e Commonly, we use an embedded system to track the MPP
o With a single solar cell, this is convex - perturb and observe

o  When multiple cells exist, local maxima may exist
m This is particularly damaging to efficiency with shading
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e
How To Address This

e Tempting to utilize other methods to track maximum power point
o Other algorithms can be used to improve tracking accuracy

o Global sweeps can be performed to characterize 1V curve
m \ery easy to guarantee operation at maximum power point
m Do not generate optimal power while sweep is performed

e Only useful as long as the IV curve does not change
o IV curve will change constantly on a moving car

e More efficient use of resources to just improve the power curve!



Improving the Power Curve?

e Necessitates understanding why shading causes local maxima
o Generally due to bypass diode activation

m Diodes placed along cell to prevent reverse bias damage
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Bypass Diode Effect on IV Curve
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e
What To Do About It

e Obviously, the ideal would be for the cells to just... never be shaded
o Clearly impractical when on a moving automobile

e However, we live in reality, and must deal with the downsides of that
e Note these issues are generally caused by shared operating point
o If each cell could operate at its own MPP, would be no issue

m Giving each cell a MPPT is prohibitively expensive
e MPPTs are generally the driving cost for small arrays
o Must find a different way to diversify operating points



Differential
Power Processing



Differential Power Processing

e Take current from one part of the array and move it to another part
o Now all parts of the array can operate closer to MPP ™ %

e [tis not immediately obvious that this is possible
o Current can not be directly siphoned

o Instead, power must be converted across the array

e There are in fact several ways to do this
o Commonly bidirectional converters are utilized

o Sometimes, a capacitive ladder is used instead
m Relatively cheap to produce and easy to control

Vor

m Requires encapsulating components into array

Submodule 1




Bidirectional Converter Methods

e There are several topologies that may be utilized
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Status of the Literature

e Significant research has been conducted on PV-to-Isolated-Bus
o This is more efficient than shuffling topologies

o Easily expandable and much more easily controllable
m Each converter needs only maintain its own MPP
e Technically nonideal - losses acceptable for many uses
e As no central control is required, can easily add more

e However, PV-to-Bus (nonisolated) is more ideal for automotive
usage
o Unlike commercial/residential panels, system cannot expand

o Increased efficiency is worth the trade-off of system complexity
e Research focuses on the grid, PV-to-Bus is virtually unexplored



Basic Operating Principle
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PV-To-Bus Implementation

e As mentioned, this has been shown to work in PV-to-Isolated Bus
o PV-to-Bus has additional control, implementation challenges

e \oltage of entire array can often be many times that of each string
o Requires components with much higher voltage ratings

m Reduced impact in automotive environments
e Still roughly 5-10x as opposed to 1x with isolated bus

e To minimize processed power, central control is required
o Track maximum power point of each string and full array

o Dictate operating points for each individual converter
o Decentralized control not easy due to fluctuating array voltage



Converter Design




.
Prototype Circuit

e PV-to-Bus requires highly-specialized design, so using a prototype
o Will be representative of the voltages experienced on a real car
o Can be modified down the line for different circumstances
o Will enable experimental result gathering for proof-of-concept

e Implements voltage conversion, basic centralized control
o Fine-grained control will be accomplished as later addition

m Want to prove the basic idea works, then focus on details
e Will start with one such board, expand if results in line with theory



Flyback Converter Basics

e Flyback converters are basically isolated buck-boost converters
o Isolation achieved through usage of a coupled inductor

m Necessary due to converter laddering
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Bidirectional Flyback Converter Basics

e Bidirectional flybacks allow power to flow in either direction
o Can boost power from string voltage to array voltage

o Can buck power from array voltage to string voltage
o Accomplished via replacing the diode with a second transistor
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Flyback Design Considerations

e Power losses in circuit lead to inefficiency
o Switching losses are dissipated in transistors, oc frequency

o Copper losses are dissipated in wires/traces/windings
o Core losses are dissipated in the fransformer magnetic core

e \oltage ripple and stress
o Need to spec components for maximum values attained

o High ripple can lead to noisy, hard-to-control output

e Isolation barrier impedes sensing
o Need knowledge of both sides’ voltages to control converter

o Must use a decoupled method to communicate across isolation



Prototype Realization

e 4-lLayer PCB to ensure adequate return paths, noise filtering
e Utilizing STM32F405 microprocessor to enable control
o Commonly-used microprocessor family, easy to implement

o Allows for CAN communication, common on automobiles

e Currently using LT3748HMS#WPBF Flyback Controller
o Automotive-grade component, wide voltage range (5-100V)

o May replace with digital controller or custom circuit later
m For proof-of-concept this is the fastest path forward

e Currently communicate across isolation barrier with photocoupler
o Will need cross-barrier voltage sensing for final version



Array

Side Schematic
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String Side Schematic
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Central Controller Schematic
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Prototype Board Top Layer
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Prototype Board CAD
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Conclusion




Project Overview

e Solar power has been gaining in marketshare for a long time
o Likely to expand into automotive industry very quickly with EVs

e Automotive environment necessitates specialized design
o Unlike anything research has done for use in other industries

e PV-to-Bus differential power processing is a promising topology
o PV-to-Isolated-Bus has shown results in prior testing

o Non-isolated bus offers highest efficiency
m Extra complexity negligible in non-modular, single system



Current Status

e Protfotype board design completed ~2 weeks ago
o Components ordered, received and currently in-hand

o Boards ordered, delayed in shipping - should arrive this week

e Once they're in, will manufacture and test these boards
o Will ensure bidirectional flyback topology behaves as expected

m Specifically, for reasonable voltages for this application
o Will use findings to inform next steps regarding flyback control

e Based on shipping times, final report may only include prototype
o Actual work will continue beyond the end of this course



Questions?




