
Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment Summary

Chengyu Liu, Jaeeun Kim, Anya Svintsitski and Tiancheng Zhang

Intro

● Combinatoric scheduling analyze for pure process control

● No non-time-critical jobs exist

● Need to carefully schedule time-critical control and monitor functions
to achieve the efficient use of computer

Examples of time-critical tasks
● Pointing of an antenna to track a spaceship orbit

● Autopilot

● Multiprocessor

● Flight control software

Multiprocessor
● Transistor leakage current becomes important under sub-100 nm

technology

● Reducing voltage limits the maximum operating frequency

● Multiprocessor real-time scheduling is a much more difficult problem
than uniprocessor scheduling

Multiprocessor
● Heterogeneous: the processors are different

● Homogeneous: the processors are identical

● Uniform: the rate of execution of a task depends only on the speed of
the processor

Scheduling algorithm

● Fixed priority assignment (utilization is 70%)

● Dynamic assignment of priorities (can achieve full utilization)

● Both are priority driven and preemptive (the processing of any task is
interrupted by a request for any higher priority task)

Background

● Tasks are executed in response to events in the equipment controlled
or monitored by the computer.

● The remainder are executed in response to events in other tasks.

● Each of the tasks must be completed before some fixed time has
elapsed following the request for it.

Prior Work
● Manacher derives an algorithm for the generation of task schedules in

a hard-real-time environment, but it is restricted to the somewhat
unrealistic situation of only one request time for all tasks.

● Lampson proposes a program based on the timing information
supplied for programs needing guaranteed service.

● Martin depicts the range of systems which is "real-time"

The Environment

5 Assumptions of Program Behavior in hard-real-time

● 1 : The requests for all tasks for which hard deadlines exist are periodic, with constant interval between requests.

– Valid for pure process control

● 2 : Deadlines consist of run-ability constraints only--i.e, each task must be completed before the next request for it

occurs.

– Able to eliminates queuing problems but significant amount of buffering hardware must exist to hold

● 3 : The tasks are independent in that requests for a certain task do not depend on the initiation or the completion

of requests for other tasks.

● 4: Run-time for each task is constant for that task and does not vary with time. Run-time here refers to the time

which is taken by a processor to execute the task without interruption.

– Maximize processing time for a task. Benefit from existence of large main memories

● 5: Any nonperiodic tasks in the system are special; they are initialization or failure-recovery routines; they

displace periodic tasks while they themselves are being run, and do not themselves have hard, critical deadlines.

Scheduling Algorithm

● Rules that determine the task to be executed at a particular moment with pre-emptive and priority

driven

● Method of assigning priorities to task

Fixed priority scheduling algorithm

○ Static scheduling algorithm due to assigned priorities

Mixed scheduling algorithm

○ Dynamic scheduling algorithm because priorities of task can be changed from request to

request

Fixed Priority Scheduling Algorithm

THEOREM 1. A critical instant for any task occurs whenever the task is requested
simultaneously with requests for all higher priority tasks

τ: Task
T: Request Period
C: Run time

τ_m: lowest priority task
τ_i: higher priority task than τ_m
t1: τ_m occurs at t1
t2: τ_i occurs at t2

● Pre-emption of τ_m by τ_i causes delay in the completion of the request for τ_m
● t2 will not speed up the completion of τ_m(unchanged or delayed)
● When t2 coincide with t1, τ_m is the largest

Fixed Priority Scheduling Algorithm

Fixed Priority Scheduling Algorithm

Examples:

τ_1: higher priority task than τ_2
τ_2: lower priority task than τ_1
T1 = 2
T2 = 5
C1 = 1
C2 = 1

● Priority assignment is feasible
● C2 can be increased at most to 2

Examples:

τ_1: higher priority task than τ_2
τ_2: lower priority task than τ_1
T1 = 2
T2 = 5
C1 = 1
C2 = 1

● In case of τ_2 is the higher priority task, C1 and C2 cannot exceed 1
● Feasible with τ_1 at higher priority than τ_2, but the opposite is not true

Fixed Priority Scheduling Algorithm

Fixed Priority Scheduling Algorithm

THEOREM 2. If a feasible priority assignment exists for some task set, the rate
monotonic priority assignment is feasible for that task set

● Rate-monotonic priority assignment: tasks with higher request rates will have higher priorities

● Priority assignment is optimum when no other fixed priority assignment cannot be scheduled by

rate-monotonic priority assignment

Rate Monotonic Scheduling example

C P

t1 3 20

t2 2 5

t3 2 10

● Request rate is reciprocal of request period

● Higher request rates has higher priorities

Based on the request rates, priority is set to t2>t3>t1

Rate Monotonic Scheduling example

C P

t1 3 20

t2 2 5

t3 2 10

priority is set to t2>t3>t1

Rate Monotonic Scheduling example

C P

t1 3 20

t2 2 5

t3 2 10

priority is set to t2>t3>t1

Resultant priority assignment is still feasible

Achievable Processor Utilization

Achievable Processor Utilization

Utilization Factor

● Processor time execution on the task set.

○ Fully Utilize

○ Least Upper bound

● Rate-monotonic Priority Assignment

Achievable Processor Utilization

THEOREM 3. For a set of two tasks with fixed priority assignment, the
least upper bound to the processor utilization factor is U = 2*(2^(1/2)-1)

THEOREM 4. For a set of m tasks with fixed priority order, and the
restriction that the ratio between any two request periods is less than 2,
the least upper bound to the processor utilization is U = m(2^(1/m)-1).

THEOREM 5. For a set of m tasks with fixed priority order, the least
upper bound to processor utilization is U = m (2^(1/m) - 1).

Achievable Processor Utilization

THEOREM 3. For a set of two tasks with fixed priority assignment, the
least upper bound to the processor utilization factor is U = 2*(2^(1/2)-1)

Assumption: T2>T1, and τ1 has higher priority than τ2

Case 1: C1 is short enough that all requests for critical zone of T2 are
completed before the second τ2 request.

The corresponding utilization factor is:

Achievable Processor Utilization

THEOREM 3. For a set of two tasks with fixed priority assignment, the
least upper bound to the processor utilization factor is U = 2*(2^(1/2)-1)

Assumption: T2>T1, and τ1 has higher priority than τ2

Case 2: The execution of the T2/T1 th request for t1 overlaps the request
for τ2

The corresponding utilization factor is:

Achievable Processor Utilization

THEOREM 3. For a set of two tasks with fixed priority assignment, the
least upper bound to the processor utilization factor is U = 2*(2^(1/2)-1)

Plot of the utilization factor with respect to C1

Achievable Processor Utilization
THEOREM 3. For a set of two tasks with fixed priority assignment, the
least upper bound to the processor utilization factor is U = 2*(2^(1/2)-1)

The boundary is achieved when

The least bound U=2*(2^(1/2)-1) is achieved when {T2/T1} =2^(1/2)-1;

When {T2/T1}=0, the U can goes to 1;

Achievable Processor Utilization

THEOREM 4. For a set of m tasks with fixed priority order, and the
restriction that the ratio between any two request periods is less than 2,
the least upper bound to the processor utilization is U = m(2^(1/m)-1).

Step 1: A proof that when Ci = T(i+1)-T(i) will achieve the least upper
bound for the processor utilization.

Method: For any Ci≠T(i+1)-Ti,

prove that a pair of (Ci’, C(i+1)’)=(T(i+1)-Ti, C(i+1)+Δ),

can make the U smaller.

Achievable Processor Utilization

THEOREM 4. For a set of m tasks with fixed priority order, and the
restriction that the ratio between any two request periods is less than 2,
the least upper bound to the processor utilization is U = m(2^(1/m)-1).

Step 2: Given Ci = T(i+1)-T(i), use the partial differential equation to
achieve the minimum value of U:

Method: let gi = (Tm - Ti)/Ti, i = 1, 2, ... , m.

The least upper bound of utilization factor U = m(2^(1/m)-1) achieved,
When gi = 2^((m-i)/m)-1

Achievable Processor Utilization

THEOREM 5. For a set of m tasks with fixed priority order, the least
upper bound to processor utilization is U = m (2^(1/m) - 1).

Implication:
For m = 3, U = 0.78
For large m, U = ln(2)=0.693

Relaxing the Utilization Bound

Relaxing the Utilization Boundary

Methods to improve the utilization:
● Make {Ti/Tj}=0, refer to the Theorem 3
● Buffer several low-priority tasks and relax their hardlines.

○ Reasonable execution fashion (e.g. FIFO)
○ Finite task period

● Dynamic task priority assignment

The Deadline Driven Scheduling Algorithm
● Also known as Earliest deadline first (EDF)

● Task lengths/task periods ≤ 1, else overflow due to no available processor time

○ THEOREM 6: When the deadline driven scheduling algorithm is used to schedule a set of tasks on

a processor, there is no processor idle time prior to an overflow.

○ THEOREM 7: For a given set of m tasks, the deadline driven scheduling algorithm is feasible if and

only if (C
1

/T
1

) + (C
2

/T
2

) +... + (C
m

/T
m

) ≤ 1.

A Mixed Scheduling Algorithm
● Tasks 1-arbitrary k get RM scheduled, k+1 - m get EDF scheduled

● For nondecreasing a(t), a(T) ≤ a(t + T) - a(t) means a(t) is sublinear

● a
k

(t) is the availability function of the processor for tasks k+1, k+2…m

○ Can’t decrease, availability can’t be removed

○ Sublinear by critical timezone argument

● THEOREM 8: If a set of tasks are scheduled by the

deadline driven scheduling algorithm on a processor

whose availability function is sublinear, then there is

no processor idle period to an overflow

Compare
● Mixed scheduling algorithm

● Fixed priority scheduling algorithm

Compare

● This example strongly suggests that the bound is considerably less
restrictive for the mixed scheduling

● Algorithm than for the fixed priority rate-monotonic scheduling
algorithm. The mixed scheduling algorithm may thus be appropriate
for many applications.

Conclusion
● The most important and least defensible of these are (A1), that all

tasks have periodic requests, and (A4), that run-times are constant.

● A combination of the two scheduling algorithms appears to provide
most of the benefits of the deadline driven scheduling algorithm.

Any questions?

