Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment Summary

Chengyu Liu, Jaeeun Kim, Anya Svintsitski and Tiancheng Zhang

Intro

. Combinatoric scheduling analyze for pure process control
. No non-time-critical jobs exist

e Need to carefully schedule time-critical control and monitor functions
to achieve the efficient use of computer

Examples of time-critical tasks

e Pointing of an antenna to track a spaceship orbit
e Autopilot
e Multiprocessor

e Flight control software

Multiprocessor

e Transistor leakage current becomes important under sub-100 nm
technology

e Reducing voltage limits the maximum operating frequency

e Multiprocessor real-time scheduling is a much more difficult problem
than uniprocessor scheduling

Multiprocessor

e Heterogeneous: the processors are different
e Homogeneous: the processors are identical

e Uniform: the rate of execution of a task depends only on the speed of
the processor

Scheduling algorithm

e Fixed priority assignment (utilization is 70%)
e Dynamic assignment of priorities (can achieve full utilization)

e Both are priority driven and preemptive (the processing of any task is
interrupted by a request for any higher priority task)

Background

e Tasks are executed in response to events in the equipment controlled
or monitored by the computer.

e The remainder are executed in response to events in other tasks.

e Each of the tasks must be completed before some fixed time has
elapsed following the request for it.

Prior Work

e Manacher derives an algorithm for the generation of task schedules in
a hard-real-time environment, but it is restricted to the somewhat
unrealistic situation of only one request time for all tasks.

e Lampson proposes a program based on the timing information
supplied for programs needing guaranteed service.

e Martin depicts the range of systems which is "real-time"

The Environment

5 Assumptions of Program Behavior in hard-real-time

e 1:The requests for all tasks for which hard deadlines exist are periodic, with constant interval between requests.

— Valid for pure process control

e 2:Deadlines consist of run-ability constraints only--i.e, each task must be completed before the next request for it
occurs.

— Able to eliminates queuing problems but significant amount of buffering hardware must exist to hold

e 3:The tasks are independent in that requests for a certain task do not depend on the initiation or the completion
of requests for other tasks.

e 4: Run-time for each task is constant for that task and does not vary with time. Run-time here refers to the time
which is taken by a processor to execute the task without interruption.

— Maximize processing time for a task. Benefit from existence of large main memories

e 5: Any nonperiodic tasks in the system are special; they are initialization or failure-recovery routines; they
displace periodic tasks while they themselves are being run, and do not themselves have hard, critical deadlines.

Scheduling Algorithm

e Rules that determine the task to be executed at a particular moment with pre-emptive and priority
driven
e Method of assigning priorities to task

Fixed priority scheduling algorithm
o Static scheduling algorithm due to assigned priorities
Mixed scheduling algorithm
o Dynamic scheduling algorithm because priorities of task can be changed from request to
request

Fixed Priority Scheduling Algorithm

Fixed Priority Scheduling Algorithm

THEOREM 1. A critical instant for any task occurs whenever the task is requested
simultaneously with requests for all higher priority tasks

T: Task
T: Request Period
C: Run time

T_m: lowest priority task

T_i: higher priority task than 1_m
t1: T_m occurs at t1

t2: T 1 occurs at t2

ty+ (k+1)T;

SROCESSOR 1S OCCUPIED BY T,
Fic. 1. Execution of 7, between requests for r,

e Pre-emption of T_m by 1_i causes delay in the completion of the request for T_m
e t2 will not speed up the completion of T_m(unchanged or delayed)
e When t2 coincide with t1, T_m is the largest

Fixed Priority Scheduling Algorithm

Examples:

Tz'—_m_-_—__l.._"
5

~— ./

CRITICAL TIME ZONE

(o)

Priority assignment is feasible
C2 can be increased at most to 2

TzL__mm___l__s.,
S

CRITICAL TIME ZONE

(b)

t_1: higher priority task than t_2
T_2: lower priority task than t_1
Ti=2
T2 =5
Ci=1
C2=1

Fixed Priority Scheduling Algorithm

Examples:

T_1: higher priority task than t_2
T_2: lower priority task than t_1
Ti=2
T2 =5
Ci=1
C2=1

CRITICAL TIME ZONE
(c)

e In case of t_2 is the higher priority task, C1 and C2 cannot exceed 1
e Feasible with t_1 at higher priority than t_2, but the opposite is not true

Fixed Priority Scheduling Algorithm

THEOREM 2. If a feasible priority assignment exists for some task set, the rate
monotonic priority assignment is feasible for that task set

e Rate-monotonic priority assignment: tasks with higher request rates will have higher priorities

e Priority assignment is optimum when no other fixed priority assignment cannot be scheduled by
rate-monotonic priority assignment

Rate Monotonic Scheduling example

e Request rate is reciprocal of request period
e Higher request rates has higher priorities

Based on the request rates, priority is set to t2>t3>tl

Rate Monotonic Scheduling example

priority is set to t2>t3>tl

Rate Monotonic Scheduling example

priority is set to t2>t3>tl

Resultant priority assignment is still feasible

Achievable Processor Utilization

Achievable Processor Utilization

Utilization Factor

e Processor time execution on the task set.
o Fully Utilize
o Least Upper bound

e Rate-monotonic Priority Assignment

U= 3 /T,

Achievable Processor Utilization

THEOREM 3. For a set of two tasks with fixed priority assignment, the
least upper bound to the processor utilization factor is U = 2*(2”(1/2)-1)

THEOREM 4. For a set of m tasks with fixed priority order, and the
restriction that the ratio between any two request periods is less than 2,
the least upper bound to the processor utilization is U = m(2”(1/m)-1).

THEOREM 5. For a set of m tasks with fixed priority order, the least
upper bound to processor utilization is U = m (2”(1/m) - 1).

Achievable Processor Utilization

THEOREM 3. For a set of two tasks with fixed priority assignment, the
least upper bound to the processor utilization factor is U = 2*(2”(1/2)-1)

Assumption: T2>T1, and t1 has higher priority than t2

Case 1: C1 is short enough that all requests for critical zone of T2 are
completed before the second 12 request.

The corresponding utilization factor is:

U=1+C{1/Ty) — (1/T:) T/Ti7 1.

Achievable Processor Utilization

THEOREM 3. For a set of two tasks with fixed priority assignment, the
least upper bound to the processor utilization factor is U = 2*(2”(1/2)-1)

Assumption: T2>T1, and t1 has higher priority than t2

Case 2: The execution of the T2/T1 th request for t1 overlaps the request
for 12

The corresponding utilization factor is:

U= (Ty/T2) LTY/T\d + GIQ/Ty) ~ (1/T2) LTo/Thd).

Achievable Processor Utilization

THEOREM 3. For a set of two tasks with fixed priority assignment, the
least upper bound to the processor utilization factor is U = 2*(2”(1/2)-1)

Plot of the utilization factor with respect to C1

Ui l; 2ot Fagtor

Achievable Processor Utilization

THEOREM 3. For a set of two tasks with fixed priority assignment, the
least upper bound to the processor utilization factor is U = 2*(2”(1/2)-1)

The boundary is achieved when

Cz = Tz - Tl LTz/Tx.J

The least bound U=2%*(2"(1/2)-1) is achieved when {T2/T1} =2"(1/2)-1;
When {T2/T1}=0, the U can goes to 1;

Achievable Processor Utilization

THEOREM 4. For a set of m tasks with fixed priority order, and the
restriction that the ratio between any two request periods is less than 2,
the least upper bound to the processor utilization is U = m(2”(1/m)-1).

Step 1: A proof that when Ci = T(i+1)-T(1) will achieve the least upper
bound for the processor utilization.

Method: For any Ci#T(i+1)-Ti,
prove that a pair of (Ci’, C(i+1)")=(T(i+1)-Ti, C(i+1)+A),

can make the U smaller.

Achievable Processor Utilization

THEOREM 4. For a set of m tasks with fixed priority order, and the
restriction that the ratio between any two request periods is less than 2,
the least upper bound to the processor utilization is U = m(2”(1/m)-1).

Step 2: Given Ci = T(i+1)-T(i), use the partial differential equation to
achieve the minimum value of U:

Method: let gi = (Tm - Ti)/Ti, 1i=1,2,..,m.

The least upper bound of utilization factor U = m(2”(1/m)-1) achieved,
When gi = 2 ((m-i1)/m)-1

Achievable Processor Utilization

THEOREM 5. For a set of m tasks with fixed priority order, the least
upper bound to processor utilization is U = m (2°(1/m) - 1).

Implication:
Form =3, U =0.78
For large m, U = In(2)=0.693

Relaxing the Utilization Bound

Relaxing the Utilization Boundary

Methods to improve the utilization:
e Make {Ti/Tj}=o0, refer to the Theorem 3
e Buffer several low-priority tasks and relax their hardlines.
o Reasonable execution fashion (e.g. FIFO)
o Finite task period
e Dynamic task priority assignment

The Deadline Driven Scheduling Algorithm

Also known as Earliest deadline first (EDF)

Task lengths/task periods < 1, else overflow due to no available processor time
o THEOREM 6: When the deadline driven scheduling algorithm is used to schedule a set of tasks on
a processor, there is no processor idle time prior to an overflow.
THEOREM 7: For a given set of m tasks, the deadline driven scheduling algorithm is feasible if and
only if (C,/T}) + (C,/T,) +..+ (C_/T,) < 1.

(<1
(=21

0. L. LT AND 7. W. LAYLAND arrival _|duration | deadline
0 10 33

PROCESSOR

IDLE - PERIOD t2

— 1 —— Task arrivals 4 3 5

N N
REQUESTS FOR p M0

TASK | Y N 5 10 29

REQUESTS FOR
TASK 2

REQUESTS FOR
TASK 3

 Foe
.

REQUESTS FOR
TASK m

-r———-——r-'-----o

Fra. 3. Processing overflow following a processor idle period

A Mixed Scheduling Algorithm

e Tasks l-arbitrary k get RM scheduled, k+1 - m get EDF scheduled
e For nondecreasing a(t), a(T) <a(t +T) - a(t) means a(t) is sublinear
® a,(t)is the availability function of the processor for tasks k+1, k+2..m

o Can’t decrease, availability can’t be removed
o Sublinear by critical timezone argument

e THEOREM 8: If a set of tasks are scheduled by the Isuperlinear
deadline driven scheduling algorithm on a processor
whose availability function is sublinear, then there is

no processor idle period to an overflow
sublinear __

———
-
——

Compare

e Mixed scheduling algorithm

U=3+1+%=983%.

e Fixed priority scheduling algorithm

U=%+%+%’=78-3%3

Compare

e This example strongly suggests that the bound is considerably less
restrictive for the mixed scheduling

e Algorithm than for the fixed priority rate-monotonic scheduling
algorithm. The mixed scheduling algorithm may thus be appropriate
for many applications.

Conclusion

e The most important and least defensible of these are (A1), that all
tasks have periodic requests, and (A4), that run-times are constant.

e A combination of the two scheduling algorithms appears to provide
most of the benetfits of the deadline driven scheduling algorithm.

Thank You'

nnnnnnnnnnnn

