
WITH THE RAPID EVOLUTION of submicron-

process technology, manufacturers are integrat-

ing increasing numbers of components on one

chip. A heterogeneous system on a chip (SOC)

such as that shown in Figure 1 might include one

or more programmable components—general-

purpose processor cores, digital signal processor

cores, or application-specific intellectual proper-

ty cores—as well as an analog front end, on-chip

memory, I/O devices, and other application-spe-

cific ICs. Unfortunately, design technologies have

fallen behind advances in processing technolo-

gy, especially in the context of complex (possibly

data-dominated) and very dynamic (partly non-

deterministic) applications. SOC designers need

a consistent system design technology that can

cope with such characteristics and with ever-

shortening time-to-market requirements. This

technology should efficiently map these dynam-

ic applications to the target realization while

meeting all real-time and other constraints.

Contemporary software (and hardware)

design practices for this target class can be

described only as ad hoc. The design trajecto-

ry starts by identifying the global specification

entities, called tasks or processes, that func-

tionally belong together. The second step is

manual hardware-software partitioning.

Because the software and hardware tasks are

implemented separately, system integration is

inevitable. This manual step embeds the system

software and synthesizes the interface hard-

ware that closes the gap between the software

and hardware components.

The main goal of system-software embedding

is to encapsulate the concurrent tasks in a con-

trol shell that handles task scheduling (software

scheduling in the restricted sense) and intertask

communication. Task scheduling is an error-

prone process that requires computer assistance

to consider the many interactions among con-

straints. Current ad hoc industrial design prac-

tices for reactive real-time systems are not very

retargetable from one design to another, and

adapting a design’s behavior to a changing envi-

ronment is difficult. Designers have used real-

time operating systems or kernels to solve some

scheduling problems. With either method,

designers satisfy timing constraints by tuning the

code to a specific processor and a particular I/O

configuration. This results in poor modularity

and limited retargetability, severely discourag-

ing exploitation of the codesign space, even if

the program is written in a high-level language.

Hence, a need exists for a systematic method-

ology and system-level tool support, including

concurrent-task management. The lack of con-
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current-task management often results in an iter-

ative and error-prone design cycle. At the top of

the design process should be a unified specifi-

cation model capable of representing system-

level abstractions such as process concurrency,

interprocess communication and synchroniza-

tion, and real-time constraints. Real-time Java

extensions are a possible example of such a

model, but many designers use C++ with an

underlying concurrent-task-oriented class library.

The main problem is to close the gap between

the specification of concurrent, communicating

processes and the heterogeneous processor tar-

get without compromising required real-time

performance and cost-effectiveness (especially

in terms of energy consumption).

In another publication, we described our

overall approach to the problems raised here—

a global task-concurrency management system

developed at IMEC (Belgium’s Interuniversity

Microelectronics Center).1 Now, we go into

more detail about one element—a task-sched-

uling method for concurrent and communi-

cating tasks on multiple processors. This

method combines design-time and runtime

scheduling and exploits the cost-performance

trade-off at runtime.

Energy-aware scheduling
When one or more processors must execute

a set of concurrent tasks, a predefined schedul-

ing algorithm must be applied to decide the task

execution order. For a multiprocessor system, an

assignment procedure must determine which

processor will execute each task. Task schedul-

ing in a task-concurrency-management context

has been investigated a great deal. Comprehen-

sive overviews of scheduling algorithms for real-

time systems are available.2,3 These algorithms

fall into two categories: dynamic and static

scheduling. For multiprocessors, when the appli-

cation uses a large amount of nondeterministic

behavior, dynamic scheduling has the flexibili-

ty to balance the computation load at runtime.

However, runtime overhead, especially compu-

tation time, may be excessive. For embedded

systems, cost factors, such as energy, also must

be considered. Dynamic voltage scheduling sig-

nificantly reduces system energy consumption

by decreasing the supply voltage. More detailed

discussion of state-of-the-art scheduling algo-

rithms is available.4

Manually designing concurrent real-time

embedded systems—embedded software in

particular—is difficult because of complex con-

sumer-producer relationships, various timing

constraints, the specification’s nondeterminism,

and, sometimes, the software’s tight interaction

with underlying hardware. Our approach

addresses these problems by preordering the

concurrent behavior as much as possible at

design time to minimize runtime overhead. At

the same time, the energy-aware runtime sched-

uler tries to minimize costs such as energy

consumption.

The example in Figure 2 (next page) illustrates

the basic idea of our method. (The “Terminolo-

gy” box defines its main concepts.) In Figure 2a,

two threads exist originally. The first two Pareto

curves, representing the cost-performance trade-

off for threads 1 and 2, are computed in the

design-time scheduling phase. The diamonds

indicate the operation points for a total of 200 sys-

tem cycles. When thread 3 enters the system

(from a Java applet, for example), the runtime

scheduler considers the Pareto curves of all three

threads to find a new optimal distribution of oper-

ating points for the system (Figure 2b). Assuming

a cost-performance trade-off can be explored at

design time, this runtime scheduling can be

applied to both data- and control-dominated

applications.
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As the first step in

our method, designers

specify an embedded

system at a gray-box

abstraction level in a

combined multitask-

graph (MTG) and con-

trol-dataflow graph

(CDFG) model.2 The

specification repre-

sents concurrency,

time constraints, and

interaction at either an

abstract or a more

detailed level, depend-

ing on what the

designer needs to

make good explo-

ration decisions later.

The purpose of

ta sk -concur rency

management is to

determine a cost-opti-

mal, constraint-driven

scheduling, allocation,

and assignment of var-

ious tasks to a set of

processors. Different

processors execute

the same thread node

at different speeds and

different costs (energy consumption). These dif-

ferences make it possible to explore the cost-per-

formance trade-off at the system level.

Task-concurrency management comprises

three steps. The first is concurrency extraction,

which produces a set of thread frames. Each

thread frame consists of many thread nodes, the

basic scheduling units. Second, design-time

scheduling is applied inside each thread frame

at compile time, including a processor assign-

ment decision in the case of multiple processing

elements. Finally, runtime scheduling is applied

to these thread frames on the given platform.

We separate task scheduling into two phas-

es for three reasons. First, this scheme better

optimizes the embedded software design.

Second, it gives the entire system more runtime

flexibility. Third, it reduces runtime computa-

tion complexity.
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Figure 2. The optimal system solution for a three-thread system: before the third thread

enters the system (a) and after the third thread enters the system (b).

Terminology

Nondeterminism: a state in which behaviors (such as latency or
execution time) can vary even with the same system input.
Interrupts and events can cause nondeterminism.

Pareto curve: a set of Pareto-optimal points. Each point represents
an optimal solution in at least one trade-off direction when all other
directions are fixed.

Thread: a group of thread frames; an independent piece of code
that performs a specific function.

Thread frame: a group of thread nodes. By definition, nondeter-
ministic behaviors can occur only at the boundary of thread
frames. The design-time scheduler works inside each thread
frame, whereas the runtime scheduler treats a thread frame as an
atomic scheduling unit.

Thread node: the atomic scheduling unit of our design-time sched-
uler; consists of control-dataflow graph (CDFG) nodes and arcs.



Figure 3 illustrates the two-phase scheduling

scheme. Given a thread frame, the design-time

scheduler explores different assignment and

schedule possibilities. Unlike other schedulers,

it gives not just one solution but a Pareto-opti-

mal set represented by a Pareto curve. Every

point in the set is better than any other solution

in at least one way. That is, it consumes the

least energy under a given time constraint or it

finishes earliest under a given energy con-

sumption constraint. Design-time scheduling

takes place at compile time, so the design-time

scheduler can exert as much computation

effort as necessary—provided that it produces a

better result, thus reducing the computation

effort of runtime scheduling later.

The runtime scheduler works at thread

frame granularity. When new thread frames

come into being, the runtime scheduler tries to

satisfy their time constraints and minimize sys-

tem energy consumption as well. The details

inside a thread frame, such as execution time

or each thread node’s data dependency,

remain invisible to the runtime scheduler,

reducing the thread frame’s complexity signif-

icantly. The design-time scheduler passes only

a few useful Pareto curve features to the run-

time scheduler, which uses them to find a rea-

sonable cycle budget distribution for all the

running thread frames. Thus, the runtime

scheduler is not a traditional dynamic sched-

uler because it must choose from available

options in addition to scheduling them.

Design-time scheduling phase
A thread frame’s behavior can be described

by task graphs such as Figure 4, in which each

node represents functions to be performed and

their performance requirements. Each edge

represents the data dependency between two

nodes. This task graph is a simplified subset of

the MTG-CDFG model, and each function is a

thread node in the MTG-CDFG. The task graph

represents part of a voice coder and will be

mapped to a dual-processor platform.5 The two

processors are almost the same, except that

P1’s working voltage is three times that of P2.

Table 1 shows each node’s performance on

the two processors in terms of execution time

and energy consumption. We have normalized

the execution time and energy consumption

numbers because the absolute value is not

important in this context. We explain the rela-

tions among working voltage, execution time,

and energy consumption later. Although we do

not show them here, we can add some time

constraints to the task graph; for instance, task

t4 must start n time units after task t0 ends. We

scheduled the thread frame nonpreemptively

because we have a priori knowledge of all the

nodes involved.

Any suitable static task-scheduling algo-

rithm for multiprocessors can be applied to
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Figure 3. The two-phase scheduling method. At design

time, the scheduler tries various scheduling and

assignment combinations for each thread frame. Here,

for example, the scheduler considers two solutions for

thread frame 1—one in which node 3 is scheduled

before node 2, and another in which node 3 is

scheduled after node 2. At runtime, the scheduler

chooses one solution for each thread frame and

combines them in the system schedule.
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such a thread frame, as long as it can produce

the cost-performance trade-off as a Pareto

curve. Here we use a genetic algorithm for

design-time scheduling because of its speed

and near-optimal solution. Figure 5 shows the

Pareto curve we derived with this algorithm for

the voice coder example. Among the Pareto-

optimal set of points, only those chosen by the

design-time scheduler as typical cases (indi-

cated by triangles) are passed to the runtime

scheduler. The more points passed, the better

the runtime scheduler’s results, but at the cost

of greater runtime computation complexity

and overhead.

Genetic algorithms maintain a pool of solu-

tions that evolve in parallel over time. Genetic

operators are applied to the solutions in the cur-

rent pool to improve them. The lowest-quality

solutions are then removed from the pool.6 A

cost is a variable—in our case, energy con-

sumption—that a genetic algorithm attempts to

minimize. Compared to optimal algorithms

such as mixed-integer linear programming

(MILP) or exhaustive search, genetic algorithms

cannot promise an optimal result. In most

cases, however, with a set of finely tuned para-

meters, genetic algorithms can give a good

enough result because they can escape local

optimal points and communicate information

among solutions. For nontrivial-size problems,

optimal algorithms usually aren’t applicable

because they require excessive computing

time, but genetic algorithms give good results

in reasonable time.

We used the Parallel Genetic Algorithm

(PGA) library7 to implement our genetic algo-

rithm because it gave us the flexibility and sim-

plicity to design our own algorithm. The

algorithm takes a deadline as input and tries to

find a schedule that consumes minimal energy

within that deadline.

In a genetic algorithm, a chromosome, or

string, represents every solution. Three opera-

tors cause all changes to strings: reproduction

makes a copy of a solution, mutation random-

ly changes part of a solution’s description, and

crossover swaps portions of different solutions.

Crossover gives a genetic algorithm its strength

by letting different solutions share information

with one another. By using these three opera-

tors repeatedly, a genetic algorithm generates

children from the previous generation. Then it

uses a cost function to evaluate solutions, and

only solutions with good health survive. This

evolution continues until a satisfactory solution

is found or the iterations have exceeded a pre-

defined number.

To solve the processor-assignment and task-

scheduling problems simultaneously, the algo-

rithm represents each thread node ti by two

genes in the string8—one for the thread node’s

allocation destination A(ti), and another for its

priority number P(ti). The priority number

determines the thread node execution order.

To represent a valid schedule, a string must

take the precedence constraints into account.

Therefore, after mutation and crossover, the

algorithm must repair strings that don’t respect

the precedence constraints because of these
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Table 1. Thread node performance.

Execution time (normalized)

Processor t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

P1 3 10 12 13 16 13 15 30 20 15

P2 9 30 36 39 48 39 45 90 60 45

Energy consumption (normalized)

Processor t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

P1 27 90 108 117 144 117 135 270 180 135

P2 3 10 12 13 16 13 15 30 20 15
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Figure 5. Pareto curve for design-time scheduling of
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two operators’ random behavior.

Before the evaluation step, the algorithm

schedules the thread nodes according to their

allocation destinations and priority numbers. A

node with a higher priority number is sched-

uled earlier, and it starts only when its proces-

sor is free and all its precedents have finished.

After scheduling, the algorithm computes the

entire task graph execution time. If it exceeds

the desired deadline, a penalty term is added

to the cost function. This penalty should be

large enough to distinguish valid and invalid

solutions, but it should not be too large.

Therefore, invalid solutions that contain por-

tions consisting of good genes can still survive

in the population. These good portions might

transfer to a valid solution in the next genera-

tion, but this is only a possibility and is not con-

trolled by the algorithm (this randomness partly

accounts for the advantage of genetic algo-

rithms). Even a well-designed algorithm can

miss this possibility.

Runtime scheduling phase
Design-time scheduling provides a series of

possible allocation and scheduling options

inside a thread frame, but only the runtime

scheduler decides which option is used. Each

option has a thread node assignment and

scheduling pattern computed by the design-

time scheduler. The runtime scheduler 

considers computation requests from all the

ready-to-run thread frames and selects an

option for each thread frame so that the entire

system’s combined energy consumption is opti-

mal. Working with the thread frame as its oper-

ational unit, the runtime scheduler considers

the timing constraints among thread frames,

such as data dependency or execution order.

In Table 2, for example, each of two thread

frames has three options that were identified by

the design-time scheduler. These options cor-

respond to different cycle budget and energy

cost combinations. At runtime, if the total cycle

budget for the two thread frames is 100, the

energy-optimal schedule is option 1 for thread

frame 1 and option 3 for thread frame 2. If the

cycle budget is 140, however, the optimal

schedule becomes option 2 for thread frame 1

and option 3 for thread frame 2. Figure 6

depicts both cases. Complex trade-offs are

involved in distributing the total execution peri-

od over the different thread frames.

We used a mixed-integer linear program-

ming algorithm to model the runtime schedul-

ing problem. Although it is too time-consuming

to be used as an online algorithm, the MILP

algorithm gave us a good idea of how well our

method would work. We are seeking a heuris-

tic replacement in our ongoing research.

The MILP runtime scheduling algorithm uses

the following variables:

� δi,j = 1 if the jth option of thread frame i is

used; δi,j = 0 otherwise.

� Ci,j is the execution time of thread frame i,

option j.

� Ei,j is the energy consumption of thread

frame i, option j.

For n thread frames, our aim is to minimize

all the thread frames’ energy consumption.

Therefore, we define the object function as

For each thread frame, the runtime sched-

uler chooses one and only one Pareto option.

For this choice, the constraints are

Minimize: Ei j i j

i j

, ,

,

δ∑
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Table 2. Two thread frames with options for runtime scheduling.

Trade-off                   Thread frame 1          Thread frame 2      

factors Opt. 1 Opt. 2 Opt. 3 Opt. 1 Opt. 2 Opt. 3

Cycle budget 20 60 100 40 60 80

Energy cost 110 80 50 90 60 50

0 20 100

0 60 140

Thread frame 1
Option 1

Thread frame 2
Option 3

Thread frame 1
Option 2

Thread frame 2
Option 3

Figure 6. Runtime scheduling of two thread frames.



Also, the total execution time should be less

than the total available time units:

So far in our work, we have focused on mutu-

ally exclusive thread frames. When one thread

frame executes, it occupies all the processors

and other frames cannot use them, even

though some processors may be idle at the

time. This is not a limitation in practice, how-

ever, because thread frames consist of many

thread nodes, which can be effectively distrib-

uted over the processors to avoid nearly all

potential idle time.

Experiments with randomly
generated task graphs

We first applied our two-phase scheduling

procedure on some randomly generated exam-

ples to test its effectiveness. We generated these

pseudorandom examples with the Task Graphs

for Free (TGFF) system.9

TGFF-generated task graphs
We generated five task graphs, each of

which can be considered a thread frame con-

taining a different number of thread nodes.

These thread frames can comprise a higher-

level thread, as shown in Figure 7, or they can

be independent of each other.

To the runtime scheduler, the thread frame

is an unsplittable block, but because of the sys-

tem’s dynamic behavior, a thread frame can

appear or not appear (that is, be part of the sys-

tem or not be part of the system) during the cur-

rent iteration. This is a good simulation of

dynamic mechanisms (such as dynamic cre-

ation and release) caused by the presence of

events and semaphores. Dynamic behaviors

are common in advanced communication or

multimedia systems. However, most current

scheduling methods model them poorly, and

they are considered only in worst-case scenar-

ios. In our scheduling procedure, we restrict

these nondeterministic behaviors to the thread

frame boundary; that is, nondeterminism can

occur only at the boundary. Whenever nonde-

terminism triggers a thread frame, all the nodes

inside that thread frame are to be executed.

Table 3 lists the basic characteristics of the

TGFF-generated task graphs. It also gives the nor-

malized execution time and energy consump-

tion for executing the entire task graph on a

single processor with a 3-V working voltage (Vh).

Processor architecture
In this and the following experiments, we

assumed that the system uses two homoge-

neous processors running in parallel at two dif-

ferent voltages (Vh and Vl). This architecture

differs from the dynamically variable voltage sin-

gle-processor architecture and the unique-volt-

age multiple-processor architecture. Our

architecture selection is reasonable: If only one

fixed-voltage processor is present, it must be fast

  

Ci j i j

i j

, ,  δ ≤∑ time units

,

δ i j

j

i n, ,  = ≤∑ 1 for every 
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enough to handle heavy load bursts, and a fast

processor is typically power greedy. However,

heavy load bursts occur only occasionally. At

other times, all the tasks execute on that fast,

power-greedy processor, although it need not

be so fast. Even with modern power control

techniques that shut down the fast processor

during idle times, it still consumes more energy

than two processors working at different volt-

ages. Unlike the normal multiprocessor archi-

tecture of homogeneous processors, our system

consists of processors that provide different cost-

performance trade-offs. But because all the

processors are the same type, code can easily

be assigned to any of them dynamically.

The architecture we chose has several advan-

tages over the dynamically variable voltage sin-

gle-processor architecture. First, a multiprocessor

can exploit an application’s internal parallelism,

and the trend is to integrate multiple processors

on a single chip. Second, the combination of

multiprocessor and discrete-level working volt-

age can provide a similar energy consumption

savings as a processor with a continuously vari-

able working voltage.10 Third, our architecture

avoids an additional voltage-tuning circuit and

runtime voltage-swapping overhead.

In well-designed CMOS digital circuits, the

dominant energy consumption term is the

switching component,11 which is

and the maximal frequency is

In our experiment, we assumed that one

processor works at 1 V, and the other works at 3

V; thus, the high-voltage processor consumes

roughly nine times as much energy as the low-

voltage one. To simplify the experiment, we

assumed the high-voltage processor works three

times as fast as the low-voltage one. These

assumptions don’t impair our method’s correct-

ness in cases where the relations among energy,

speed, and voltage scaling are different. Other

reasonable assumptions were that the processor

powers down automatically when it is idle, and

that no context-switch overhead is considered.

Results
For each of the five task graphs, our genetic

algorithm created a list of Pareto options and

selected eight points from the list to represent the

design-time scheduling decision for that task

graph. To simulate the system’s dynamic behav-

ior, we randomly created dynamic patterns for

10 periods; the patterns determine whether or

not a task graph will execute in each period.

Table 4 (next page) shows the dynamic patterns.

We compared our scheduling result with

several cases, assuming a period of 5,000 or

4,000 time units. First, we considered a one-volt-

age processor. Because a low-voltage proces-

sor cannot execute such a heavy load alone,

we considered only the high-voltage case.

Next, we assumed a system with the same

dual-processor architecture as ours. But unlike

our dynamic working-point selection, its work-

ing point is fixed at design time. That is, each

task graph can work only under one Pareto

option; this point is fixed at compilation and is

not movable at runtime.

We can divide this case into two subcases,

depending on how we determine the static

working point. In the first subcase, we divide

the entire period evenly among the five task

f
T

C W L V V

C V
max

/
= =

( ) −( )1
2

d

ox dd Th

L dd

µ

energy per transition total clk

effective dd

=
=

P f

C V

/
2

53September–October 2001

Table 3. TGFF-generated task graphs.

Task Task Task Task Task 

Parameter graph 0 graph 1 graph 2 graph 3 graph 4

Number of nodes 8 47 12 29 21

Number of arcs 9 59 13 35 26

Normalized execution time (Vh) 284 1,257 371 826 661

Normalized energy consumption (Vh) 2,228 12,114 3,316 8,147 6,717



graphs. This is an unwise decision because the

five task graphs differ significantly in size and

computing resource requirements. For exam-

ple, the system becomes unschedulable when

the period is 4,000 time units because TG1, the

largest task graph, cannot fit in the 800 time

units assigned to it.

In the second subcase, we tune the system to

the most critical load situation. In other words,

we use the working points optimized for period

1 for all 10 periods. By doing that, we can guar-

antee that the system is still schedulable even

under the heaviest load. This is exactly the way

most schedulers, whether static or dynamic,

behave. A real-time operating system also bases

its scheduling on such worst-case analysis.

Table 5 shows our results. The second col-

umn gives the energy consumed if all thread

frames execute on one high-working-voltage

processor. The following columns list the per-

centage improvements over the one-processor

architecture for the evenly divided, critically

tuned, and dynamically selected cases.

These results show that our two-processor

architecture significantly reduces energy con-

sumption compared with the one-processor plat-

form. When the period is 5,000 time units, even a

simple schedule that divides the available com-

puting resources evenly among the task graphs

can reduce energy consumption 48%. Our two-

phase scheduling method defeats the other two

methods with a total energy savings of up to 72%.

Notice that the more the worst case differs from

the average case, the more energy we can save.

And that is typically true for dynamic multime-

dia applications such as MPEG-4.

ADSL experiments
To further assess our approach, we applied

it to an industrial-strength application, an asyn-

chronous digital subscriber line modem.

System architecture
Figure 8 shows the ADSL modem’s system

architecture. The design consists of hardware

components and embedded software with real-
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Table 4. Randomly generated dynamic patterns of

task graph execution.

Period Task graph pattern

0 TG1 TG3 TG4

1 TG0 TG1 TG2 TG3 TG4

2 TG1 TG2 TG3 TG4

3 TG0 TG1

4 TG0 TG1 TG2

5 TG3 TG4

6 TG2 TG4

7 TG0 TG1 TG4

8 TG0 TG2 TG3

9 TG1 TG2

Table 5. Results on randomly generated task graphs.

               Improvement over one-processor architecture (%)                

             Period = 5,000 time units           Period = 4,000 time units

One-processor (Vh) energy Evenly Critically Dynamically Critically Dynamically

Period consumption (normalized) divided tuned selected tuned selected

0 26,978 42 53 64 46 54

1 32,522 49 52 52 43 43

2 30,294 46 54 57 44 47

3 14,342 41 44 89 44 79

4 17,658 49 47 80 41 68

5 14,864 49 57 89 45 82

6 10,033 61 68 89 44 89

7 21,059 45 52 73 47 62

8 13,691 62 48 89 34 81

9 15,430 43 51 89 43 77

Total 196,871 48 52 72 44 63



time constraints. The digital hardware includes

two parallel data paths for the receiver and

transmitter. The receiver data path consists of

a front end, a fast Fourier transformer, a quad-

rature amplitude modulation (QAM) demap-

per, an error and noise monitor, and an error

correction decoder. The transmitter data path

has a similar structure. Both data paths have

hardware timing controllers (DMT symbol tim-

ing units). These DSTUs activate the processors

at the correct moments to appropriately

process discrete multitone (DMT) symbols.

Next to the hardware components, an

Advanced RISC (reduced instruction-set com-

puting) Machine (ARM) core processor runs the

embedded software that programs and config-

ures the hardware. The software’s control part

configures the hardware to execute the initial-

ization sequence, and its algorithmic part exe-

cutes DSP functionality not implemented in

hardware. The control part is a reactive system,

reacting to events generated by the monitor and

other hardware modules, and meeting real-time

constraints imposed by the ADSL standard.

In our experiment, we focused on the system

consisting of the DSTU and software modules

(the shaded modules in Figure 8). The DSTU

controllers generate two thread nodes (one

from the transmitter and one from the receiver)

every symbol period (230 µs), and the applied

deadline equals the period. The nodes from one

or more periods comprise one thread frame.

The software module generates another thread

frame dynamically when the corresponding

event has been triggered. The deadline for the

software thread frame is derived from the ADSL

standard. The software is executed serially; that

is, no new software thread frame is generated

while another is being processed.

Assumptions
The DSTU thread nodes work at a rigid 230-µs

symbol period, and each node requires 64 µs of

computation time on a 10-MHz processor. The

software thread is a sequence of sporadic tasks,

which are released by the hardware and must be

completed by their deadlines. The deadlines

and execution times are listed in Table 6 (next

page). We extracted the deadlines from the

ADSL standard’s initialization sequence.
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Figure 8. ADSL modem schematic.



Runtime scheduling
We used two threads in this experiment; one

consists of the two DSTUs, and the other is the

software controller. For the software thread, we

dynamically generated a thread frame that has

only one thread node. For the timer thread, we

generated two thread nodes every symbol peri-

od, and a timer thread frame can cover the

thread nodes from one, two, or even more sym-

bol periods. The more symbol periods a timer

thread frame covers, the lower the processor

utility ratio, owing to the increasing intra-thread-

frame idle time.

There is another difference from the previous

experiment. The software thread’s execution

time and deadline, varying from tens to hundreds

of symbol periods, are far longer than the timer

thread frame’s time granularity, which is only a

few symbol periods. Therefore, one software

thread frame must be scheduled simultaneously

with many timer thread frames, and they inter-

sect the software thread frame into many pieces.

Accordingly, we changed the runtime schedul-

ing method a little.

Figure 9 illustrates the method we used for

the ADSL modem. To formalize the problem,

suppose we have n design-time scheduling

options for one timer thread frame that covers k

symbol periods. For each option i, CT,i and CS,i

(i = 1, 2, …, n) represent the time that the sys-

tem can use to execute the timer and software

thread, respectively, in the k symbol periods.

ET,i and ES,i (i = 1, 2, …, n) represent the energy

consumption for the timer and software in that

interval. The runtime scheduler works at the

granularity of k symbols. Also suppose that the

coming software thread node’s execution time

is C and the deadline is D (in symbols). We

have n possible choices for a timer thread

frame, and we let li (i = 1, 2, …, n) represent the

number of timer thread frames for each sched-

uling choice. Therefore, to find a feasible

schedule, we must find a set of lis that can pro-

vide enough execution time for that software

thread node before the deadline. To find an

optimal energy-cost schedule, we must choose

the one with minimal energy consumption

among these feasible schedules.

We can restate the runtime scheduling

method as an MILP problem:

(1)

(2)

(3)

Equation 1 is the constraint on software exe-

cution time, equation 2 makes sure the soft-

ware finishes executing before the deadline,

and equation 3 is the optimizing objective

function. By solving that MILP problem, we

obtain an energy-optimal, deadline-satisfying

schedule.
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Table 6. Software task deadlines and execution times.

Task Deadline (symbol) Execution time at 10 MHz (ms)

4 128 3

5 96 3

6 128 3

7 128 21

8 768 240

9 256 9

10 128 60

11 132 12

12 16 3

14 64 21

15 16 3

16 2,048 864

17 64 18

18 576 285

Option 1

Option 1

Option 1

CS, 1, CT, 1
ES, 1, ET, 1

I1

Option 2

Option 2

Option 2

CS, 2, CT, 2
ES, 2, ET, 2

I2

Option n

Option n

Option n

CS, n, CT, n
ES, n, ET, n

In

Figure 9. Runtime scheduling of the ADSL modem.



Results and analysis
Our experiment considered five cases. Case

1 was scheduled at the thread-node level; thus,

it exhibits no intra-thread-frame idle time. Cases

2, 3, 4, and 5 were scheduled at the thread-

frame level, and they had one, two, three, and

four symbols, respectively, in one timer thread

frame. For a fixed number of thread nodes,

more thread nodes in one thread frame means

fewer thread frames and less runtime effort for

the runtime scheduler—at the cost of losing

some optimization possibilities. This is obvious

in Table 7, which shows the normalized energy

costs for the five cases.

While the timer thread frame’s granularity

increases, the energy consumption usually

increases too. If only one processor is working

at voltage Vh, the normalized energy consump-

tion is 51.2. So, compared with the one-proces-

sor architecture, our architecture achieves an

energy savings of about 20% even at the largest

thread frame granularity in case 5. We cannot

achieve the same high energy reduction ratio

as in the previous experiment because of the

highly restricted deadlines, especially for the

big tasks 8, 16, and 18. The energy-saving per-

centage also varies with the system load. The

heavier the load, the less the savings percent-

age because the high-voltage processor does

more work. If all the tasks are assigned to the

high-voltage processor, the savings are reduced

to those of the one-processor case.

The results of the ADSL experiment are

promising. First, we obtained energy savings of

20% to 40%. Second, we changed the granular-

ity of a thread frame and demonstrated that a

trade-off exists between dynamic-scheduling

overhead and overall scheduling optimality.

OUR TWO-STEP TASK-SCHEDULING method

increases design flexibility and reduces design

time for multiprocessor SOCs, while minimiz-

ing global system energy costs. Our future work

includes applying the method to additional

realistic applications and integrating it into

operating systems. �
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