
JOURNAL OF ELECTRONIC TESTING: Theory and Applications 18, 351–356, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Reliability Properties Assessment at System Level: A Co-Design Framework

C. BOLCHINI, L. POMANTE, F. SALICE AND D. SCIUTO
Dipartimento Elettronica e Informazione, Politecnico di Milano, Italy

bolchini@elet.polimi.it

pomante@elet.polimi.it

salice@elet.polimi.it

sciuto@elet.polimi.it

Received June 14, 2001; Revised October 24, 2001

Editors: D. Nikolos, J.P. Hayes, M. Nicolaidis and C. Metra

Abstract. This paper introduces an enhanced hardware/software co-design framework allowing the designer to
introduce hardware fault detection properties in the system under consideration. By considering reliability require-
ments at system level, within a hw/sw co-design flow, it is possible to evaluate overheads and benefits of different
solutions. System specification, hardware and software concurrent fault detection design methodologies and hw/sw
partitioning are the three key factors taken into account. The paper discusses these aspects providing a complete
overview of the reliability co-design project.

Keywords: hardware fault detection, hw/sw co-design, partitioning, system specification

1. Introduction

The adoption of Hardware/Software Co-Design metho-
dologies allows the designer to explore the system
space for identifying the most promising solution
according to the given goals and constraints. By
acting at system level, the user can explore the
design space in the early in the design process coping
with the increasing complexity of the systems to be
implemented. On the other hand, the introduction of
reliability properties is postponed to lower abstraction
levels where a set of traditional techniques is available
for both combinational and sequential devices [1, 2].
Yet, the introduction of reliability requirements after
the identification of the hardware and software compo-
nents may have a strong impact on the overall system
performance. Therefore, to avoid the violation of the
system constraints only local modifications can be
introduced. The proposed reliability co-design project
aims at introducing hardware fault detection properties
in the specification at system level, so that reliability

issues can be taken into account to drive the binding
of functionalities to either hardware or software.

The goal of this paper is to present the rele-
vant aspects of the reliability co-design project, from
the specification level to the system partitioning, by
providing a set of design methodologies to deal with the
system reliability constraints, defined at the specifica-
tion level. The paper is organized as follows. Section 2
introduces the co-design framework, briefly presenting
all the aspects of the environment. The design method-
ologies and the metrics to evaluate them are presented
in Section 3. Section 4 then presents the proposed
hw/sw partitioning methodology.

2. The Reliability Co-Design Flow

The proposed approach starts from a system specifica-
tion. Let us define a Section as a subset of the system
specification. The whole system is a particular section.
A Critical Section is a section where the reliability



352 Bolchini et al.

Fig. 1. The enhancement of a classical co-design flow to introduce reliability properties.

property is required. For each section it is necessary to
identify the Observable Results Set, i.e. the set of data
that the section outputs. If the considered section is a
critical one then the observable result set is called Crit-
ical Result Set (or Critical Results). A Reliable Section
is a critical section that propagates either error free crit-
ical results or faulty critical results associated with an
error indication. For some methodologies the reliability
properties are liable to a certain degree of uncertainty;
these cases are identified as almost reliable.

The design of a critical section may require that the
reliability property should be extended to other sections
connected to it in order to provide reliable inputs to the
critical section. Therefore, we define two properties as-
sociated with a critical section. The Local Reliability
property of a critical section specifies that the reliability
constraints involve only the related critical section. The
Global Reliability property of a critical section spec-
ifies that the reliability constraints involve the related
sections and recursively all the connected sections.

The reference architecture consists of the processor
block (either general purpose or DSP), which executes
software processes, memory and a set of co-processors
(ASIC or FPGA) implementing hardware functionali-
ties, if required. The adopted fault model is the single
functional failure, where any number of physical faults
causes a functional module to perform incorrectly. Soft-
ware faults, i.e. bugs, are not considered in this work,
depending on the correctness of the implementation of
the code with respect to the specification; similarly, we
do not guarantee the correctness of the device imple-
mentation with respect to the initial specification. In
the presented methodology, software redundancy tech-
niques are adopted to detect faults in the hardware, not
in the software. The functional failure module thus in-
cludes the main processor, the co-processors, the main

memory and the communication channels, the system
bus and the dedicated channels for hw/hw module com-
munication. Such a single failure model is based on a
commonly adopted hypothesis: failure is detected be-
fore another module fails.

Fig. 1 shows the proposed reliable system design
framework. A co-design flow taking into account
reliability properties requires the addition of three main
components to a standard co-design flow: (1) a system
specification allowing the user to explicit reliability
constraints while adopting a co-design approach; (2)
the definition of device implementation methodologies
fulfilling the designer requirements in terms of func-
tionality, performance, costs and reliability; (3) a set
of metrics for system partitioning, that include, in ad-
dition to costs and performance, also the evaluation of
the co-design properties.

3. Metrics and Classes of Methodologies

The reliability project has investigated design method-
ologies for guaranteeing fault detection capabilities
based on the adoption of redundancy strategies. Tempo-
ral, architectural, and information redundancy method-
ologies are usually adopted, preferring the latter two
approaches since they provide a better coverage and a
prompt detection of failures. These aspects are signifi-
cant especially when working in a critical applications
environment.

A suite of methodologies has been selected as
a viable solution to provide the desired reliability,
evaluating benefits (in terms of detection latency,
fault coverage, system performance) and costs ([8]).
Each of the provided solutions has been characterized
with respect to these four significant parameters,



Reliability Properties Assessment at System Level 353

constituting the elements of the defined metrics
to compare different possible solutions. The first
parameter is the detection latency, that is the time
between the instant a fault causes an observable
error and the instant the error is detected; this aspect
depends on the fact that the methodology monitors the
results as soon as they are produced (no latency), or
that other tasks are performed before the monitoring
takes place (latency). The second parameter is the fault
coverage, i.e. the percentage of detected faults with
respect to the complete fault set. The third parameter
is the performance degradation, which represents the
overhead (i.e., execution time increase) caused by
the components added to implement self-checking
capabilities with respect to the original system. The
last parameter is the Cost of a given solution, defined
as the overhead with respect to the original system in
terms of implementation cost and design cost. The goal
is to weight all the elements contributing to the costs of
the designed solutions. All these elements contribute to
the metrics adopted for comparing different solutions
to the reliability problem in the co-design flow.

The methodologies we analysed and developed can
be classified first on the basis of the functionality per-
formed and controlled (application execution, com-
munication), then on the partitions (HW or SW) and
finally on the Concurrent Error Detection (CED) tech-
niques adopted for guaranteeing the reliability proper-
ties. Let us first consider reliability of the application
execution.

The design approach considers as the basic element
any functionality (or part of it) that the system must pro-
vide; with the term nominal we will denote the original
functional system elements. The term checking will be
used to identify the redundant elements designed to
provide fault detection capabilities. The checker is the
functional element for comparing the elaboration of
the nominal and checking elements in order to detect
a mismatching behavior due to failures. Each one of
these three elements (nominal, checking and checker)
can be independently implemented in hardware or in
software, leading to several classes of solutions.

A preliminary analysis of the alternatives led to con-
sider half of them (see Fig. 2), discarding those with
an intrinsic inefficiency. For instance, we discarded the
solution with the nominal architecture implemented in
hardware and controlled by a software realization of the
same functionality, since the checking architecture will
not perform as fast as the nominal architecture thus pro-
viding an inefficient detection capability, either slowing

Fig. 2. Significant combinations of the hardware-software system
parts.

down the original architecture or detecting faults with
a high latency or at high costs for storing data between
the two implementations.

By analysing the identified designs, which differ for
the adopted concurrent error detection techniques, we
selected those with the best trade-off in terms of cost
and effectiveness. Four solutions have been considered:

• Nominal SW, checker SW, and checking SW, where
the code dedicated to error detection tasks (both
checking and checker) is executed either by the sys-
tem processor or by a dedicated one. The selected ap-
proaches are Self-Checking Sw [12], Assertions [3],
Dual-Processor [8], and VLIW [8, 10];

• Nominal SW, checker HW, and checking SW, where
the checking functionality is implemented in soft-
ware while the checker is hardware. Three different
CED techniques have been identified: Interface for
Functional Redundancy Check [5], DMA Checker
[8], and VLIW with Hw checker [8];

• Nominal SW, checker HW, and checking HW,
where hardware implementations of CED capabili-
ties check critical sections implemented in software.
The best solution identified is based on a Dynami-
cally configurable checker [8].

• Nominal HW, checker HW, and checking HW, where
the CED capabilities for modules implemented in
hardware are also implemented in hardware. The se-
lected techniques are: Duplication [8], TSC schedul-
ing [6], and TSC devices [9].

Having defined the design methodologies belonging
to the space of solutions analysed, it is necessary to
provide reliability of the communications. More pre-
cisely, it is necessary to guarantee that any fault on
communication lines is detected. Either hardware re-
dundancy (lines duplication) or information redun-
dancy (data encoding) can be adopted, independently
of the communication channels being used. The check-
ing functionality can be implemented in hardware or
software. We explored the different possibilities (com-
munications between procedures implemented in hard-
ware, or between different kinds of procedures, hw/sw,



354 Bolchini et al.

sw/sw, etc.) analysing costs and benefits. The best cost-
effectiveness is obtained by keeping encoded data in
memory, letting the CPU work only with unencoded
data, while pairs of hw sections communicate by means
of dedicated lines (duplicated, encoded, or a combina-
tion of both) [8].

4. System Partitioning

Once the system is specified and the critical sections
are tagged, the first-level partitioning task identifies the
solution space or part of it. This process is extremely
complex and time consuming, due to the large number
of possible alternatives and to the fact that, although
heuristics and tuned estimation functions have been
defined, it is the final co-simulation of the suggested
system implementation that confirms the viability of
the identified solution.

Given these premises, the reliability aspects add a
significant number of parameters to the partitioning
step for the selection of the final implementation, mak-
ing this task too complex. In order to cope with the
complexity of the partitioning step when reliability
goals are also included, a two-level approach is here
proposed. A first partitioning is performed which takes
into account only the classical aspects and cost func-
tions, meeting the usually stringent time constraints [7].

Fig. 3. The enhancement of a classical co-design partitioning to introduce reliability properties.

Given one solution, a second-level partitioning consid-
ers the additional reliability constraints, analyses the
possible approaches, within the set of defined method-
ologies, which fulfil them and provides the solution
that has the best trade-off (if it exists). Fig. 3 presents
this two-level partitioning where a transparent back-
ground identifies the classical elements of a co-design
flow, whereas the shaded areas point out the elements
related to the reliability goals. It is worth noting that if
the given solution has no possible allocation of critical
sections fulfilling all reliability constraints either an-
other solution has to be chosen from the design space
or, if no solution exists fulfilling both classical and
reliability constraints, the first level partitioning has to
be repeated with a relaxed set of constraints and direc-
tives. The second-level partitioning, aimed at providing
an acceptable allocation of hardware and software sec-
tions to the necessary tasks, must fulfil the initial, classi-
cal constraints considered by the first-level partitioning
and has to meet the reliability constraints. These relia-
bility constraints, explicitly stated in the system speci-
fication, refer to the strength of reliability required by
each section, that may be hard or soft. A hard reliability
requirement imposes that 100% fault coverage must be
guaranteed for the section under consideration. A soft
reliability requirement relaxes the constraint, to spec-
ify that any fault coverage is acceptable. This strength
of the reliability enforcement is the main constraint



Reliability Properties Assessment at System Level 355

guiding the second-level partitioning; the parameters
considered in the cost function for selecting among
the available CED methodologies are the fault cover-
age, detection latency, area overhead and performance
degradation.

All the constraints associated with these parameters
are rather qualitative than quantitative, influenced by
the functionality of the specific section and its imple-
mentation solution. The definition of the quantitative
aspect is included in the cost function, and it is used
when different solutions have to be compared.

In the second partitioning step, each task of the
selected solution is associated with the reliability
methodology that best fits the designer’s expectations;
the key element of the decisional process is constituted
by the set of directives defined on each task (latency,
area, performance degradation and constraint strength).
However, the set of solutions locally identified does
not typically represent the solution of the problem as
a whole. For instance, if a task requires the asser-
tion method (weak reliability constraint) while another
task is associated with IFRC (strong reliability require-
ment), the first method is overlapped by the second one
so that the first task is checked twice. Furthermore, the
first method is covered by the second one, thus making
the application of assertions a useless cost overhead. As
a consequence of the methodological aspects concern-
ing reliability, the partitioning problem consists of both
(i) defining a criterion for the identification of the rela-
tion between the constrained task and the most suitable
CED method and (ii) optimising the result produced by
the assignment criteria with respect to the global solu-
tion. The optimisation task has to be applied concur-
rently with the method identification since the effects
of dominance reduce the solution space.

4.1. Reliability Model Identification

The criterion for the identification of the most suitable
CED method uses the set of directives and constraints
that have been applied to the system specification. Fault
coverage, detection latency, area overhead and perfor-
mance degradation can identify a qualitative or quanti-
tative description of the system components properties
for CED characterizations in relation with a designer
specification. In particular, for all of them it is possible
to identify a correct evaluation of the parameter (e.g., 0
performance degradation)—hard—or a qualitative es-
timation (minimum, medium or maximum)—soft—. A

fuzzy tag identifies the required effort for the identifi-
cation of anomalies during the operational time of the
device (e.g. in a system section considered marginally
critical). Conversely, a crisp tag (100% fault coverage,
0 detection latency) represents a hard system con-
straint that has to be enforced at any cost. Note that,
for soft requirements, a maximum requirement in-
cludes methodologies belonging to the medium or min-
imum partitions; and a medium requirement includes
minimum.

By taking into account the above expressed issues
and considering the intrinsic properties of the method-
ologies that can be applied, it is reasonable to observe
that crisp tags force a partition on the methodologies
set. Furthermore, since the applicability of a methodol-
ogy to a specific task depends on its hardware/software
characteristic, a further partition is induced. In particu-
lar, 100% fault coverage induces the partitions πhard fc

and πsoft fc, 0 detection latency induces the partitions
πhard dl and πsoft dl while, 0 performance degradation
induces the partition πhard pd; πsoft pd. In turn, such
partitions are subdivided in relation with hardware and
software aspects.

The analysis of the different properties of the se-
lected design methodologies has led to the definition
of partitions related to the hardware/software (πhw
and πsw), the three parameters for classifying design
methodologies (i.e. πswfc or πhwfc for fault coverage)
and, finally, the hardness and softness of the tag (i.e.
πhard fc and πsoft fc). As a result, a complete parti-
tions have been identified, with respect to the selected
suite of CED design methodologies [8].

The second level partitioning takes into account the
hard parameters first to select suitable CED techniques,
and uses the soft parameters to select among them.
More precisely, for each critical task, on the basis of its
allocation in hardware or in software, the π partitions
fulfilling the hard/soft requirements are selected and the
intersections of their subsets (the CED techniques) pro-
vide the set of suitable techniques. Furthermore, hard
requirements are fully met by all methodologies in the
πhard so all methodologies belonging to the partition
are selected. On the other hand, soft requirements cover
a spectrum of possibilities with respect to the solutions:
more precisely, methodologies belonging to the πsoft

can achieve either a medium or high degradation. As
a consequence, a first screening of the methodologies
in the πsoft partition can reject some solutions on the
basis of the specified soft requirement (medium, mini-
mum, maximum).



356 Bolchini et al.

The global solution determining for each task the
CED technique actually adopted is pursued by means
of a process of solution extraction and simulation, to
verify that the constraints of the first partitioning are
still met. This process takes into account the fact that
there are techniques with a global effect which pre-
vail over those with a local impact. As an optimisation
policy, the final solution does not include overlapped
methods in order to achieve a significant efficiency.

5. Conclusion

This paper introduced different aspects of a hw/sw co-
design flow supporting the introduction of concurrent
hardware fault detection properties in the system being
designed. The user, by means of ad-hoc tags and di-
rectives those sections (tasks) of the system, specifies
the need to be reliable so that they either perform cor-
rectly or an error signal is raised. A set of hardware and
software design methodologies have been studied, both
traditional and innovative, to provide the desired fault
detection capabilities. A library of possible approaches
has been identified so that, during the partitioning step,
the allocation of the nominal sections to hardware or
software is followed by the allocation of the reliability
sections in the fulfilment of the user’s constraints and
fault detection requirement. This design flow has been
implemented in the TOSCA co-design environment,
considering OCCAM II and SystemC as specification
languages. Different real-world embedded systems ex-
amples have been analysed, to prove the effectiveness
of the proposed approach [4].

References

1. N.K. Jha and Wang, “Design and Synthesis of Self-Checking
VLSI Circuits,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 12, no. 6, pp. 879–887, June 1993.

2. D.P. Siewiorek and R.S. Swarz, The Theory and Practice of
Reliable System Design, Digital Press, 1982.

3. Z. Alkhalifa, V.S.S. Nair, and J.A. Abraham, “Design and Eval-
uation of System-Level Checks for On-Line Control Flow Er-
ror Detection,” IEEE Trans. Parallel and Distributed System,
vol. 10, no. 6, pp. 627–641, June 1999.

4. C. Bolchini, L. Pomante, F. Salice, and D. Sciuto “Reliability
Properties Assessment At System Level: A Co-Design Frame-
work,” Tech. Rep. 2001-85, Dipartimento di Elettronica e Infor-
mazione, Politecnico di Milano, Italy, 2001.

5. C. Bolchini, F. Salice, and D. Sciuto, “Designing Reliable Em-
bedded Systems Based on 32 bit Microprocessors,” in Proc.
IEEE 7th Int. On-Line Testing Workshop, 2001, p. 137.

6. C. Wah and A. Orailoglu, “High-Level Synthesis of Gracefully
Degradable ASICs, “in Proc. European Design and Test Con-
ference, 1996 (ED&TC’96), pp. 50–54.

7. G. De Michell and R.K. Gupta, “Hardware/Software Co-
Design,” in Proceedings of the IEEE, vol. 85, no. 3, pp. 349–365,
March 1997.

8. L. Pomante, “System Level Concurrent Error Detection,” Tech.
Rep. RT-00003, Cefriel-Politecnico di Milano, Milano.

9. D.K. Pradhan, (Ed.), Fault Tolerant computing, Theory and
Techniques, vol. 1. Englewood Cliffs, NJ, U.S.: Prentice Hall,
1986.

10. F. Rashid, K.K. Saluja, and P. Ramanathan, “Fault Tolerance
Through Re-Execution in Multiscalar Architecture,” in Proc. Int.
Conference on Dependable Systems and Networks (DNS 2000),
2000, pp. 482–491.

11. F.F. Sellers, M.Y. Hsiao, and L.W. Bearnson, Error Detect-
ing Logic for Digital Computers, McGraw-Hill: New York,
1986.

12. H. Wasserman and M. Blum, “Software Reliability via Run-
Time Result Checking,” Journal of the ACM, vol. 44, no. 6,
pp. 826–849, November 1997.


