Template Mini-Project Proposal

Robert Dick

1 Goal

Enable designers of embedded systems to automatically extract execution and communication graphs from
software implementation for use in developing high-performance application-specific hardware.

2 Formal Problem Statement

Given an application written in ANSI-C, automatically extract a graph in which nodes represent computation
within a thread for a particular duration and edges indicate the quantities of data communicated among
tasks. The use of dynamic graph extraction has the benefit of permitting internal loop iterations and
conditional evaluations to approximate those expected in normal use, but it does imply that the input data
set(s) used for execution during extraction are important.

We plan to instrument the Simics [1] full-system simulator to capture data flow among threads, which
was recently purchased by Intel. It will be necessary to identify context switches, which we will achieve by
extending the simulator with operating system introspection capabilities based on specific program counter
values.

3 Most Closely Related Work

There have been projects on automatically generating graphs for debugging and evaluation of synthesis
algorithms [2]. Such synthetic graphs are not derived from real applications and therefore have major
drawbacks for use in validating design tools and cannot be used to design hardware accelerators for real
applications.

Compilers typically build instruction-level data dependency graphs [3] of abstraction is far below the
proposed task-level graph and this analysis is static.

Manually constructed graph-based system specifications have been published in the past [4, 5]. These
specifications required painstaking manual construction or extraction.

4 What will be Completed within Mini-Project

We will initially install Simics, get it simulating multithreaded applications under a Linux operating system
image, develop a Simics extension to identify context switches, and modify memory reads and writes to allow
tracking of data flow among threads.

We hope to later develop a graphical display utility to simplify graph browsing and to analyze multiple
multimedia applications. However, these tasks will likely remain incomplete at the mini-project deadline so
they will most likely be part of the main project.



References

[1] P.S. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F. Larsson, F. Lundholm, A. Moestedt, J. Nilsson,
P. Stenstrom, and B. Werner, “SimICS/sun4m: A virtual workstation,” in Proc. USENIX Conf., Jun.
1998.

[2] R. P. Dick, D. L. Rhodes, and W. Wolf, “T'GFF: task graphs for free,” in Proc. Int. Wkshp. Hard-
ware/Software Co-Design, Mar. 1998, pp. 97-101.

[3] K. S. Vallerio and N. K. Jha, “Task graph transformation to aid system synthesis,” in Proc. Int. Conf.
on Circuits & Systems, May 2002, pp. 695-698.

[4] S. Prakash and A. Parker, “SOS: Synthesis of application-specific heterogeneous multiprocessor systems,”
J. Parallel & Distributed Computing, vol. 16, pp. 338-351, Dec. 1992.

[5] J. Hou and W. Wolf, “Process partitioning for distributed embedded systems,” in Proc. Int. Wkshp.
Hardware/Software Co-Design, Mar. 1996, pp. 70-76.



