
Power-Aware Architectural Synthesis

Robert P. Dick†, Li Shang‡, and Niraj K. Jha⋆

† Dept. of Electrical Engg. & Computer
Science

Northwestern University
Evanston, IL, U.S.A.

dickrp@ece.northwestern.edu

‡ Dept. of Electrical & Computer Engg.
Queen’s University

Kingston, Ontario, Canada

lshang@queensu.ca

⋆ Dept. of Electrical Engg.
Princeton University

Princeton, New Jersey, U.S.A.

jha@ee.princeton.edu

I. INTRODUCTION

Power consumption is of great important parameters

of modern electronic systems. It impacts the perfor-

mance, cooling costs, packaging costs, and reliability

of integrated circuits (ICs), as well as the lifespans of

battery-powered electronics. Therefore, it is important to

consider power consumption during design.

The complexity and scope of automatic design con-

tinues to increase. It is now possible to automatically

design, i.e., synthesize, complex ICs and systems from

high-level specifications without designer intervention.

Architectural synthesis has been an active research area

for more than a decade. Since addressing power con-

sumption at higher levels of the design process increases

the potential for improvement, researchers have devel-

oped a wide range of power optimization and man-

agement techniques to address IC power consumption

issues during architectural synthesis. In this article, we

present techniques for the synthesis of low-power ICs

and systems. In particular, we focus on power-aware

behavioral synthesis and system synthesis.

The rest of this article is organized as follows. In

Section I-A, we introduce and define behavioral syn-

thesis and system synthesis. In Section II, we describe

the contributors to IC and system power consumption

and discuss a number of techniques to improve power

and thermal characteristics. Many of these techniques

will prove useful in both behavioral synthesis and system

synthesis. In Sections III and IV, we provide details on

behavioral synthesis and system synthesis and indicate

areas of active research. Section V points out a few com-

mercial architectural synthesis products. We conclude in

Section VI.

A. Architectural synthesis overview

In 1958 and 1959, Jack Kilby and Robert Noyce

built the first ICs. Although the simple applications

of early ICs enabled fully manual design, within ten

years, engineers were designing large-scale integration

(LSI) ICs containing tens of thousands of transistors.

In the late 1960s and early 1970s, fully manual design

became impractical and engineers began automating the

design process. Table I gives a chronology of areas of

active research and development in electronic design

automation. Note that the first research in an area may

have appeared before the area was of wide interest, e.g.,

some researchers had already made great progress in

behavioral synthesis before the 1990s. As indicated in

Table I, tasks that consist of simple actions repeatedly

applied were the most straightforward and the first to

be automated. However, as design complexity continued

to increase, engineers found it necessary to automate

increasingly complicated and creative tasks that had once

required the efforts of skilled designers. In recent years,

two trends are apparent: higher levels of the design

process have been automated and power consumption

has become a first-order design characteristic. In the

past five years, these trends have converged; research

on power-aware architectural synthesis has proceeded at

a rapid pace.

Fig. 1 illustrates the conventional levels or stages of

digital system design. Physical design, i.e., deciding on

the physical locations and shapes of transistors, func-



TABLE I

CHRONOLOGY OF ACTIVE RESEARCH AND DEVELOPMENT TOPICS IN ELECTRONIC DESIGN AUTOMATION

1958–1965 Manual design

1965–1975 Schematic capture, automated mask production

Circuit simulation

Automatic routing

1975–1985 Automated placement

Design rule checking

Layout vs. schematic checking

1985–1990 Hardware description languages

Logic synthesis

Static timing analysis

1990–1995 Behavioral synthesis

Formal verification

1995–2000 Hardware-software co-synthesis

SoC synthesis

Low-power design becomes critical

2000–2005 NoC synthesis, platform-based design

Synthesis for new processes, e.g., microfluidics and MEMS

Thermal and reliability issues become critical

tional units, and processors, as well as communication,

clock distribution, and power distribution networks, was

largely automated in the 1960s and 1970s. However, this

area remains open, with continued improvement over

past work and new algorithms to deal with changes

brought about by process scaling. Combinational logic

synthesis, the efficient design of combinational networks

that implement Boolean expressions, advanced rapidly

in the 1970s and 1980s. Register-transfer level (RTL)

optimizations, such as retiming, underwent substantial

advances in the 1990s.

This trend of automating increasingly high levels of

the design process continues to this day. Sophisticated

algorithms are now used to automatically design, or

synthesize, very large scale integration (VLSI) circuits

and hardware-software systems, starting from high-level

descriptions of application behavior. These synthesis

algorithms automatically make design decisions at many

levels, ranging from architectural level to physical level,

in order to optimize performance, energy consump-

tion, thermal characteristics, price, and reliability. Power

consumption is now a critical cost for synthesized ar-

chitectures. It influences packaging and cooling costs,

performance, reliability, and battery lifespan. Moreover,

optimizing power and thermal characteristics greatly

increases the complexity of synthesis. This article gives

a taxonomy of synthesis problems, describes how state-

of-the-art synthesis algorithms solve these problems, and

indicates trends that will influence future work in the

field.

Architectural synthesis may be broken into two main

areas: behavioral synthesis and system synthesis. This

article describes these areas and explains methods of

reducing power consumption during synthesis. However,

each area is broad; they cannot be exhaustively covered

here. System synthesis has its roots in hardware-software

co-synthesis, with much current activity in system-on-

chip (SoC) synthesis and network-on-chip synthesis.

This article describes hardware-software co-synthesis

and SoC synthesis but defers to Marculescu’s article in

this chapter for a detailed treatment of network-on-chip

synthesis [1].

Behavioral synthesis and system synthesis share a

few common challenges. In both cases, starting from an

abstract description of the application to be implemented,

constraints on the costs of the system (e.g., price, per-

formance, and power consumption), and a database of

resources that may be used to implement the appli-

cation, it is necessary to determine which processing

and communication resources will be used in the final

2



design (allocation1), determine the resource that will be

used for each particular operation and communication

event (assignment), and provide a means of controlling

the times at which all events occur (scheduling). These

tasks are challenging; both the allocation/assignment and

scheduling problems are NP-complete [2]2. In summary,

behavioral and system synthesis share a number of hard

problems.

Behavioral synthesis differs from system synthesis as

indicated in Fig. 1 and Table II. Behavioral synthesis

and system synthesis can, in some cases, start from

the same sorts of specifications. However, in behavioral

synthesis, most operations are fine-grained, i.e., they

can be represented by short instruction sequences for

a general-purpose processor and may be implemented

in hardware as a combinational network or a shallow

1Some behavioral synthesis researchers define allocation to be the
assignment of tasks and communication events to resources as well as
the selection of resources.

2Garey and Johnson provide an introduction to the theory of NP-
completeness [2]. For the purpose of this article, the implications can
be summarized as follows: nobody has ever developed and reported an
algorithm that can quickly produce optimal solutions to large instances
of these problems and there is strong evidence (but no proof) that such
an algorithm cannot be implemented using conventional, deterministic,
computers.

(g) Processing

(f) Physical

(e) Logic

(d) Register transfer

(c) Behavioral

(b) System

(h) Software

Behavioral

synthesis

(i) HW/SW interface

System

synthesis

(a) Specification

Fig. 1. Digital system design levels

pipeline, e.g., multiplication. In system-level synthesis,

tasks are generally coarse-grained. They may be complex

procedures requiring numerous general-purpose instruc-

tions or highly sequential hardware implementations,

e.g., fast Fourier transform. In behavioral synthesis, it

is generally assumed that the entire specification is im-

plemented in synthesized hardware. In system synthesis,

hardware and software are both used in the implementa-

tion. Differences in task granularity and implementation

style (hardware-only or hardware-software) lead, in turn,

to other differences between behavioral synthesis and

system synthesis.

The simplicity of components, e.g., functional units

and wires, in behavioral synthesis simplifies clocking,

scheduling, and interface problems; it is usually possible

to assume a globally synchronous system, a discrete-

time schedule in which all operations take small integer

numbers of clock cycles, and straightforward interfacing

between components. However, the simplicity of indi-

vidual components is offset by their quantity. Quickly

determining the impact of architectural decisions on the

floorplans3 and thermal profiles of designs containing

hundreds or thousands of frequently parallel operations

is extremely challenging.

In system synthesis, the number of components is

limited. However, they are generally more complicated

than arithmetic functional units, e.g., instruction pro-

cessors or protocol translators. The system synthesis

algorithm may not have control over the implementa-

tion of each complex component. Therefore, providing

for global synchronization and communication is more

challenging. Interface synthesis, i.e., synthesizing the

interfaces between hardware components as well as

software and hardware, is an active area of research in

system synthesis. Unlike behavioral synthesis, tasks in

system synthesis need not take a small integer number

of clock cycles: time values are modeled as reals, not

integers. Moreover, some operations may have dramat-

ically higher execution times than others. Therefore, a

number of discrete time domain scheduling algorithms

that are promising in behavioral synthesis are not directly

applicable in system synthesis.

II. CHALLENGES OF LOW-POWER SYNCHRONOUS

SYSTEM SYNTHESIS AND DESIGN

This section introduces the fundamentals necessary

to understand the sources of power consumption in

synchronous digital systems (Section II-A). It then de-

scribes a number of techniques that may be used during

3A floorplan indicates the positions of all architectural components
in an IC.

3



TABLE II

DIFFERENCES BETWEEN BEHAVIORAL SYNTHESIS AND SYSTEM SYNTHESIS.

Behavioral synthesis System synthesis

Implementation Hardware, IC Hardware-software system

Timing model Discrete Continuous

Processing element model Combinational networks, shallow pipelines, Processors, protocol translators, memories

registers, multiplexers,

Communication resource model Wires Protocols over busses, network-on-chip, or wires

behavioral synthesis and system synthesis to improve

power and thermal characteristics (Sections II-B– II-E).

A. Power overview

With increasing system integration, as well as ag-

gressive technology scaling, power consumption has

become a major challenge in digital system design. In

high-performance computer systems, power and thermal

issues are key design concerns. Power management and

optimization techniques are essential for minimizing

system power consumption and temperature to per-

mit reliable operation. For portable devices, prolonging

battery lifetimes and minimizing packaging costs are

primary design challenges. Power also interacts with

other design metrics, such as performance, cost, and

reliability, thereby further increasing design complexity.

For example, the failure rate of electronic devices is

a strong function of system temperature, which is in

turn controlled by system power dissipation. Therefore,

increasing power consumption results in the need for

more complicated cooling and packaging solutions to

sustain system reliability, which in turn increases costs.

As projected by International Technology Roadmap for

Semiconductors (ITRS) [3], power will continue to be

a limiting factor in future technologies. There is an

increasing need to address power issues in a systematic

way at all levels of the design process.

In digital CMOS circuits, power dissipation is the

sum of dynamic power, Pdynamic, and static power Pstatic.

Dynamic power, Pdynamic, results from charging and

discharging of the capacitance of CMOS gates and

interconnect during circuit switching, Pswitch, and the

power during transient short-circuits when inputs are in

transition, Pshort circuit. For synchronous CMOS designs,

switching power is one of the dominant sources of power

consumption. It is a function of physical capacitance, C,

switching activity, s 4, clock frequency, f , and supply

4The product of physical capacitance, C, and switching activity, s,
is also called switched capacitance.

voltage, Vdd:

Pswitch =
1

2
sCVdd

2f (1)

In CMOS, the other major source of power consump-

tion, static power, Pstatic, results from leakage current.

Leakage current has five basic components: reverse-

biased PN junction current, subthreshold leakage, gate

leakage, punch-through current, and gate tunneling cur-

rent. Of these five components, subthreshold and gate

leakage will remain dominant during the next few years.

The subthreshold leakage power is given by

Psubthreshold = Isub

W

L
Vdde

−Vth
nVT (2)

where Isub and n are technology parameters, W and L

are device geometries, Vth is the threshold voltage, and

VT is the thermal voltage constant [4]. Gate leakage is

the current between the gate terminal and any of the

other three terminals (drain, source, body). As a result of

technology scaling, gate leakage increases exponentially

due to decreasing gate oxide thickness.

From Equations (1) and (2), it can be seen that total

power consumption may be reduced by attacking oper-

ating voltage, capacitance, switching activity, threshold

voltage, transistor size, and temperature. In real designs,

the variables upon which total power consumption de-

pends are often closely related: reducing one may in-

crease another. In addition, reducing power consumption

may have a negative impact on other design metrics. A

synthesis algorithm must simultaneously consider, and

trade off, these design metrics.

B. Operating voltage oriented techniques

Reducing operating voltage, Vdd, is one of the most

promising techniques for reducing dynamic power con-

sumption. As indicated by Equation (1), Pdynamic is

quadratically related to Vdd. All other things being equal,

halving Vdd reduces Pdynamic to 1/4 of its initial value.

However, this reduction has a negative impact on circuit

4



performance [5]:

f =
k(Vdd − Vth)

α

Vdd

(3)

where k is a design-specific constant and α is a process-

specific constant ranging from one to two. As a result, for

low values of Vth and α ≃ 2, and all other things being

equal, halving Vdd implies halving clock frequency, f .

However, some of the following paragraphs describe

techniques for reducing operating voltage without de-

grading performance.
Multiple simultaneous operating voltages: ICs contain

timing critical and non-critical combinational logic paths

between memory elements (latches and flip-flops). It is

possible to selectively decrease the operating voltage(s)

of gates on the non-critical paths, thereby reducing

Pdynamic without reducing performance. Multiple voltage

techniques may be used within with architectural syn-

thesis. Although it is not essential, processing elements5

sharing the same voltage are often placed in contiguous

regions called voltage islands to simplify power dis-

tribution. In addition, communication between different

voltage regions relies on level converters. This physical

requirement for contiguous regions dramatically changes

the IC floorplan, thereby changing communication power

consumption, wire delays, and thermal properties. These

changes, in turn, impact the original design properties,

e.g., combinational path criticality, optimal clock fre-

quency, and operation cycle times. It is necessary to

consider the consequences of using multiple voltages at

multiple design levels, i.e., architectural and physical.

Recent multiple voltage behavioral [6] and system [7]

synthesis techniques allow solution of the voltage level

assignment problem concurrently with one or more of

the other following problems: processing element selec-

tion, assignment of tasks to processors, scheduling, and

floorplanning.
Dynamic voltage (and frequency) scaling: In addition

to varying the operating voltages of sub-circuits by

position, it is possible to vary operating voltages in

time. Dynamic voltage scaling is generally carried out

in conjunction with frequency scaling to prevent timing

violations. It allows an IC to adaptively adjust operating

voltage to minimize power consumption without violat-

ing timing constraints. Dynamic voltage and frequency

scaling (DVFS) interacts closely with scheduling: some

schedules allow timing slack to be used for power

minimization without the violation of deadlines while

others leave little opportunity for power minimization.

5When used in a general context, the term processing element will
be used to refer to both functional units, e.g., multipliers and adders, as
well as system-level processing elements, e.g., microprocessor cores.

PE BPE A

Serial

implementation

Parallel implementation

time

I

J

K

L

I

J K

L

Fig. 2. Series and parallel implementations of a dataflow graph.

Synthesis algorithms have been developed for both off-

line DVFS and on-line DVFS [8], for which predictions

of future system behavior are used to amortize the cost

of voltage and frequency changes over longer low-power

periods.

Scheduling and timing: Scheduling is the process

of selecting the orders and execution start times of

operations and communication events. In some cases, a

system’s original schedule may not permit the reduction

of operating voltage(s) without performance degradation.

For example, some operations may be immediately fol-

lowed by other operations, leaving little spare time for

voltage reduction. Changing operation start times and

orders can open up opportunities for greater reductions

in power consumption via operating voltage reduction. It

is also possible to change the number of clock cycles and

frequency for an operation, thereby allowing a decrease

in power consumption without degrading computational

throughput.

Power for performance and area techniques: Even if

it seems that attempts to reduce the operating voltage for

tasks on critical timing paths will result in performance

degradation, it is sometimes possible to buy back the lost

performance at a cost in area. Consider the example in

Fig. 2. In the serial implementation shown on the left,

the processing element must operate at a high voltage

at all times to meet the performance requirements. By

adding another processing element and parallelizing the

operations, as shown by the parallel implementation to

the right, it is possible to finish execution early, thereby

providing enough timing slack to permit operating volt-

age to be halved, reducing dynamic power consumption

to 1/4 its initial value. This general technique of buying

voltage reduction at the cost of performance and gaining

back the lost performance through increased area and/or

5



design complexity forms the basis of a number of

techniques in low-power architectural synthesis [9]–[11].

C. Switched capacitance-oriented techniques

It is possible to reduce both active device and intercon-

nect capacitance via a number of synthesis techniques.

Reducing a CMOS gate in size reduces the capacitance

driven by the previous gate. However, this also increases

resistance to the power and ground rails, increasing the

delay of the subsequent gate. In many cases, several

devices are not on the critical timing path of the system.

Their sizes may be reduced to reduce driven capacitance.

This technique shares properties with operating voltage

reduction. However, the potential for improvements in

dynamic power consumption is generally smaller be-

cause the relationship between power and capacitance-

dependent delay is sub-quadratic, i.e., reducing operating

voltage is generally a better choice than reducing capac-

itance. However, reducing capacitance does come with

one additional advantage: the resulting decrease in gate

size also reduces area. During architectural synthesis, it

is common for libraries to contain functionally equiva-

lent processing elements with different power and perfor-

mance properties. Many of these differences have their

sources in differing internal gate and wire capacitance

values. However, in architectural synthesis, this problem

is often encompassed by processing element selection

and assignment of operations to processing elements.

Interconnect self-capacitance may be decreased by

three techniques, one local and two architectural. De-

creasing interconnect width reduces capacitance at the

cost of increased delay. However, it is also possible to si-

multaneously reduce interconnect delay and capacitance

by decreasing wire length. Finally, one can change the

assignment of tasks to processing elements to reduce or

eliminate the inter-processing element switched capac-

itance necessary for data communication. The lengths

of wires are decided by the impact of architectural

decisions, such as the allocation of processing elements

and the assignment of operations to processing elements,

upon the floorplan ultimately produced. The impact of

interconnect coupling on effective capacitance is becom-

ing increasingly important. It can be addressed during

architectural synthesis via bus planning as well as coding

techniques.

Switched capacitance, the product of physical capaci-

tance and switching activity, reflects the actual run-time

load of the circuit. Recent studies [12] have demonstrated

that switched capacitance minimization is a much more

efficient power optimization technique than physical

capacitance reduction. Switched capacitance reduction

techniques have been developed at all levels of the design

hierarchy. Architecture-level techniques [13], such as

power management, data encoding, glitch suppression,

architectural transformation, are widely used in low-

power behavioral and system synthesis.

D. Leakage power techniques

Most work in low-power synthesis explicitly targets

dynamic power consumption. This is not surprising.

Even at the 90 nm process node, dynamic power accounts

for over 90% of total power in modern processors.

However, research indicates that a half or more of the

total power consumption will result from leakage at

the 25 nm process node [3]. Subthreshold leakage is an

exponential function of chip temperature. As a result,

increasing temperature from 25◦C to 100◦C can result

in subthreshold leakage being the dominant source of

power consumption.

As indicated in Equation (3), it is necessary to reduce

Vth in unison with Vdd in order to maintain good

performance. However, reduction in threshold voltage

increases subthreshold leakage. This problem may be

addressed by using multiple threshold voltages [14],

such as multi-Vth, adaptive body biasing, etc. During

synthesis, high threshold voltages can be assigned to

functional units along non-critical timing paths to reduce

subthreshold leakage while functional units on critical

paths operate at lower threshold voltages to maintain

performance.

Power gating reduces subthreshold leakage power

consumption by inserting sleep transistors in series with

pull-up or pull-down paths of functional units to control

their leakage power dependent on the sleep transistor

inputs [14]. NMOS transistors with high threshold volt-

ages are typically used as sleep transistors. This circuit

topology is known as MTCMOS. Other techniques, e.g.,

exploiting the transistor stack effect, transistor sizing,

and supply voltage scaling, may also be used to minimize

subthreshold leakage power consumption.

E. Temperature-oriented techniques

All other things being equal, increasing IC power

consumption increases temperature. Using temperature-

aware techniques in architectural synthesis is a complex

task. IC temperature is affected by many factors, includ-

ing IC dynamic and leakage power profile, interconnect

power profile, as well as the packaging and cooling

solution. Many of these power profiles are only avail-

able after physical design, i.e., floorplanning. Although

power optimization techniques can reduce average chip

temperature, local thermal hotspots due to unbalanced

chip power profiles may result in thermal emergencies,

6



System level

Behavior level

Register-transfer level

Logic level

Layout level

Transistor level

Power reduction opportunities Power analysis iteration times

10-20X

2-5X

20 - 50%

seconds - minutes

minutes - hours

hours - days

In
c
re

a
s
in

g
 p

o
w

e
r 

s
a
v
in

g
s

D
e
c
re

a
s
in

g
 d

e
s
ig

n
 i
te

ra
ti
o
n
 t
im

e
s

Fig. 3. Benefits of high-level power analysis and optimization [12].

e.g., reliability problems due to electromigration. In ad-

dition, subthreshold leakage power consumption has an

exponential relationship with chip temperature. Without

temperature optimization, leakage power can dominate

power consumption. To address IC thermal problems, it

is critical to integrate architectural synthesis with phys-

ical synthesis and thermal analysis to form a complete

thermal optimization flow [6]. Thermal modeling and

analysis also need to be incorporated into the inner op-

timization loop to guide IC synthesis. However, detailed

thermal characterization requires 3D full chip-package

thermal analysis, which may have high computational

complexity. Thermal analysis may easily become the

performance bottleneck for thermal-aware synthesis.

F. Potential of power optimization at different design

levels

Although power minimization techniques were first

developed at the device level, postponing power opti-

mization until this stage of the design process neglects

opportunities at higher levels. As indicated by Fig. 3,

considering power minimization at earlier stages of the

synthesis or design process has a number of advantages.

It yields greater potential for improvement. Moreover,

it indirectly improves solution quality because many

candidate designs may be considered at higher levels of

synthesis due to the use of more abstract (hierarchical)

system modeling.

III. LOW-POWER BEHAVIORAL SYNTHESIS

Behavioral synthesis, or high-level synthesis, is the au-

tomatic design of an IC starting from an implementation-

independent description of the design’s behavior, a de-

scription of the functional units and communication

resources available, and constraints on performance and

power.

Behavioral VHDL/Verilog,

C, MATLAB, SystemC

algorithm descriptionPerformance/

power

constraints
Manual entry

of graph

Compiler

front-end

Resource

allocation

optimizer

Operation

binding
Scheduling

Cost evaluation

(power, price,

performance)

Physical

synthesis or

estimation

Graph-based

specification

Halting

conditions

satisfied?

ASIC design

Y

N

Optimization loop

Fig. 4. Behavioral synthesis algorithm

void FIR_filter(int n, int order,

int * a, int * x, int * y)

{

int i, j;

for (i = order - 1; i < n; ++i) {

y[i] = 0;

for (j = 0; j < order; ++j) {

y[i] += a[j] * x[i - j];

}

}

}

Fig. 5. Finite impulse response filter code

Fig. 4 gives an overview of a behavioral synthesis

optimization flow. Note that, although this flow is repre-

sentative, other high-level meta-algorithms exist. For ex-

ample, it would be possible to use a mixed integer linear

program (MILP) solver on a unified behavioral synthesis

problem formulation, in which case there would be no

allocation, binding, and scheduling optimization loop.

Although the input to a behavioral synthesis system

can take many forms, the most common are software

language, hardware description language, or graph based

specifications. An example C input file for a finite

impulse response filtering algorithm is shown in Fig. 5.

As shown in Fig. 4, regardless of the starting point,

behavioral synthesis systems use compilers [15], [16]

7



BBLKgraph #0 BBLK #01 BBLK #02 BBLK #03 BBLK #04 

ENTRY(BBLK08)

BBLK01

BBLK03

BBLK02

BBLK04BBLK07

BBLK06

BBLK05

EXIT(BBLK09)

4

:=_2

−_7

order

40

:=_4

1

:=_6

tmp_t4_1

:=_10

tmp_t4_1

1

:=_9

i

+_13

i

tmp_t4_2

tmp_t4_2

i

<_16

i

n

n

0

:=y[]_18

+_24

tmp_t35_1

40

:=_20

i

<<_23

i

2

WRITE_27

tmp_t34_1

0

:=_26

tmp_t4_3

0

:=_29

:=_32

tmp_t4_3

1

:=_31

BBLK #05 BBLK #06 BBLK #07 

0

:=y[]_34

+_40

tmp_t35_1

40

:=_36

i

<<_39

i

−_53

i

2

READ_41

suif_tmp

WRITE_62

suif_tmp

+_61

tmp_t4_5

0

:=a[]_43

+_49

tmp_t36_1

4

:=_45

j

<<_48

jj

+_64

j

2

READ_50

tmp_t34_1

*_60

tmp_t4_6

0

:=x[]_52

+_58

tmp_t35_1

<<_57

tmp_t4_7

40

:=_55 2

READ_59

tmp_t34_1

tmp_t4_7

tmp_t4_6

tmp_t4_5

tmp_t4_4

tmp_t4_4

j

<_67

j

order

order

0

:=_69

:=_70

tmp_t4_1

Fig. 6. Finite impulse response filter CDFG

to convert specifications into (possibly synchronous)

data flow graphs (DFGs) or control-data flow graphs

(CDFGs) for further optimization. Translation and per-

formance optimization of the code in Fig. 5 results

in the control-data flow graph shown in Fig. 66. In

this figure, the graph to the upper-right shows the flow

of control among the basic blocks, i.e., straight-line

6Figure courtesy of Rajarshi Mukherjee and Dr. David Zaretsky at
Northwestern University.

sequences of code that may be represented with data

flow graphs. Within each basic block, the nodes without

incoming edges represent variables or constants and the

other nodes represent operations on the data arriving on

the incoming arcs. In addition to a description of the

algorithm to be implemented, behavioral synthesis tools

require models for the hardware resources that may be

used in the implementation. For example, the user may

provide a library of performance and power models for

the available functional units, e.g., adders, multipliers,

8



and registers. These models may be provided as part

of the resource library or automatically generated by

commercial timing and power analysis tools.

A behavioral synthesis algorithm does functional unit

allocation, operation binding, and scheduling to optimize

performance, IC area, and possibly power. Power op-

timization, e.g., minimizing switched wire capacitance,

may require physical information and, therefore, floor-

planning block placement within behavioral synthesis.

The product of behavioral synthesis is a complete RTL

description of the synthesized system. This output is

generally used as an input to a logic synthesis tool as

indicated by Steps (c) and (d) in Fig. 1.

A. Dynamic power optimization

Extensive research has been conducted in low-power

behavioral synthesis. In the past, IC power consumption

was dominated by dynamic power. Therefore, most low-

power synthesis research has focused on dynamic power

optimization. Dynamic power is a quadratic function

of supply voltage. Therefore, voltage reduction is com-

monly used to reduce power consumption in behavioral

synthesis. However, reducing operating voltage requires

global design changes, i.e., changes to functional unit

allocation, assignment of operations to functional units,

and schedules.

Optimal scheduling using multiple supply voltages

is an NP-hard problem. Johnson and Roy developed a

behavioral scheduling algorithm, called minimum energy

schedule with voltage selection (MESVS) that uses in-

teger linear programming (ILP) to optimize the energy

consumption of a DSP datapath by using multiple supply

voltages [17]. Voltage scaling may have a negative

impact on circuit performance. In this work, timing

requirements are enforced via ILP constraints. MESVS is

limited to discrete voltage level selection. Later, Johnson

and Roy proposed MOVER [18], which allows continu-

ous voltage assignment. MOVER also uses an ILP-based

method to conduct voltage selection and operation parti-

tion, and then derive a feasible schedule with minimum

area overhead. Optimal ILP-based solutions generally

have high computation complexity. Chang and Pedram

developed a dynamic programming based method to ad-

dress the multiple voltage scheduling problem in datap-

ath circuits [19]. Under timing constraints, this approach

reduces supply voltages along non-critical paths to max-

imize power reduction with low area overhead. Raje and

Sarrafzadeh developed a heuristic-based voltage assign-

ment algorithm, with computational complexity O
(

N2
)

,

to minimize power consumption [20]. Although it is

demonstrated that voltage reduction can greatly reduce

power, incremental gains decrease with the number of

voltage levels. In addition, incorporating multiple on-

chip supply voltages complicates IC design.

In addition to voltage scaling, researchers have de-

veloped behavioral synthesis algorithms that minimize

switching activity and driven capacitance. Chatterjee and

Roy designed a behavioral synthesis system for low-

power DSPs [21]. In this work, application data flow

graphs were transformed to reduce switching activity,

thereby reducing power consumption. Chandrakasan et

al. designed HYPER-LP [22], a behavioral synthesis

system. HYPER-LP uses algorithmic transformations en-

able voltage scaling and effective capacitance reduction.

Kumar et al. [23] developed a profile-driven behavioral

synthesis algorithm, using profiling to characterize the

run-time activities of data flow graph based system mod-

els. Low-power behavioral synthesis is then conducted to

minimize estimated system switching activity. Chang and

Pedram proposed an allocation and binding technique

to minimize the switching activity in registers [24]. In

this work, statistical methods are used to characterize

the switching activities of registers. A max-cost flow

algorithm was then proposed to conduct power-optimal

register assignment. Chang and Pedram also proposed

a low-power binding technique to minimize the power

consumption of datapath functional units [25], in which

power optimization is formulated as a max-cost multi-

commodity flow problem. Dasgupta and Karri proposed

a simultaneous binding and scheduling techniques to

reduce switching activity, hence the power consumption,

of buses [26]. Mehra et al. proposed behavioral synthesis

techniques for low-power real-time applications. By pre-

serving locality and regularity in input behavior during

resource assignment, this technique reduces the need for

global buses, thereby reducing power consumption. Erce-

govac et al. proposed a behavioral synthesis system [27]

that uses multiple precision arithmetic units to support

low-power ASIC synthesis. In this work, system resource

allocation is conducted through multi-gradient search

and task assignment is based on a modified Karmarkar-

Karp’s number partitioning heuristic.

A few researchers have developed high-level synthe-

sis algorithms that combine numerous power optimiza-

tion techniques. Musoll and Cortadella proposed several

high-level power optimization techniques, including loop

interchange, operand reordering, operand sharing, idle

units, and operand correlation, for reducing the activities

of functional units [28]. Raghunathan and Jha designed

SCALP [29], an iterative-improvement-based behavioral

synthesis system, for low-power data intensive appli-

cations. SCALP provides a rich set of behavioral op-

timization techniques, including architectural transfor-

9



mation, scheduling, clock selection, module selection,

and hardware allocation and assignment. Khouri et al.

showed how to perform low power behavioral synthesis

for control-flow intensive algorithms [30]. This work

uses an iterative improvement framework to perform

design space exploration. Behavioral power optimization

techniques, including loop unrolling, module selection,

resource sharing and multiplexer network restructuring,

are done concurrently.

B. Physical-aware power optimization

In conventional behavioral synthesis, physical imple-

mentation details were generally ignored when making

architectural decisions. Continued process scaling has re-

quired fundamental changes to IC synthesis. At present,

physical design details must be considered during all

stages of IC synthesis. Many of the techniques use

physical information, e.g., floorplan block placements,

to better optimize switched capacitance [31]–[34], as

explained in Section II-C. Although they do not use

a floorplan, Lyuh et al. optimize assignment of com-

munication events to interconnect buses, and the order

of (capacitively coupled) wires within buses, to reduce

effective switched capacitance [35]. Prabhakaran and

Banerjee proposed a simultaneous scheduling, binding

and floorplanning algorithm to address the power con-

sumption of interconnect during behavioral synthesis.

Zhong and Jha presented an interconnect-aware low-

power behavioral synthesis algorithm, called ISCALP,

that minimizes power consumption in in interconnects

through interconnect-aware binding [36]. Recently, Gu

et al. designed a fast, high-quality incremental floorplan-

ning and behavioral synthesis system that concurrently

optimizes performance, power, and area [37].

C. Leakage power optimization

As a result of technology scaling, leakage power con-

sumption is becoming increasingly significant in digital

CMOS circuits. Khouri and Jha [38] were the first to

propose a method of reducing leakage power consump-

tion during behavioral synthesis. They proposed an iter-

ative algorithm to minimize leakage power consumption

during behavioral synthesis using dual-Vth technology.

Through each iteration, a greedy prioritization approach

is used to identify the functional unit with maximum

leakage power reduction potential, and then replace it

with a higher-Vth functional unit. Gopalakrishnan and

Katkoori proposed KnapBind [39], a leakage-aware re-

source allocation and binding algorithm to minimize dat-

apath leakage power consumption. This work maximizes

the idle time of datapath modules. MTCMOS functional

modules with large idle time slots are placed into sleep

mode when they are idle. Tang et al. proposed a heuristic

to minimize leakage power consumption during behav-

ioral synthesis [40]. The synthesis problem is formu-

lated as the maximum weight independent set problem.

Datapath components with maximum or near-maximum

leakage saving potentials are identified and replaced with

low-leakage library modules. Leakage power is a strong

function of chip temperature. Mukherjee et al. pro-

posed a temperature-aware resource binding technique to

minimize leakage power consumption during behavioral

synthesis [41]. The proposed iterative resource binding

technique minimizes chip peak temperature by balancing

the chip power profile, thereby reducing leakage power.

D. Thermal optimization

Increasing performance requirements and system in-

tegration are dramatically increasing IC power density,

hence chip temperature. Thermal effects are becoming

increasingly important during IC design. Mukherjee et

al. addressed thermal issues during behavioral synthe-

sis [42]. They proposed temperature-aware resource al-

location and binding algorithms to minimize chip peak

temperature. Gu et al. designed TAPHS, a thermal-aware

unified physical and behavioral synthesis system [6].

TAPHS incorporates a complete set of integrated be-

havioral and physical thermal optimization techniques,

including voltage assignment, voltage island generation,

and thermal-aware floorplanning, to jointly optimize chip

temperature, power, performance and area. Thermal-

aware behavioral synthesis algorithms must determine

the temperature profiles of a tremendous number of

candidate designs. Recently, researchers have developed

and publicly released fast and accurate thermal analysis

tools specifically for this purpose [43].

IV. LOW-POWER SYSTEM SYNTHESIS

System synthesis has its roots in hardware-software

co-synthesis. Early hardware-software co-synthesis al-

gorithms took, as input, a high-level description of

the application’s required functionality, descriptions of

available hardware, e.g., instruction processors and

application-specific integrated circuits (ASICs), as well

as performance and power requirements. The hardware-

software co-synthesis algorithm automatically produced

a design for the desired application, often consisting

of application-specific and general-purpose processors

mounted on a printed circuit board. The main focus

of most hardware-software co-synthesis algorithms is

partitioning applications between instruction processors

and application-specific cores/ICs.

SoC synthesis algorithms target hardware-software

systems implemented on single ICs. Although their func-

10



cjpeg

filt−r djpeg

print

disp

hard DL: 2.5 s
soft DL: 0.1 s

hard DL: 15 s
soft DL: 1 s

hard DL: 15 s
soft DL: 5 s

src

sink

src

filt−g filt−b

2Mb 2Mb

2Mb 2Mb2Mb

6Mb

1Mb

1Mb

6Mb 6Mb

6Mb

period: 6 speriod: 2 s

rgb−

yiq

rgb−
cmyk

Fig. 8. Example image processing application specification

tionality overlaps with hardware-software co-synthesis

algorithms, SoC synthesis algorithms also place great

weight on synthesizing (heterogeneous) communication

busses or networks. In addition, some consider the

interaction between architectural and physical design in

order to better solve the entire SoC synthesis problem.

Fig. 7 illustrates a system synthesis optimization flow.

Although this flow is representative, some flows, e.g.,

those using constructive algorithms, may differ. Initially,

a description of the algorithm to be implemented is

provided in a high-level language such as MATLAB,

C, or SystemC. This description is then translated into

a graph representation by a compiler front-end. Note

that these first stages may be omitted if a graph-based

specification is available. One such graph format, shown

in Fig. 87, is a task set composed of multiple directed

acyclic graphs in which nodes represent tasks and edges

represent data dependencies. Timing constraints may be

expressed as deadlines (DL) on nodes. Different tasks

may be invoked periodically with different periods.

In addition to the required functionality, a database

containing price, power consumption, execution time,

and other characteristics of processing elements and

communication resources is also provided. A portion of

one such database is shown in Table III [44].

Potential architectures consisting of processing ele-

ment allocations, assignments of tasks to processing

elements, and a schedule of all tasks and communication

events are then optimized. Costs such as price, power,

and execution time are then evaluated. The process re-

peats until acceptable solutions are produced. The result-

ing architectures are then completed by using behavioral

synthesis to generate application-specific cores or FPGA

configurations for the hardware-implemented tasks and

using a compiler to generate executable code for the

software-implemented tasks. Note that many existing

7Figure from the E3S benchmark suite [45].

TABLE III

PORTION OF PROCESSING ELEMENT PERFORMANCE AND POWER

CONSUMPTION DATABASE [44]

AMD K6-2E 400 MHz/ACR

Price ($) Idle power (mW)

33 160

Type Time (µs) Power (W)

Angle to Time Conversion 1.5 10

Basic Floating Point 2.9 10

CAN Remote Data Request 0.35 10

Fast Fourier Transform 1600 10

RGB to YIQ Conversion 16000 10

Image Rotation 2100 10

Text Processing 2800 10

.

.

.
.
.
.

.

.

.

NEC VR5432 167 MHz

Price ($) Idle power (mW)

33 250

Type Time (µs) Power (W)

Infinite Impulse Response Filter 83 2.5

Inverse Discrete Cosine Transform 840 2.5

Inverse Fast Fourier Transform 16000 2.5

Matrix Arithmetic 36000 2.5

.

.

.
.
.
.

.

.

.

system synthesis algorithms only solve subsets of the

entire system synthesis problem.

A. Low-power hardware-software co-synthesis algo-

rithms

Low-power co-synthesis algorithms form the basis

for later work on low-power SoC synthesis. They build

upon power-aware allocation, assignment, and schedul-

ing optimization engines and further improve power con-

sumption with point techniques such as multiple voltage

levels and domain-specific scheduling algorithms. Dick

and Jha developed a synthesis algorithm for low-power

distributed systems [46] that simultaneously optimizes

power consumption and price while honoring hard real-

time deadlines. Dave et al. developed a constructive

algorithm to solve the low-power multi-rate distributed

system co-synthesis problem [47]. Shang and Jha pre-

sented a method of synthesizing low-power systems

containing dynamically reconfigurable FPGAs [48].

Much of the early work in low-power hardware-

software co-synthesis was based on the assumption that

processing elements are off-the-shelf parts with strict

11



C, MATLAB, SystemC

algorithm description
Performance/

power

constraints Manual entry

of graph

Compiler

front-end

Resource

allocation

optimizer

Task

assignment

optimizer /

HW-SW

partitioning

Scheduling

Cost evaluation

(power, price,

performance)

Physical

synthesis or

estimation

Graph-based

specification

Halting

conditions

satisfied?

Compilation of

software

components

Behavioral synthesis of

hardware (ASICs or

co-processors)

Architecture and

interfaces

Complete

implementation

Y

N

Optimization loop

Fig. 7. System synthesis algorithm

constraints on operating voltages. Later work relaxed this

assumption, considering multiple operating voltages and

DVFS (described in Section II). Gruian and Kuchcinski

developed a dual-voltage task scheduling algorithm for

reducing power consumption [49]. Kirovski and Potkon-

jak developed an integrated DVFS and system synthesis

algorithm for independent tasks mapped to a bus-based

multiprocessor [50]. Schmitz and Al-Hashimi developed

a genetic algorithm to incorporate DVFS into an energy

minimization technique for distributed embedded sys-

tems [51]. It takes the power variations of tasks into

account while performing DVFS. An off-line voltage

scaling heuristic is proposed that is fast enough for

use in system synthesis, starting from real-time periodic

task graphs. Yan et al. proposed a scheduling algorithm

that uses DVFS and adaptive body biasing to jointly

optimize both dynamic and leakage power consump-

tion [52]. Analytical solutions are derived to determine

the optimal supply voltage and bias voltage. Then, the

optimal energy consumption is determined under real-

time constraints.

DVS can also be applied to communication links.

Naturally, performing simultaneous DVS in the proces-

sors and communication links in a distributed system

can yield greater power savings than performing DVS

in the processor alone. Luo et al. presented such a

method [53]. In addition to honoring real-time con-

straints, their scheduling algorithm also efficiently dis-

tributes timing slack among tasks and multi-hop com-

munication events.

Quality of service (QoS) is an important considera-

tion in designing systems for real-time multimedia and

wireless communication applications. Qu and Potkonjak

proposed a technique for partitioning a set of appli-

cations among multiple processors and determining a

DVFS schedule to minimize energy consumption under

constraints on QoS [54]. The applications are assumed

to be independent, have the same arrival times and no

deadline constraints.

B. Low-power system-on-chip synthesis algorithms

The low-power system-on-chip problem combines el-

ements of hardware-software co-synthesis problem and

behavioral synthesis problem. Like hardware-software

co-synthesis, tasks may be implemented with general-

purpose instruction processors or application-specific

hardware accelerators. However, the synthesis algorithm

potentially has greater control over the details of hard-

ware implementation, opening new options for power

optimization.

Methods of estimating SoC power consumption are

essential to enable design exploration and synthesis.

12



Bergamaschi et al. developed an SoC analysis tool that

estimates power and may be used within a system

synthesis flow [55]. Lajolo et al. described a number

of ASIC and instruction processor power estimation

techniques that may be used in system synthesis [56].

Based on these power estimation algorithms, synthesis

algorithms may select and optimize SoC designs.

Power estimation techniques can be used to guide the

search for high-quality solutions during the synthesis

of low-power or low-temperature SoCs. Givargis et al.

developed a method of pruning the set of SoC candidate

architectures in order to efficiently arrive at low-power

designs [57]. They determine which elements of the so-

lution are independent from each other, thereby decom-

posing the problem into small, independent problems.

Fei and Jha describe a functional partitioning method for

synthesizing low-power real-time distributed embedded

systems whose constituent nodes are SoCs [58]. The

input specification, given as a set of task graphs, is

partitioned and each portion is implemented as an SoC.

Hung et al. give a method of using voltage islands

and thermal analysis within SoC synthesis to minimize

peak temperature [7]. Hong et al. presented an algorithm

to select a processor core and instruction/data cache

configuration to best enable DVFS [59].

Communication networks have a large impact on

the power consumption, performance, and feasibility

of SoC designs. As a result, a number of researchers

have worked on low-power, communication-centric SoC

synthesis. Dick and Jha developed a low-power SoC

synthesis algorithm that optimizes power consumption,

performance, and area [60]. It uses floorplanning block

placement to estimate communication delay, power con-

sumption, and wire congestion. Lyonnard et al. devel-

oped a low-power SoC synthesis algorithm that gives

great attention to communication network synthesis [61].

Instead of estimating physical characteristics via floor-

planning, this work focuses on logical bus structure and

communication protocol modeling. Hu et al. optimize

SoC bus bit-width under a fixed processing element

allocation, task assignment, and schedule [62]. Results

for a seven core H.263 encoder are presented. Thep-

ayasuwan et al. used simulated annealing to design bus

topologies and demonstrated results for a JPEG SoC

design [63]. They do parasitic extraction for performance

estimation and reduce power consumption by minimiz-

ing bus length. They propose using the algorithm as

a synthesis post-processing step. Hu et al. presented a

method of using voltage islands in SoC designs that

minimizes power consumption, area overhead, and num-

ber of voltage islands [64]. Pasricha et al. developed an

algorithm for floorplan-aware synthesis of bus topologies

that meet combinational delay constraints imposed by

bus cycle times [65]. This work assumes a fixed IP core

allocation and task assignment. It minimizes bus count

and bus width under explicit communication throughput

constraints.

Conventional SoC designs typically contain a limited

number of modules, connected by on-chip buses or

point-to-point links. However, as the number of on-chip

modules grows in the coming years, bus or point-to-point

link communication will face serious problems due to

increasing global wire delay. To address these issues, in

SoC designs, buses are gradually being replaced by more

sophisticated on-chip communication networks [66]. On-

chip networks may consume a significant portion of SoC

power budgets [67]. Therefore, power and power-related

design problems, such as thermal issues [68], are of

great concern in network-on-chip designs. The design

and synthesis of on-chip networks supporting multi-hop

routing has grown into an active and broad research area.

Readers may refer to Marculescu’s article in this chapter

for a detailed treatment of this area [1].

V. COMMERCIAL PRODUCTS

Although complete and general low-power system

synthesis tools are not yet available, a number of

supporting tools have been released. As described in

Section III, the performance and power consumption of

functional units, can be automatically determined via

logic synthesis and analysis tools such as PrimeTime and

PrimePower from Synopsys, Encounter from Cadence,

Blast Power and Blast Fusion QT from Magma Design

Automation, as well as Synplify from Synplicity.

Behavioral synthesis has reached a level of maturity at

which a number of commercial products are available.

Cynthesizer from Forte Design Systems synthesizes a

SystemC algorithm to an RTL description. The Get2Chip

synthesis tool, now owned by Cadence, translates Su-

perlog to RTL. A number of synthesis tools target

FPGAs. The DSP Synthesis tool from AccelChip starts

from MATLAB, CoDeveloper from Impulse Accelerated

Technologies starts from C, Mitrion’s virtual processor

starts from a C-like language, and BINACHIP’s FREE-

DOM compiler starts from (digital signal processing)

instruction processor executables.

VI. CONCLUSIONS

As indicated in Section V, behavioral synthesis is a

commercially supported alternative to RTL design. A

number of companies offer solutions to portions of the

system synthesis problem. Both areas remain open with

13



active research on new application domains, new syn-

thesis algorithms, and new implementation technologies.

Power and thermal optimization techniques in behavioral

synthesis and system synthesis are necessary to improve

performance, battery life, reliability, product size, and

cooling costs. During the next five years, we can expect

behavioral and system synthesis to continue to displace

and supplement manual architectural design for high-

complexity products that are produced in limited vol-

umes, e.g., application-specific embedded systems. In

addition, we can expect continued research on power-

aware and thermal-aware synthesis and the industrial

application of mature techniques.

REFERENCES

[1] Companion article in VLSI Handbook.
[2] M. R. Garey and D. S. Johnson, Computers and Intractability:

A Guide to the Theory of NP-Completeness. W. H. Freeman &
Company, NY, 1979.

[3] “International Technology Roadmap for Semiconductors,” 2006,
http://public.itrs.net.

[4] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined
dynamic voltage scaling and adaptive body biasing for lower
power microprocessors under dynamic workloads,” in Proc. Int.

Conf. Computer-Aided Design, Nov. 2002, pp. 721–725.
[5] K. A. Bowman, B. L. Austin, J. C. Eble, X. Tang, and J. D.

Meindl, “A physical alpha-power law MOSFET model,” IEEE J.

Solid-State Circuits, vol. 34, pp. 1410–1414, Oct. 1999.
[6] Z. P. Gu, Y. Yang, J. Wang, R. P. Dick, and L. Shang, “TAPHS:

Thermal-Aware Unified Physical-Level and High-Level Synthe-
sis,” in Proc. Asia & South Pacific Design Automation Conf., Jan.
2006, pp. 879–885.

[7] W.-L. Hung, G. Link, Y. Xie, N. Vijaykrishnan, N. Dhanwada,
and J. Conner, “Temperature-aware voltage islands architecting
in system-on-chip design,” in Proc. Int. Conf. Computer Design,
Oct. 2005.

[8] N. K. Jha, “Low power system scheduling and synthesis,” in
Proc. Int. Conf. Computer-Aided Design, Nov. 2001, pp. 259–
263.

[9] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitecture
synthesis of performance-constrained, low-power VLSI designs,”
in Proc. Int. Conf. Computer Design, Oct. 1994.

[10] A. Raghunathan and N. K. Jha, “An iterative improvement
algorithm for low power data path synthesis,” in Proc. Int. Conf.

Computer-Aided Design, Nov. 1995, pp. 597–602.
[11] R. S. Martin and J. P. Knight, “Power profiler: Optimizing ASICs

power consumption at the behavioral level,” in Proc. Design

Automation Conf., June 1995.
[12] A. Raghunathan, N. K. Jha, and S. Dey, High-level Power

Analysis and Optimization. Kluwer Academic Publishers, MA,
1997.

[13] J. Rabaey and M. Pedram, Eds., Low Power Design Methodolo-

gies. Kluwer Academic Publishers, MA, 1996.
[14] A. Agarwal, C. H. Kim, S. Mukhopadhyay, and K. Roy, “Leak-

age in nano-scale technologies: mechanisms, impact and design
considerations,” in Proc. Design Automation Conf., June 2004,
pp. 6–11.

[15] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy,
S.-W. Liao, E. Bugnion, and M. S. Lam, “Maximizing multi-
processor performance with the SUIF compiler,” IEEE Trans.

Computers, Dec. 1996.

[16] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Water, and W. mei
W. Hwu, “IMPACT: An architectural framework for multiple-
instruction-issue processors,” in Proc. Int. Symp. Computer Ar-

chitecture, May 1991.
[17] M. Johnson and R. K. Roy, “Optimal selection of supply voltages

and level conversion during datapath scheduling under resource
constraints,” in Proc. Int. Conf. Computer Design, Oct. 1996, pp.
72–77.

[18] M. C. Johnson and K. Roy, “Datapath scheduling with multi-
ple supply voltages and level converters,” ACM Trans. Design

Automation Electronic Systems, vol. 2, no. 3, pp. 227–248, 1997.
[19] J. Chang and M. Pedram, “Energy minimization using multiple

supply voltages,” in Proc. Int. Symp. Low Power Electronics &

Design, Aug. 1996, pp. 157–162.
[20] S. Raje and M. Sarrafzadeh, “Variable voltage scheduling,” in

Proc. Int. Symp. Low Power Electronics & Design, Aug. 1995,
pp. 9–14.

[21] A. Chatterjee and R. K. Roy, “Synthesis of low power linear DSP
circuits using activity metrics,” in Proc. Int. Conf. VLSI Design,
Jan. 1994, pp. 261–264.

[22] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and
R. Brodersen, “Optimizing power using transformations,” IEEE

Trans. Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 14, no. 1, pp. 12–31, Jan. 1995.
[23] N. Kumar, S. Katkoori, L. Rader, and R. Vemuri, “Profile-driven

behavioral synthesis for low power VLSI systems,” IEEE Design

& Test of Computers, vol. 13, no. 9, pp. 70–84, Sept. 1995.
[24] J. M. Chang and M. Pedram, “Register allocation and binding

for low power,” in Proc. Design Automation Conf., June 1995.
[25] J. Chang and M. Pedram, “Module assignment for low power,” in

Proc. European Design Automation Conf., Sept. 1996, pp. 376–
381.

[26] A. Dasgupta and R. Karri, “Simultaneous scheduling and binding
for power minimization during microarchitecture synthesis,” in
Proc. Int. Symp. Low-Power Design, Apr. 1994.

[27] M. Ercegovac, D. Kirovski, and M. Potkonjak, “Low-power
behavioral synthesis optimization using multiple precision arith-
metic,” in Proc. Design Automation Conf., June 1999, pp. 568–
573.

[28] E. Musoll and J. Cortadella, “High-level synthesis techniques for
reducing the activity of functional units,” in Proc. Int. Symp. Low

Power Electronics & Design, Aug. 1995, pp. 99–104.
[29] A. Raghunathan and N. K. Jha, “SCALP: An iterative-

improvement-based low-power data path synthesis system,” IEEE

Trans. Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 16, no. 11, pp. 1260–1277, Nov. 1997.
[30] K. S. Khouri, G. Lakshminarayana, and N. K. Jha, “High-

level synthesis of low power control-flow intensive circuits,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and

Systems, vol. 18, no. 12, pp. 1715–1729, Dec. 1999.
[31] D. W. Knapp, “Fasolt: A program for feedback-driven data-path

optimization,” IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems, vol. 11, no. 6, pp. 677–695, June 1992.
[32] J. P. Weng and A. C. Parker, “3D scheduling: High-level synthesis

with floorplanning,” in Proc. Design Automation Conf., June
1992.

[33] Y. M. Fang and D. F. Wong, “Simultaneous functional-unit
binding and floorplanning,” in Proc. Int. Conf. Computer-Aided

Design, Nov. 1994.
[34] W. E. Dougherty and D. E. Thomas, “Unifying behavioral syn-

thesis and physical design,” in Proc. Design Automation Conf.,
June 2000.

[35] C.-G. Lyuh, T. Kim, and K.-W. Kim, “Coupling-aware high-level
interconnect synthesis,” IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, vol. 23, no. 1, pp. 157–164, Jan.
2004.

[36] L. Zhong and N. K. Jha, “Interconnect-aware low power high-
level synthesis,” IEEE Trans. Computer-Aided Design of Inte-

14

http://public.itrs.net
http://robertdick.org/publications/gu06jan.pdf
http://robertdick.org/publications/gu06jan.pdf
http://robertdick.org/publications/gu06jan.pdf


grated Circuits and Systems, vol. 24, no. 3, pp. 336–351, Mar.
2005.

[37] Z. P. Gu, J. Wang, R. P. Dick, and H. Zhou, “Incremental
Exploration of the Combined Physical and Behavioral Design
Space,” in Proc. Design Automation Conf., June 2005, pp. 208–
213.

[38] K. S. Khouri and N. K. Jha, “Leakage power analysis and
reduction during behavioral synthesis,” IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems, vol. 10, no. 6,
pp. 876–885, Dec. 2002.

[39] C. Gopalakrishnan and S. Katkoori, “KnapBind: An area-efficient
binding algorithm for low-leakage datapaths,” in Proc. Int. Conf.

Computer Design, Oct. 2003, pp. 430–435.
[40] X. Tang, H. Zhou, and P. Banerjee, “Leakage power optimization

with dual-Vth library in high-level synthesis,” in Proc. Design

Automation Conf., June 2005, pp. 202–207.
[41] R. Mukherjee, S. O. Memik, and G. Memik, “Peak temperature

control and leakage reduction during binding in high level
synthesis,” in Proc. Int. Symp. Low Power Electronics & Design,
Aug. 2005, pp. 251–256.

[42] R. Mukherjee, S. O. Memik, and G. Memik, “Temperature-aware
resource allocation and binding in high-level synthesis,” in Proc.

Design Automation Conf., June 2005.
[43] Y. Yang, Z. P. Gu, C. Zhu, L. Shang, and R. P. Dick, “Adaptive

Chip-Package Thermal Analysis for Synthesis and Design,” in
Proc. Design, Automation, and Test in Europe, Mar. 2006, pp.
844–849.

[44] “Embedded microprocessor benchmark consortium,” http://www.
eembc.org.

[45] R. P. Dick, “E3S: The embedded system synthesis benchmarks
suite,” E3S link at http://robertdick.org/tools.html.

[46] R. P. Dick and N. K. Jha, “MOGAC: A Multiobjective Genetic
Algorithm for Hardware-Software Co-Synthesis of Distributed
Embedded Systems,” IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, vol. 17, no. 10, pp. 920–935,
Oct. 1998.

[47] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN:
Hardware-software co-synthesis of heterogeneous distributed em-
bedded systems,” IEEE Trans. VLSI Systems, vol. 7, no. 1, pp.
92–104, Mar. 1999.

[48] L. Shang and N. K. Jha, “Hardware-software co-synthesis of low
power real-time distributed embedded systems with dynamically
reconfigurable FPGAs,” in Proc. Int. Conf. VLSI Design, Jan.
2002, pp. 345–352.

[49] F. Gruian and K. Kuchcinski, “LEneS: Task scheduling for low-
energy systems using variable supply voltage processors,” in
Proc. Asia & South Pacific Design Automation Conf., Jan. 2001,
pp. 449–455.

[50] D. Kirovski and M. Potkonjak, “System-level synthesis of low-
power hard real-time systems,” in Proc. Design Automation

Conf., June 1997, pp. 697–702.
[51] M. Schmitz and B. M. Al-Hashimi, “Considering power vari-

ations of DVS processing elements for energy minimization in
distributed systems,” in Proc. Int. Symp. System Synthesis, Nov.
2001.

[52] L. Yan, J. Luo, and N. K. Jha, “Combined dynamic voltage
scaling and adaptive body biasing for heterogeneous distributed
real-time embedded systems,” in Proc. Int. Conf. Computer-Aided

Design, Nov. 2003, pp. 30–37.

[53] J. Luo, L.-S. Peh, and N. K. Jha, “Simultaneous dynamic voltage
scaling of processors and communication links in real-time
distributed embedded systems,” in Proc. Design, Automation &

Test in Europe Conf., Mar. 2003.
[54] G. Qu and M. Potkonjak, “Energy minimization with quality of

service,” in Proc. Int. Symp. Low Power Electronics & Design,
Aug. 2000, pp. 43–49.

[55] R. A. Begamaschi, Y. Shin, N. Dhanwada, S. Bhattacharya,
W. E. Dougherty, I. Nair, J. Darringer, and S. Paliwal, “SEAS:
A system for early analysis of SoCs,” in Proc. Int. Conf.

Hardware/Software Codesign and System Synthesis, Oct. 2003,
pp. 150–155.

[56] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, and
A. Sangiovanni-Vincentelli, “Efficient power estimation tech-
niques for HW/SW systems,” in Proc. Alessandro Volta Memorial

Wkshp. Low-Power Design, Mar. 1999.
[57] T. Givargis, F. Vahid, and J. Henkel, “System-level exploration

for Pareto-optimal configurations in parameterized systems-on-
a-chip,” in Proc. Int. Conf. Computer-Aided Design, Nov. 2001,
pp. 25–30.

[58] Y. Fei and N. K. Jha, “Functional partitioning for low power
distributed systems of systems-on-a-chip,” in Proc. Int. Conf.

VLSI Design, Jan. 2002.
[59] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava,

“Power optimization of variable voltage core-based systems,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and

Systems, vol. 18, no. 12, pp. 1702–1714, Dec. 1999.
[60] R. P. Dick and N. K. Jha, “MOCSYN: Multiobjective Core-Based

Single-Chip System Synthesis,” in Proc. Design, Automation &

Test in Europe Conf., Mar. 1999, pp. 263–270.
[61] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya, “Au-

tomatic generation of application-specific architectures for het-
ereogeneous multiprocessor system-on-chip,” in Proc. Design

Automation Conf., June 2001, pp. 518–523.
[62] J. Hu, Y. Deng, and R. Marculescu, “System-level point-to-point

communication synthesis using floorplanning information,” in
Proc. Int. Conf. VLSI Design, Jan. 2002.

[63] N. Thepayasuwan, V. Damle, and A. Doboli, “Bus architecture
synthesis for hardware-software co-design of deep submicron
systems on chip,” in Proc. Int. Conf. Computer Design, Jan. 2003.

[64] J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu, “Architecting
voltage islands in core-based system-on-a-chip designs,” in Proc.

Int. Symp. Low Power Electronics & Design, Aug. 2004, pp. 180–
185.

[65] S. Pasricha, N. Dutt, and E. Bozorgzadeh, “Floorplan-aware
automated synthesis of bus-based communication architectures,”
in Proc. Design Automation Conf., June 2005.

[66] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Proc. Design Automation Conf.,
June 2001, pp. 684–689.

[67] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: a power-
performance simulator for interconnection networks,” in Proc.

Int. Symp. Microarchitecture, Nov. 2002, pp. 294–305.
[68] L. Shang, L.-S. Peh, A. Kumar, and N. K. Jha, “Thermal mod-

eling, characterization and management of on-chip networks,” in
Proc. Int. Symp. Microarchitecture, Dec. 2004, pp. 67–80.

15

http://robertdick.org/publications/gu05jun.pdf
http://robertdick.org/publications/gu05jun.pdf
http://robertdick.org/publications/gu05jun.pdf
http://robertdick.org/publications/yang06mar.pdf
http://robertdick.org/publications/yang06mar.pdf
http://www.eembc.org
http://www.eembc.org
http://robertdick.org/tools.html
http://robertdick.org/publications/dick00jan.pdf
http://robertdick.org/publications/dick00jan.pdf
http://robertdick.org/publications/dick00jan.pdf
http://robertdick.org/publications/dick99mar.pdf
http://robertdick.org/publications/dick99mar.pdf

	Introduction
	Architectural synthesis overview 

	Challenges of low-power synchronous system synthesis and design 
	Power overview 
	Operating voltage oriented techniques 
	Switched capacitance-oriented techniques 
	Leakage power techniques 
	Temperature-oriented techniques 
	Potential of power optimization at different design levels

	Low-power behavioral synthesis 
	Dynamic power optimization
	Physical-aware power optimization
	Leakage power optimization
	Thermal optimization

	Low-power system synthesis 
	Low-power hardware-software co-synthesis algorithms
	Low-power system-on-chip synthesis algorithms

	Commercial products 
	Conclusions 
	References

