Digital Integrated Circuits - EECS 312
 http://robertdick.org/eecs312/

Teacher:	Robert Dick	GSI:	Shengshou Lu
Office:	$2417-$ E EECS	Office:	2725 BBB
Email:	dickrp@umich.edu	Email:	luss@umich.edu
Phone:	$734-763-3329$		
Cellphone:	$847-530-1824$		

Latches and flip-flops
Memory array structures
Memory array structures
Dynamic random access memory
Homework
Reset/set latches
Clocking conventions
D flip-flop
Other memory elements

Combinational vs. sequential logic

- No feedback between inputs and outputs - combinational
- Outputs a function of the current inputs, only
- Feedback - sequential

plain old combinational logic

Flip-flop introduction

- Outputs depend on current state and (maybe) current inputs
- Next state depends on current state and input
- For implementable machines, there are a finite number of states
- Synchronous
- State changes upon clock event (transition) occurs
- Asynchronous
- State changes upon inputs change, subject to circuit delays

\section*{| Latches and flip-flops | Reset/set latches |
| :---: | :--- |
| Memory array structures | $\begin{array}{l}\text { Remory array structures } \\ \text { Clocking conventions } \\ \text { D flip-flop } \\ \text { Mer }\end{array}$ |
| Dynamic random access memory | |
| Homework | |}

Introduction to sequential elements

- Stores, and outputs, a value
- Puts a special clock signal in charge of timing
- Allows output to change in response to clock transition.
- More on this later.
- Timing and sequential circuits
- Feedback and memory.
- Memory.
- Latches.

- Feedback or physical state are the root of memory.
- Can compose a simple loop from inverters.
- However, there is no way to switch the value.

Bistability

- Can break feedback path to load new value
- However, potential for timing problems

Latches and flip-flops Memory array structures Memory array structures Dynamic random access memory Homework	Reset/set latches Clocking conventions D flip-flop Other memory elements
Reset/set latch	

- Can break feedback path to load new value.
- How can this be made more area-efficient?
- Resize transistors, remove transistors, use state?
Reset/set timing

Reset/set latches
Clocking conventions
D flip-flop
Other memory elements
Other memory elements

RS latch state diagram

Reset/set latches Clocking conventions
 D flip-flop Other memory elements

Gated RS latch

Active-high transparent
Active-low transparent

Positive (rising) edge

Negative (falling) edge

Latches and flip-flops Memory array structures Memory array structures
Dynamic random raccess memory
Homework
:---:
Clocking conventions
D flip-flop
Other memory elements

- Minimum clock width, T_{W}
- Usually period / 2
- Low to high propegation delay, $P_{L H}$
- High to low propegation delay, $P_{H L}$
- Worst-case and typical

Example, negative (falling) edge-triggered flip-flop timing diagram

Example, positive (rising) edge-triggered flip-flop timing diagram

Minimum clock width, T_{W}

- Usually period / 2
- Low to high propagation delay, $P_{L H}$
- High to low propagation delay, $P_{H L}$

Falling edge-triggered D flip-flop		

- Use two stages of latches
- When clock is high
- First stage samples input w.o. changing second stage
- Second stage holds value
- When clock goes low
- First stage holds value and sets or resets second stage
- Second stage transmits first stage
- $Q^{+}=D$
- One of the most commonly used flip-flops

	Latches and flip-flops Memory array structures Memory array structures Dynamic random access memory Homework	Reset/set latches Clocking conventions D flip-flop Other memory elements
RS clocked	atch	

| Letches and flip-flops |
| :---: | :--- |
| Memory array structures |
| Memory array structures |\quad| Reset/set latches |
| :--- |
| Clocking conventions |
| D flipp-fop |
| Other memory elements |

- Storage element in narrow width clocked systems.
- Dangerous.
- Fundamental building block of many flip-flop types.
- Minimizes input wiring.
- Simple to use.
- Common choice for basic memory elements in sequential circuits.

Latches and flip-flops Memory array structures Memory array structures	Reset/set latches Clocking conventions D flip-flop Dyamic random access memory Homework

- State changes each clock tick
- Useful for building counters
- Can be implemented with other flip-flops
- D with XOR feedback

Asynchronous inputs

- How can a circuit with numerous distributed edge-triggered flip-flops be put into a known state?
- Could devise some sequence of input events to bring the machine into a known state.
- Complicated.
- Slow.
- Not necessarily possible, given trap states.
- Can also use sequential elements with additional asynchronous reset and/or set inputs.

- A logic stage is an RC network
- Whenever a transition occurs, capacitance is driven through resistance
- Consider the implementation of a CMOS inverter

- Mechanical switches bounce!
- What happens if multiple pulses?
- Multiple state transitions
- Need to clean up signal

- What are $t_{s u}$ and t_{h} ?
- Define
- Level-sensitive.
- Edge-triggered.
- Latch.
- Flip-flop.
- What is the symbol for a falling edge triggered D flip-flop?
- Show a circuit design for a Schmitt-trigger inverter.

		Reset/set latches Clocking conventions D flip-flop Other memory elements
Distributed loads and Elmore delay		

	Reset/set latches Clocking conventions Other memory elements
More on transistor sizing	

Derive the propagation delay of an aluminum wire that is 2 cm long and 500 nm wide. Does using a lumped model introduce significant error? You may assume a sheet resistance of $0.075 \Omega / \square$. Derive the propagation delay of a copper wire with the same shape. State, and verify, any assumptions.

$$
f(a, b, c)=\overline{a b+c}
$$

Derive and explain.
Derive and explain.

Volatile memory | Latches and flip-flops |
| ---: |
| Memory array structures |
| Memory array structures |
| Dynamic random access memory |
| Homework |

- ROM.
- EPROM.
- EEPROM.
- Flash.
Latches and flip-flops

Memory array structures
Memory array structures
Dynamic random access memory
Homework

Floating gate technology

- UV erase.
- Electrical erase.
- Block erase.

Hot floating gate implementation

- Was once difficult to design uniform-thickness thin oxide layers.
- Tunneling-based programming was difficult.
- Avalanche injection (hot electron) based programming used.
- UV erasure.
- Pure tunneling later became practical (EEPROM).
- Flash uses hot electrons for programming and tunneling for erasing.

- What are the different ways a floating-gate memory cell can be erased?
- What are the different ways a floating-gate memory cell can be programmed?
- What are the two main DRAM bit cell organizations, and their advantages?
- Why is it difficult to economically put DRAM on the same die as a processor?
- Why are decoders and MUXs used in memory arrays?

Derive and explain.
SRAM Timing
Self-timed

NOR ROM layout

Program using active layer.

Program using contacts.

NAND ROM layout

DRAM

Write: C_{s} is charged or discharged by asserting WL and BL.

Robert Dick Digital Integrated Circuits

 Latches and flip-flopsMemory array structures
Memory array structures
Dynamic random access memory

Latch sense amplifier

Useful for DRAM.

> Useful for SRAM, can use two stages.

64 Robert Dick Digital Integrated Circuits

Robert Dick Digital Integrated Circuits

Homework assignment I

- 31 October: Read Sections 6.3 and 7.1 in J. Rabaey,
A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A Design Perspective.
Prentice-Hall, second edition, 2003.
- 7 November: Read Sections 7.2.2, 7.2.3, 7.3.1, 7.3.2, and 7.6.1
in J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A Design Perspective.
Prentice-Hall, second edition, 2003.
- 7 November: Project 4.

Homework assignment II

- 12 November: Read Sections 12.1.1, 12.1.2, and 12.2.1 in
J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A Design Perspective.
Prentice-Hall, second edition, 2003.
- 14 November: Read Sections 12.3.1, 12.3.2, 12.2.2, and 12.2.3 in
J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated

Circuits: A Design Perspective
Prentice-Hall, second edition, 2003.

- 16 November: Homework 4.

