Digital Integrated Circuits – EECS 312

http://robertdick.org/eecs312/

Teacher: Robert Dick GSI: Shengshou Lu
Office: 2417-E EECS Office: 2725 BBB
Email: dickrp@umich.edu Email: luss@umich.edu

Phone: 734–763–3329 Cellphone: 847–530–1824

Lecture plan

- 1. Lab one
- 2. Desired transistor behavior
- 3. Homework

Lab one challenges

- Learning to use the tools (last Friday).
- Understanding the circuits used in the lab (today).
- A note on the CAD tools market.

Derive and explain.

NMOS inverter schematic

Resistance

$$R = \rho \frac{L}{W} \tag{1}$$

$$G = \sigma \frac{W}{I} \tag{2}$$

$$G = \frac{1}{R} \tag{3}$$

$$\sigma = \frac{1}{\rho} \tag{4}$$

- Assuming fixed height.
- R: resistance.
- ρ : resistivity.
- L: length.
- W: width.
- G: conductance.

NMOS inverter simulation results

RC network

$$V_c = V_{final} + (V_{init} - V_{final}) e^{\frac{-t}{\tau}}$$
 (5)

$$\tau = RC \tag{6}$$

NMOS→CMOS inverter

- How does structure change?
- What impact does transistor width have? Why different widths?
- How does response change?
- What are advantages?
- What are disadvantages?

Derive and explain.

Review questions and note

- What are digital systems built from?
- What gate properties are required for use in digital systems?Why?
- What have the major effects of process scaling been? What challenges does it face in the future?
- What are the physical structures and symbols of (N/P)MOSFETs? How do they work?

Lecture plan

- 1. Lab one
- 2. Desired transistor behavior
- 3. Homework

Desired and actual properties of transistors

Desired properties

- Perfect digital signal transfer.
- No parasitics.

Actual properties

- Imperfect transfer function.
 - Fortunately, has gain and capable of signal regeneration (restoration).
- Parasitic resistance and capacitance.
- Leakage.

Brief introduction to Boolean algebra

- The only values are 0 (or false) and 1 (or true).
- One can define operations/functions/gates.
 - Boolean values as input and output.
- A truth table enumerates output values for all input value combinations.

AND

а	b	a∧b
0	0	0
0	1	0
1	0	0
1	1	1

$$a AND b = a \wedge b = a b$$

OR

а	b	a + b
0	0	0
0	1	1
1	0	1
1	1	1

$$a OR b = a \lor b = a + b$$

NOT

$$\begin{array}{c|c}
a & \overline{a} \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

$$NOT a = \overline{a}$$

NAND gate

 Therefore, NAND and NOR gates are used in CMOS design instead of AND and OR gates

NAND gate

 Therefore, NAND and NOR gates are used in CMOS design instead of AND and OR gates

NAND layout

NOR operation

NOR operation

NOR operation

CMOS transmission gates (switches)

- NMOS is good at transmitting 0s
 - Bad at transmitting 1s
- PMOS is good at transmitting 1s
 - Bad at transmitting 0s
- To build a switch, use both: CMOS

Other TG diagram

Logic gates vs. TGs

- What can each be used to implement?
- How to decide which to use?

Upcoming topics

- Diodes.
- Transistor static behavior.
- Transistor dynamic behavior.

Lecture plan

- 1. Lab one
- 2. Desired transistor behavior
- 3. Homework

Homework assignment and announcement

- 12 September: Read Section 3.3.2 in J. Rabaey,
 - A. Chandrakasan, and B. Nikolic. *Digital Integrated Circuits: A Design Perspective*.
 - Prentice-Hall, second edition, 2003.
- 17 September: Laboratory assignment one.