Pass-Transistor Logic and Dynamic Logic

1

PTL AND Gate

NMOS-only Switch

V_B does not pull up to 2.5V, but 2.5V - V_T

Threshold voltage loss causes static power consumption

NMOS has higher threshold than PMOS (body effect)

NMOS Only Logic: Level Restoring Transistor

- Advantage: Full Swing
- Restorer adds capacitance, takes away pull down current at X
- Ratio problem

5

Restorer Sizing

- Upper limit on restorer size
- Pass-transistor pull-down can have several transistors in stack

Solution 2: Single Transistor Pass Gate with $V_T=0$

WATCH OUT FOR LEAKAGE CURRENTS

-

Solution 3: Transmission Gate

Dynamic CMOS

- In static circuits at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
 - fan-in of n requires 2n (n N-type + n P-type) devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
 - requires on n + 2 (n+1 N-type + 1 P-type) transistors

11

Dynamic Gate

Two phase operation
Precharge (CLK = 0)
Evaluate (CLK = 1)

Conditions on Output

- Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.
- Inputs to the gate can make at most one transition during evaluation.
- Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C₁

Properties of Dynamic Gates

- Logic function is implemented by the PDN only
 - number of transistors is N + 2 (versus 2N for static complementary CMOS)
- Full swing outputs (V_{OL} = GND and V_{OH} = V_{DD})
- Non-ratioed sizing of the devices does not affect the logic levels
- Faster switching speeds
 - reduced load capacitance due to lower input capacitance (C_{in})
 - reduced load capacitance due to smaller output loading (Cout)
 - no $I_{\text{sc}\prime}$ so all the current provided by PDN goes into discharging C_L

15

Properties of Dynamic Gates

- Overall power dissipation usually higher than static CMOS
 - no static current path ever exists between $\rm V_{DD}$ and GND (including $\rm P_{sc})$
 - no glitching
 - higher transition probabilities
 - extra load on Clk
- PDN starts to work as soon as the input signals exceed
 V_{Tn}, so V_M, V_{IH} and V_{II} equal to V_{Tn}
 - low noise margin (NM₁)
- Needs a precharge/evaluate clock

Issues in Dynamic Design 1: Charge Leakage

Dominant component is subthreshold current

17

Solution to Charge Leakage

Same approach as level restorer for pass-transistor logic