1. (5 pts.) \(k_n = \frac{W_{\mu n} \epsilon_{ox}}{L_{ox}} \) When the move from SiO\(_2\) to high-\(\kappa\) gate dielectric occurred, what qualitative changes were made to the variables upon which \(k_n \) depends? Use only a few sentence fragments for your answer.

\[\epsilon_{ox} \uparrow, t_{ox} \uparrow. \]

Note: If you didn’t get this one, please read the Spectrum article. It is a very fun article!

2. (10 pts.) Consider a static CMOS gate implementing the following function:

\[f(a, b, c) = ab + \overline{bc} \]

This gate is subjected to the following transition \(a = 1, b = 0, c = 1 \to a = 1, b = 1, c = 1 \). Will the gate’s dynamic energy consumption be greater if its inputs come from other standard static CMOS gates and inverters, or from DCVSL gates? Use one sentence to explain why. You may also use a schematic if that makes your answer clearer.

Any answer expressing the possible relationship between different transition times for \(b \) and \(\overline{b} \) when implemented using standard static CMOS gates and inverters, but not for DCVSL, and output glitching for \(f \) received credit. With DCVSL, the two will change at approximately the same time. With standard static CMOS gates and inverters, one will switch significantly before the other (plus the delay of an inverter). If \(b \) switches before \(\overline{b} \), this will cause the output of \(f \) to briefly glitch to 0.

Note: Do not be very concerned if you did not have this answer: few did. In retrospect, I believe I wrote this question badly. I will give more details on such potentially-ambiguous questions in future exams.
3. (10 pts.) Given process variation resulting in a Gaussian distribution of threshold voltage around its nominal value, will total integrated circuit sub-threshold leakage power consumption be higher, the same, or lower than that of an integrated circuit in which all transistors have nominal threshold voltages? Use at most two sentences to explain why.

Total leakage is likely to be higher. Leakage power is proportional to $\frac{e^{-\Delta V_T}}{e^{\Delta V_T}}$. Thus a given decrease in V_T results in a big increase in leakage power while the same increase in V_T results in a small decrease in leakage power.

4. (10 pts.) Determine the high-to-low propagation delay for an inverter with a 500 nm wide NMOSFET and a 1 µm wide PMOSFET with its output connected to another identical inverter. Assume the default 250 nm process. Do consider overlap capacitance. Recall that it is necessary to consider both bottom and sidewall capacitance. You may neglect the resistance and capacitance of the wire connecting the two inverters. Note that the switch model reference table gives values for W/L = transistors. Show your work.
Find $t_{p,HL}$ for V_{out}

$V_{dd} = 2.5V$

$t_{p,HL} = R_h C_L$

R_h is Reg of M_2

For $\text{nmos} \ W = L = 0.25\mu m$, $\text{Reg} = 13\, k\Omega$

For $W = 0.5\mu m$, $\text{Reg} = 6.5\, k\Omega$

C_L is composed of gate-channel and overlap cap for the second inverter (M_3 and M_4) and drain-junction and gate-drain cap for the second inverter (M_1 and M_2).

$C_{gms} = C_{ox}\cdot WL = 6\times 1\cdot 0.25 = 0.5\, \text{fF}$

$C_{ovm2} = C_{sox} + C_{so} = 2\cdot C_{ox}\cdot W = 2\cdot 0.27\cdot 1 = 0.54\, \text{fF}$

$C_{gmv} = C_{ox}\cdot WL = 6\times 0.5\cdot 0.25 = 0.75\, \text{fF}$

$C_{ovm4} = C_{ox}\cdot WL = 6\times 0.5\cdot 0.25 = 0.75\, \text{fF}$

$C_{gdm1} = C_{ox}\cdot W = 0.27\cdot 1 = 0.27\, \text{fF}$

Miller effect: Convert to cap to ground

$C_{gd1} = 2\cdot C_{gdm1}$

$= 0.54\, \text{fF}$

$C_{gd2} = C_{ox}\cdot W = 0.31\cdot 0.5 = 0.155\, \text{fF}$

Miller effect

$C_{gd2} = 2\cdot C_{gdm2}$

$= 0.31\, \text{fF}$
5. (10 pts.) Assuming the default 250 nm process, determine the minimum and maximum percentage change in subthreshold leakage current of a minimal-width NMOSFET given that the threshold voltage may deviate by 0.1 V from the nominal in either direction. You may assume that $n = 1.5$.

\[C_{d,w} = C_{d,t} + C_{d,w,1} \]
\[= C_{j}(W-L_{\text{diff}}) + C_{jsw}(2L_{\text{diff}} + W) \]

Note that we forgot to specify L_{diff} (length of the drain diffusion region). If you used 0.25 um (channel length) we did not take off points, even though it is incorrect. An appropriate value for L_{diff} is 3L_{\text{chan}} or 0.75 um.

\[= 1.9(1.0.75) + 0.22(2.0.75 + 1) \]
\[= 1.975 \text{ FF} \]

\[C_{d,max} = C_{j}(W-L_{\text{diff}}) + C_{jsw}(3L_{\text{diff}} + W) \]
\[= 2.0(0.5 - 0.75) + 0.28(2.0.75 + 0.5) \]
\[= 1.31 \text{ FF} \]

\[C_L = C_{ch} + C_{cgs} + C_{cgs,1} + C_{cgs,2} + C_{d,w} + C_{d,w,1} \]
\[= 1.5 + 0.75 + 0.54 + 0.31 + 0.54 + 0.31 + 1.975 + 1.31 \text{ FF} \]
\[= 7.235 \text{ FF} \]

\[t_{ph} = 0.69 \cdot R_H \cdot C_L \]
\[= 0.69 \cdot 65 \cdot 10^6 \cdot 7.235 \text{ FF} \]
\[= 32.5 \text{ ps} \]

Note about drain-junction caps:
In this solution, we use the pessimistic junction cap equation
\[C_{j}(W-L) + C_{jsw}(2L + W) \]
As the junction diode reverse bias increases, the capacitance actually decreases. Page 195 in the textbook presents a linear model for this effect, where the junction cap is scaled by a Bieg value. Bieg ranges from ~0.6 to ~0.8. See example 5.3 for an explanation of how to use this to more accurately determine C_L for this problem.
Let $\sigma = 1 - e^{-\frac{V_{DS}}{kT}}$ \hspace{1cm} (1)

$I_{D}^{\text{nominal}} = I_S e^{\frac{V_{GS}}{kT}} \sigma$ \hspace{1cm} (2)

$I_{D}^{\text{nominal}} = I_S e^{\frac{V_{DS}}{15.25\text{mV}}} \sigma$ \hspace{1cm} (from table) \hspace{1cm} (3)

$I_{D}^{\text{nominal}} = I_S e^{25.6 \cdot 0} \sigma$ \hspace{1cm} (4)

$I_{D}^{\text{nominal}} = I_S \sigma$ \hspace{1cm} (5)

$I_{D}^\text{low} = I_S e^{25.6 - 0.1} \sigma$ \hspace{1cm} (6)

$I_{D}^\text{low} = I_S e^{-2.56} \sigma$ \hspace{1cm} (7)

$I_{D}^\text{low} = I_S \cdot 0.0773 \cdot \sigma$ \hspace{1cm} (from plot) \hspace{1cm} (8)

$I_{D}^\text{high} = I_S e^{25.6 \cdot 0.1}$ \hspace{1cm} (9)

$I_{D}^\text{high} = I_S e^{2.56} \sigma$ \hspace{1cm} (from plot) \hspace{1cm} (10)

$I_{D}^\text{high} = I_S \cdot 12.9 \cdot \sigma$ \hspace{1cm} (11)

$\Delta I_{D}^\text{low} = \frac{I_{D}^\text{low} - I_{D}^{\text{nominal}}}{I_{D}^{\text{nominal}}}$ \hspace{1cm} (12)

$\Delta I_{D}^\text{low} = \frac{I_S \cdot 0.0773 \cdot \sigma - I_S \sigma}{I_S \sigma}$ \hspace{1cm} (13)

$\Delta I_{D}^\text{low} = 0.0773 - 1 = -0.923 = -92.3\%$ \hspace{1cm} (14)

$\Delta I_{D}^\text{high} = \frac{I_{D}^\text{high} - I_{D}^{\text{nominal}}}{I_{D}^{\text{nominal}}}$ \hspace{1cm} (15)

$\Delta I_{D}^\text{high} = \frac{I_S \cdot 12.9 \cdot \sigma - I_S \sigma}{I_S \sigma}$ \hspace{1cm} (16)

$\Delta I_{D}^\text{high} = 12.9 - 1 = 11.9 = 1190\%$ \hspace{1cm} (17)

6. (10 pts.) Determine the Elmore delay from Node a to Node b in the following circuit.

\[\tau_{ab} = R_1(C_1+ C_2+C_3+ C_4+C_5) + R_2(C_2+C_3+C_4+C_5)+ R_4(C_4+C_5) \] \hspace{1cm} (18)
7. **(10 pts.)** Show the circuit diagram for a static CMOS implementation of the following function sized to have the same resistance to ground and V_{DD} as an inverter with a W wide NMOSFET and an $2W$ wide PMOSFET. You may assume access to complemented and uncomplemented input literals, i.e., a and \overline{a}.

$$f(a, b, c) = (ab + \overline{a}b)c$$

8. **(0 pts.)** Was this exam □ tricky and surprising or did it □ fairly closely follow the material we focused on in class?

Note: Problem 2 was trickier than I intended it to be, and I intend to be clearer in the future. Problem 4 was somewhat tedious, but you shouldn’t be surprised to see a tedious problem again in the future.

<table>
<thead>
<tr>
<th></th>
<th>C_{OX} $(fF/\mu m^2)$</th>
<th>C_O $(fF/\mu m)$</th>
<th>C_j $(fF/\mu m^2)$</th>
<th>m_j</th>
<th>ϕ_b (V)</th>
<th>C_{jsw} $(fF/\mu m)$</th>
<th>m_{jsw}</th>
<th>ϕ_{bsw} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS</td>
<td>6</td>
<td>0.31</td>
<td>2</td>
<td>0.5</td>
<td>0.9</td>
<td>0.28</td>
<td>0.44</td>
<td>0.9</td>
</tr>
<tr>
<td>PMOS</td>
<td>6</td>
<td>0.27</td>
<td>1.9</td>
<td>0.48</td>
<td>0.9</td>
<td>0.22</td>
<td>0.32</td>
<td>0.9</td>
</tr>
</tbody>
</table>
MODELS FOR CMOS DEVICES

CMOS (0.25 μm) – Unified Model.

<table>
<thead>
<tr>
<th></th>
<th>V_{th} (V)</th>
<th>γ (V)</th>
<th>V_{sat} (V)</th>
<th>k' (A/V^2)</th>
<th>λ (V^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS</td>
<td>0.43</td>
<td>0.4</td>
<td>0.63</td>
<td>115×10^{-6}</td>
<td>0.06</td>
</tr>
<tr>
<td>PMOS</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-1</td>
<td>-30×10^{-6}</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

CMOS (0.25 μm) – Switch Model (R_{eq})

<table>
<thead>
<tr>
<th>V_{gs} (V)</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS (kΩ)</td>
<td>35</td>
<td>19</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>PMOS (kΩ)</td>
<td>115</td>
<td>55</td>
<td>38</td>
<td>31</td>
</tr>
</tbody>
</table>

CMOS (0.25 μm) – BSIM Model

See Website: http://bwrc.eecs.berkeley.edu/leBook
Values of Material and Physical Constants

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room temperature</td>
<td>T</td>
<td>300 (≈ 27°C)</td>
<td>K</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>k</td>
<td>1.38×10^{-23}</td>
<td>J/K</td>
</tr>
<tr>
<td>Electron charge</td>
<td>q</td>
<td>1.6×10^{-19}</td>
<td>C</td>
</tr>
<tr>
<td>Thermal voltage</td>
<td>$\varphi = kTq$</td>
<td>26</td>
<td>mV (at 300 K)</td>
</tr>
<tr>
<td>Intrinsic Carrier Concentration (Silicon)</td>
<td>n_i</td>
<td>1.5×10^{10}</td>
<td>cm$^{-3}$ (at 300 K)</td>
</tr>
<tr>
<td>Permittivity of Si</td>
<td>ε_a</td>
<td>1.05×10^{12}</td>
<td>F/cm</td>
</tr>
<tr>
<td>Permittivity of SiO$_2$</td>
<td>ε_m</td>
<td>3.5×10^{13}</td>
<td>F/cm</td>
</tr>
<tr>
<td>Resistivity of Al</td>
<td>ρ_{Al}</td>
<td>2.7×10^{-8}</td>
<td>Ω-m</td>
</tr>
<tr>
<td>Resistivity of Cu</td>
<td>ρ_{Cu}</td>
<td>1.7×10^{-8}</td>
<td>Ω-m</td>
</tr>
<tr>
<td>Magnetic permeability</td>
<td>μ_0</td>
<td>12.6×10^{-7}</td>
<td>Wb/Am</td>
</tr>
<tr>
<td>of vacuum (similar for SiO$_2$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed of light</td>
<td>c_0</td>
<td>30</td>
<td>cm/ns</td>
</tr>
<tr>
<td>(in vacuum)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed of light</td>
<td>c_{SiO_2}</td>
<td>15</td>
<td>cm/ns</td>
</tr>
</tbody>
</table>
FORMULAS AND EQUATIONS

Diode

\[I_D = I_s (e^{V_D/V_T} - 1) = \frac{q}{eT} \]

\[C_D = \frac{C_0}{(1 - V_D/qT)^n} \]

\[R_{eq} = \frac{(V_{DSS} - V_{in})(1 - n)}{(\phi_d - V_{thd})^n - (\phi_d - V_{in})^n} \]

MOS Transistor

\[V_T = V_{TT} + \ln(\frac{-2\phi_p + V_{DS} - \sqrt{4\phi_p^2 + V_{DS}^2}}{2}) \]

\[I_D = \frac{V}{2} (V_{GS} - V_T)(1 + \lambda V_{DS}) \] (sat)

\[I_D = \frac{V}{2} (V_{GS} - V_T) \frac{V_{DSAT}}{2} (1 + \lambda V_{DS}) \] (velocity sat)

\[I_D = \frac{V}{2} \frac{W}{L} \left(V_{GS} - V_T - V_{thd} \right) \] (triode)

\[I_D = I_s e^{V_{GS}/V_T} \left(1 - e^{-V_{thd}/V_T} \right) \] (subthreshold)

Deep Submicron MOS Unified Model

\[I_D = 0 \text{ for } V_{GT} \leq 0 \]

\[I_D = \frac{W}{L} \left(V_{GS} - V_{thd} \right) \frac{V_{DSAT}}{2} (1 + \lambda V_{DS}) \text{ for } V_{GT} \geq 0 \]

with \(V_{thd} = \min(V_{GT}, V_{DD}, V_{DSAT}) \) and \(V_{GT} = V_{GS} - V_T \)

MOS Switch Model

\[R_s = \frac{1}{\frac{I_D}{V_D} + \frac{V_{DSAT}}{2}} \]

\[= \frac{1}{\frac{V_{DS}}{2} (1 + \lambda V_{DSAT})} \]

\[= \frac{1}{4I_{DSAT} \left(1 - \frac{V_{DS}}{2} \right)} \]

Inverter

\[V_{OS} = f(V_{OL}) \]

\[V_{OL} = f(V_{OS}) \]

\[V_{H} = f(V_{IH}) \]

\[t_p = 0.69 R_{eq} C_L \left(\frac{V_{мен}}{2} \right) \]

\[P_{oss} = C_L V_{DD} V_{soon} \]

\[P_{on} = \frac{V_{DD}^2}{2} \]

Static CMOS Inverter

\[V_{OS} = V_{DD} \]

\[V_{OL} = GND \]

\[V_{H} = \frac{V_{DD}}{1 + r} \] with \(r = \frac{V_{DSS}}{V_{DD}} \)

\[V_{IL} = V_{H} - \frac{g}{2} \]

\[V_{IL} = V_{H} - \frac{V_{OS} - V_{OL}}{g} \]

with \(g = \frac{V_{H} - V_{IL} - V_{DSAT}/2}{(\lambda_0 - \lambda_0)} \)

\[t_p = \frac{C_L V_{DD}^2}{2} \]

\[P_{on} = C_L V_{DD}^2 \]

Interconnect

Lumped RC: \(t_p = 0.69 RC \)

Distributed RC: \(t_p = 0.38 RC \)

RC-chain:

\[\tau_n = \sum_{i=1}^{N} \sum_{j=1}^{M} C_i \sum_{i=1}^{N} R_j \]

Transmission line reflection:

\[\rho = \frac{V_{c}}{V_{in}} = \frac{1}{t_p} = \frac{R - Z_0}{R + Z_0} \]

CMOS COMBINATIONAL LOGIC

Transistor Sizing using Logical Effort

\[F = \frac{C_L}{C_e} = \prod_{i=1}^{N} \frac{f_i}{b_i} \]

\[G = \prod_{i=1}^{N} b_i \]

\[D = \frac{t_{on}}{t_p} \sum_{j=1}^{M} \frac{f_j + f_j}{b_j} \]

\[B = \prod_{i=1}^{N} b_i \]

\[H = FGB \]

\[D_{mix} = \frac{t_{off}}{t_p} \left(\sum_{j=1}^{M} p_j + \frac{N(N-1)}{2} \right) \]