Advanced Digital Logic Design - EECS 303
http://ziyang.eecs. northwestern.edu/eecs303/

Teacher:	Robert Dick
Office:	L477 Tech
Email:	dickrp@northwestern.edu
Phone:	$847-467-2298$

NORTHWESTERN UNIVERSITY

Under all possible combinations of input values

- Each output must be connected to an input value
- No output may be connected to conflicting input values

- Metal Oxide Semiconductor
- Positive and negative carriers
- Complimentary MOS
- PMOS gates are like normally closed switches that are good at transmitting only true (high) signals
- NMOS gates are like normally open switches that are good at transmitting only false (low) signals
- A switch shorts or opens two points dependant on a control signal
- Used as models for digital transistors
- Why is using normally open and normally closed particularly useful for CMOS?
- NMOS and PMOS transistors easy to model

- Normally closed switches that transmit false signals well
- Normally open switches that transmit true signals well

Therefore, NAND and NOR gates are used in CMOS design instead of $A N D$ and $O R$ gates

- Basic device in NMOS and PMOS (CMOS) technologies
- Can be used to construct any logic gate

- NMOS turns on when the gate is high
- PMOS just like NMOS, with N and P regions swapped
- PMOS turns on when the gate is low
- NMOS good at conducting low (0s)
- PMOS good at conducting high (1s)
- Use NMOS and PMOS transistors together to build circuits - Complementary metal oxide silicon (CMOS)

	Switches CMOS AND and OR are harder than NAND and NOR Transmission gates
NOR operation	

- V_{T}, or threshold voltage, is commonly 0.7 V
- NMOS conducts when $V_{G S}>V_{T}$
- PMOS conducts when $V_{G S}<-V_{T}$
- What happens if an NMOS transistor's source is high?
- Or a PMOS transistor's source is low?
- Alternatively, if one states that $V_{T N}=0.7 \mathrm{~V}$ and $V_{T P}=-0.7 \mathrm{~V}$ then NMOS conducts when $V_{G S}>V_{T N}$ and PMOS conducts when $V_{G S}<V_{T P}$

- If an NMOS transistor's input were $V_{D D}$ (high), for $V_{G S}>V_{T N}$, the gate would require a higher voltage than $V_{D D}$
- If an PMOS transistor's input were $V_{S S}$ (low), for $V_{G S}<V_{T P}$, the gate would require a lower voltage than $V_{S S}$

- NMOS is good at transmitting 0s - Bad at transmitting 1 s
- PMOS is good at transmitting 1s - Bad at transmitting 0 s
- To build a switch, use both: CMOS

- Anything. . . try some examples.

- Delay between input and output changes
- Delay is sensitive to circuit path
- Outputs may temporarily be incorrect before stabilizing
- Glitches - caused by hazards

- The Mentor Graphics CAD system has many components
- You will use a portion of the tools in this course
- Falcon Design Framework
- Design Architect for entering logic designs
- Quicksim for simulating the designs
- QuickHDL for entering and simulating the VHDL designs
- You will soon be working on lab 1, a Mentor Graphics tutorial

- Walks you through the design and simulation of an exclusive-or (XOR) gate
- Due on 2 October
- Start early, especially if you are not familiar with Unix
- This lab requires a lot of tasks that are extremely easy the second time you do them, but slow and error-prone the first time through

Full adder composed of half adder blocks

Full adder block

- Structural organization of the design
- Hierarchical functional black boxes with input/output connections
- Concentrates on how the components are organized by wiring

- Typing "source /vol/ece303/mgc.env" in the ECE filesystem will set up environment for ECE 303 labs
- Typing "dmgr" for Design Manager will open a window allowing several other Mentor Graphics to be run
- Mentor Graphics is not a single tool tool but a series of design tools that uses object oriented data representation to simplify the design process

- Data created in one tool (e.g., Design Architect) can be exported to another tool (e.g., Quicksim) for simulation
- A schematic is a diagram of a circuit
- Warning: Don't use OS commands to move directories or files
- Design Manager needs to update other files when things are moved

$a-\square$

Data created by Design Architect is saved as components

- Models describing functional and graphical aspects
- Component data is composed of a schematic and a symbol
- A symbol is a graphical model with input and output pins
- A schematic is a functional model describing the relationship between output and input values

- Set of elements, B
- Binary operators, $\left\{\left[\mathrm{AND}, \wedge,{ }^{*}, \cdot\right],[\mathrm{OR}, \vee,+]\right\}$
- We'll prefer • and +
- frequently omitted
- Unary operator, [NOT, ', \bar{o}]

$$
\exists x, y \in B \text { s.t. } x \neq y
$$

distributive laws $\forall x, y, z \in B \quad x+(y z)=(x+y)(x+z)$
$x(y+z)=x y+x z$
compliment $\quad x \in B \quad x \bar{x}=0$
$x+\bar{x}=1$

$$
\begin{array}{r}
\overline{a+b c} \\
\bar{a} \cdot \overline{(b c)} \\
\bar{a} \cdot(\bar{b}+\bar{c})
\end{array}
$$

- Those xs could be functions
- Apply in stages
- Top-down

$$
\begin{array}{c|c|c}
\mathrm{a} & \mathrm{~b} & \mathrm{a} b \\
\hline 0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}
$$

a $A N D \mathrm{~b}=\mathrm{a} \mathrm{b}$
Will show Karnaugh map later

a	b	$\mathrm{a}+\mathrm{b}$
0	0	0
0	1	1
1	0	1
1	1	1

a $O R \mathrm{~b}=\mathrm{a}+\mathrm{b}$

$Z=((C+D) \bar{B}) \bar{A}$

$Z=(C+D) \bar{A} \bar{B}$

Prove $X Y+X \bar{Y}=X$

$$
\begin{array}{rlr}
X Y+X \bar{Y} & =X(Y+\bar{Y}) & \text { distributive law } \\
X(Y+\bar{Y}) & =X(1) & \text { complementary law } \\
X(1) & =X & \text { identity law }
\end{array}
$$

NOT $\mathrm{a}=\overline{\mathrm{a}}$

- Minimize literal count (related to gate count, delay)
- Minimize gate count
- Minimize levels (delay)
- Trade off delay for area
- Sometimes no real cost

Prove $X+X Y=X$

$$
\begin{array}{rlr}
X+X Y & =X 1+X Y & \text { identity law } \\
X 1+X Y & =X(1+Y) & \text { distributive law } \\
X(1+Y) & =X 1 & \text { identity law } \\
X 1 & =X & \text { identity law }
\end{array}
$$

	Transistors in digital systemsHomework Two.level oigic Homework	Boolean algebra Simplification Karnaugh maps
Literals		

- Each appearance of a variable (complement) in expression
- Fewer literals usually implies simpler to implement
- E.g., $Z=A \bar{B} C+\bar{A} B+\bar{A} B \bar{C}+\bar{B} C$
- Three variables, ten literals

- Fundamental attribute is adjacency
- Useful for logic synthesis
- Helps logic function visualization

$(\bar{a} \bar{b})+(a b)$

- Minimize $f(a, b, c, d)=\sum(1,3,8,9,10,11,13)$
- $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=a \bar{b}+\bar{b} d+a \bar{c} d$

- Can be implemented in CMOS

> - More on this later

- X NAND $Y=\overline{X Y}$
- X NOR $Y=\overline{X+Y}$
- Do we need inverters?

Prime implicants are not covered by other implicants Essential prime implicants uniquely cover minterms

For all minterms

- Find maximal groupings of 1 's and X's adjacent to that minterm.
- Remember to consider top/bottom row, left/right column, and corner adjacencies.
- These are the prime implicants.

- Revisit the 1's elements in the K-map
- If covered by single prime implicant, the prime is essential, and participates in final cover.
- The 1's it covers do not need to be revisited.

$(\bar{a}+b) \cdot(a+\bar{b})$

- Minimize $f(a, b, c)=\prod(2,4,5,6)$
- $f(a, b, c)=(\bar{b}+c)(\bar{a}+b)$

$z(a, b, c, d, e, f)=\bar{d} e \bar{f}+a d \bar{e} f+\bar{a} C \bar{d} \bar{f}$

- All specified Boolean values are 0 or 1
- However, during design some values may be unspecified - Don't care values (\times)
- At $\times s$ allow circuit optimization
- Incompletely specified functions allow optimization

- Input can never occur
- This can happen within a circuit
- Some modules will not be capable of producing certain outputs

- Minimize $f(a, b, c, d)=\sum(1,3,8,9,10,11,13)+d(5,7,15)$
- $f(a, b, c, d)=a \bar{b}+d$

[^0]Instead, leave these values undefined (\times)

- Also called Don't Care values

Output will be ignored for certain inputs

- Refer to M. Morris Mano and Charles R. Kime. Logic and Computer Design Fundamentals. Prentice-Hall, NJ, fourth edition, 2008
- http://www.writphotec.com/mano/
- CMOS supplement
- Optimization supplement
- qm.py at http://ziyang.eecs.northwestern.edu/~dickrp/tools.html
- Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman \& Company, NY, 1979
- Chapter 1, Sections 1-5
- Introduces the concept of intractable problems
- Many problems in digital design are intractable
- Too hard to solve optimally in a reasonable amount of time
- Use heuristics

[^0]: - Python and perl

