Robert Dick, Fall '07 Final

1) \(f = \Sigma(0, 1, 2, 5, 6, 7) \)

<table>
<thead>
<tr>
<th>(\Sigma_6)</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\hat{f} &= \bar{a} \bar{b} + b \bar{c} + ac \\
\bar{f} &= \bar{a}b + b \bar{c} + ac \\
f &= \bar{a}b \cdot \bar{b} \cdot ac \\
f &= (a+b)(\bar{b}c)(\bar{a}c)
\end{align*}
\]

Where to start?

Consider two alternatives, after which all subsequent steps are obvious.

Each new column covers at most two rows. Therefore, at least 3 columns required for 6 rows.

\(\Sigma \overline{000}, \overline{010}, 1 \overline{13} \) and \(\Sigma \overline{001}, \overline{011}, 1 \overline{13} \)

Equally good.
2) NP-completeness is the property of problems for which solutions can be checked in polynomial time (in terms of the input size) by a deterministic, i.e., Turing-equivalent abstract machine (oftentimes called a deterministic machine).
3) a) Develop a P-time algorithm
 + fast solution
 - probably impossible
b) try vs. an exponential time algorithm
 + optimal results
 - only finishes for small problem instances
c) Develop an approximation algorithm
 + bounded deviation from optimality
 - can be very difficult
d) Identify previously unknown constraints on problem instances
 of interest to allow P-time algorithm
 - optimal and fast
 - doesn’t always work
e) Develop a fast heuristic
 + may work pretty well much of the time
 - generally hard to bound deviation from optimality
4. Consider whether each cube is relatively essential by cofactoring other cubes by it and checking for tautology.

\[
\begin{array}{c|c|c}
0\times00 & XXX0 & \rightarrow a: x\times\times \\
0\times01 & XXX1 & \rightarrow b: x\times\times \\
x1\times x & \Rightarrow & \quad \quad \quad \quad \text{Tautology} \\
x1\times x & \quad & \quad \\
x1\times x & \quad & \quad \\
x1\times x & \quad & \quad \\
1\times\times x & 000X & \quad \\
\end{array}
\]

\[
\begin{array}{c|c|c}
000x & X0xx & \rightarrow b: x\times\times \\
0\times01 & \quad & \quad \\
x1\times x & \Rightarrow x1xx & \rightarrow b: x\times\times \\
x1\times x & \quad & \quad \quad \quad \text{Tautology} \\
x1\times x & \quad & \quad \\
x1\times x & \quad & \quad \\
1\times\times x & 0x00 & \quad \\
\end{array}
\]

\[
\begin{array}{c|c|c}
000x & x0xx & \rightarrow b: x\times\times \\
0\times00 & \quad & \quad \\
x1\times x & \Rightarrow x1xx & \rightarrow b: x\times\times \\
x1\times x & \quad & \quad \quad \quad \text{Tautology} \\
x1\times x & \quad & \quad \\
x1\times x & \quad & \quad \\
1\times\times x & 0x01 & \quad \\
\end{array}
\]
<table>
<thead>
<tr>
<th>000X</th>
<th>010X</th>
<th>11XX</th>
<th>111X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\overline{b} = \not x \]

\[\text{XXX is relatively essential} \]

Relatively essential \{ XXX \}

Determine which redundant cubes covered by relatively essential cubes:

- O00X | XXX = null
- 0X00 | XXX = null
- 0X01 | XXX = null
- X1XX | XXX = X1XX not tautology
- X11X | XXX = X11X not tautology

None is covered, all are partially redundant
After removing minterms covered by relatively-essential cubes, these remain dominated

minimal covering: \(1\overline{x}x\), \(x\overline{1}x\), \(000\overline{x}\)
\[f = \overline{bd} + \overline{a} \overline{cd} + \overline{a} \overline{b} + ad + ac \]

Case:

\[a = \overline{b} + \overline{d} + c \quad k_1 = 2 \]

\[b = \overline{d} \quad k_2 = 1 \]

\[c = a \quad k_3 = 1 \]

\[d = \overline{b} \]

\[\overline{a} = bd \]

\[f = a (\overline{b} + \overline{d} + c) + \overline{b} \overline{d} + \overline{a} \overline{b} \overline{d} \]
6) High-k dielectric allows gate thickness to be increased while still forming a channel w. the same Vgs. This reduces gate (tunneling) leakage, which would have otherwise been a big problem in 45nm processes.

![Diagram]

High Vgs forms channel only when 91 does not have excess electrons. Very high Vgs can be used to tunnel electrons from 5 to 91. Very low Vgs or ultra violet light can be used to remove electrons from 92.
q) CT

Diagram with arrows indicating transitions.

P

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>B</td>
</tr>
</tbody>
</table>

A: 00
B: 11
C: 10
D: 01
10) \((0+1)^* 01 (0+1)^* + (0+1)^* 01\)

MFA

DFA

After this point, always produce 1 output. Implication chart would yield same result.

Min DFA
11) Two out of three majority vote logic.
Unary of full adder.

12) Yes. It wouldn't change the timing diagram much because address was driven a cycle before data. The components on the bus might need to internally latch the address, however.