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The Sales Pitch

Two thirds of ASIC budget goes into verification

Dynamic verification has improved, but . . .

The verification crisis only got worse over the last decade

Over 60% of IC designs requires a second spin

Bugs that go undetected may end up costing hundreds of
millions of dollars

The FDIV bug costed Intel over
�

500M

Security and dependability are increasingly important
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Verilog Description

module gray (clock, i, z);
input clock, i;
output z;
reg p, q, r;
wire w;
always @ (posedge clock) begin

r = z;
q = p;
p = i;

end
assign w = pˆq, z = wˆr;

endmodule // gray
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States and Transitions

100 : p ∧ ¬q ∧ ¬r

¬z z z

z

¬z

z

000

100

011

111 001

101

010

110

¬z

¬z

(p ↔ z) → AG(p ↔ z) holds of all initial states

(q ↔ r) → AG(p ↔ z) holds of all initial states

AG((p ↔ z) ↔ (q ↔ r)) holds of all initial states
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Another Property

¬z z z

z

¬z

z

000

100

011

111 001

101

010

110

¬z

¬z

EF(p ↔ z) “p and z may become equal”

does not hold of all initial states



Introduction Modeling Specifications CTL LTL and CTL* SAT Abstraction

The CGW Puzzle
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there is a path to a cyan state not going through any yellow states
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Solving the Puzzle

Compute
µZ . cyan ∨ (¬yellow ∧ EXZ )
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Model Checking

Check whether the given finite-state system is a model for a
property

That is, check whether the computations of the system satisfy
the property

The check is based on exploring the states of the system



Introduction Modeling Specifications CTL LTL and CTL* SAT Abstraction

The Cube Puzzle

AG(position = center →
∨

0≤i<27

¬visitedi)

There are 3.46 · 107 reachable states out of 4.29 · 109
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Glacier Gorge
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Further Up
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The Starry Sky Above Me...

Galaxies in the (observable) universe: 2.5 · 1011

Stars in the Milky Way: 4 · 1011

Stars in the universe: 1023

Average number of neutrinos per cubic meter: 3.3 · 108

Neutrinos in the universe: 1093 (wild guess)

A small sequential circuit may have more than 10100 states
(10100 = 1 googol)
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Combating State Explosion

Symbolic Model Checking
Represent sets (of states and transitions) by their characteristic
functions

{00, 01, 10} −→ ¬x1 ∨ ¬x2

x1 ∨ x100 represents 3 · 298 elements

BDDs and CNF popular representations
Do not enumerate the elements of the sets

Manipulate the characteristic functions instead

Abstraction

Infer properties of the concrete model from the analysis of a
simplified abstract model
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Familiar Abstractions

v(t)

−

C

+

R

#include <iostream>

int main()

{

std::cout << "Hello, world!" << std::endl;

return 0;

}
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Layered Abstractions
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Peterson Mutex Algorithm

always @ (posedge clock) begin
self = select;
case (pc[self])
L0: if (!pause) pc[self] = L1;
L1: begin intr[self] = 1; pc[self] = L2; end
L2: begin turn = ˜self; pc[self] = L3; end
L3: if (!intr[˜self] || turn == self) pc[self] = L4;
L4: if (!pause) pc[self] = L5; // critical
L5: begin intr[self] = 0; pc[self] = L0; end
endcase

end
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Properties for Mutex Algorithm

Mutual exclusion

AG¬(pc[0] = L4 ∧ pc[1] = L4)

Absence of starvation

AG(pc[0] = L1 → AF pc[0] = L4)
AG(pc[1] = L1 → AF pc[1] = L4)

Temporal logic operators

AG: invariably, AF: inevitably
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Nondeterminism

always @ (posedge clock) begin
self = select;
case (pc[self])
L0: if (!pause) pc[self] = L1;
L1: begin intr[self] = 1; pc[self] = L2; end
L2: begin turn = ˜self; pc[self] = L3; end
L3: if (!intr[˜self] || turn == self) pc[self] = L4;
L4: if (!pause) pc[self] = L5; // critical
L5: begin intr[self] = 0; pc[self] = L0; end
endcase

end
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Fairness Conditions

Fair scheduling

G F self = 1 ∧ G F self = 0

Neither process dwells forever in the critical section

G F pc[0] 6= L4 ∧ G F pc[1] 6= L4

Temporal logic operators

G F: infinitely often
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Kripke Structures

Finite transition systems without inputs

〈S ,T ,S0,A, L〉

S : finite set of states
T ⊆ S × S : transition relation
S0 ⊆ S : set of initial states
A: set of atomic propositions
L : S → 2A: labeling function
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Kripke Structure Example

p a

b

cp, q

K = 〈S ,T ,S0,A, L〉

S = {a, b, c}

T = {(a, a), (a, b), (b, c), (c , c)}

S0 = {a}

A = {p, q}

L : {a, b, c} → {{}, {p}, {q}, {p, q}}

L(a) = {p}
L(b) = {}
L(c) = {p, q}
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Composition

Complex systems are composed of several modules

Each module is described as a finite state machine (FSM)

The overall Kripke structure is obtained as the product of the
FSMs

State explosion!

The product can be either synchronous or asynchronous
(interleaving)
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Specifications

Properties are sets of behaviors

Various specification mechanisms are in use: Temporal logics
and automata are popular

The examples we have seen are formulae of the temporal logic
CTL

Syntactic sugar often useful (e.g., PSL/Sugar)
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Temporal Logics

Temporal logics add temporal operators and path quantifiers
to standard (e.g., propositional) logics

Temporal operators allow one to conveniently describe the
order of occurrence of events and other statements involving
time without explicitly mentioning time

Expressiveness of propositional temporal logic in between
those of propositional logic and predicate logic
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Operators and Quantifiers

Gϕ: ϕ holds globally (�ϕ)

Fϕ: ϕ holds eventually (♦ϕ)

ψ Uϕ: ψ holds until ϕ holds

ψ Rϕ: ψ releases ϕ

Xϕ: ϕ holds at the next state (©ϕ)

E: along at least one path

A: along all paths

In CTL all temporal operators are immediately preceeded by a
path quantifier
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Branching Time

Branching time logics reason about computation trees
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Linear Time

Linear time logics reason about sets of computation paths
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Linear vs. Branching Time: Syntax

A linear-time temporal logic formula can contain only one
path quantifier at the beginning

A F G p

A(F p → F q)
EG F p (existential linear-time formula)

A branching-time formula may have multiple quantifiers

AF AG p

AG EF p

EG EF p
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Linear vs. Branching Time

ϕ a

b

cϕ

AFGϕ holds in this structure

Infinite paths eventually dwell in either a

or c where ϕ holds

AFAGϕ does not hold in this structure

As long as a run dwells in a, it can
always go to a state where ϕ does not
hold

No CTL formula exists that is equivalent
to AFGϕ
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Linear vs. Branching Time

25 �

tea tea

25 �

coffeecoffee

25 �

Linear-time properties cannot distinguish these two
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Trace Equivalence vs. Bisimilarity

Linear time properties cannot distinguish two structures if
they are trace (language) equivalent

Branching time properties cannot distinguish two structures if
they are bisimilar

Bisimilarity is stronger than trace equivalence (see previous
example)
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Bisimilar States

L′(p′)L(p) same

bisimilar

bisimilar

p′p

p and p′ are bisimilar
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Bisimulation Relation

A relation B among the states of two Kripke structures K and
K ′ with A = A′ is a bisimulation relation if (p, p ′) ∈ B implies

L(p) = L(p′)
(p, q) ∈ T → ∃q′ .(p′, q′) ∈ T ′ ∧ (q, q′) ∈ B

(p′, q′) ∈ T ′ → ∃q .(p, q) ∈ T ∧ (q, q′) ∈ B
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Bisimilar Structures

Two Kripke structures K and K ′ are bisimulation equivalent
(K ≡ K ′) if there is a bisimulation relation between their
states such that every initial state of one structure is bisimilar
to some initial state of the other structure

Two structures are bisimulation equivalent iff they satisfy the
same branching-time properties

CTL properties suffice (Browne et al. [1988])
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Similar States

L′(p′)L(p) = (over A)

simulated by

simulated by

p′p

p is simulated by p′
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Simulation Relation

A relation Σ among the states of two Kripke structures K and
K ′ with A ⊆ A′ is a simulation relation if (p, p ′) ∈ Σ implies

L(p) = L′(p′) ∩ A

(p, q) ∈ T → ∃q′ .(p′, q′) ∈ T ′ ∧ (q, q′) ∈ Σ

We say that p is simulated by p ′
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Example of Simulation

25 �

tea tea

25 �

coffeecoffee

25 �
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Similar and Simulation-Equivalent Structures

Kripke structure K ′ simulates structure K (written K � K ′) if
there exists a simulation relation Σ ⊆ S × S ′ such that for
every initial state s of K there is an initial state s ′ of K ′ such
that (s, s ′) ∈ Σ

If K � K ′ and ϕ is a universal branching-time formula over A,
then K ′ |= ϕ implies K |= ϕ.

Two Kripke structures K and K ′ are simulation equivalent
(K ∼ K ′) iff K � K ′ and K ′ � K

Two structures are simulation equivalent iff they satisfy the
same branching-time universal properties
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Two structures are simulation equivalent iff they satisfy the
same branching-time universal properties
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Linear vs. Branching Time: Summary

Branching time is more powerful, but also trickier

Two vending machine models
A F Gϕ vs. AF AGϕ

Linear time is more suitable for compositional verification and
Bounded Model Checking

Counterexample generation simpler for linear time



Introduction Modeling Specifications CTL LTL and CTL* SAT Abstraction

Linear vs. Branching Time: Summary

Branching time is more powerful, but also trickier

Two vending machine models
A F Gϕ vs. AF AGϕ

Linear time is more suitable for compositional verification and
Bounded Model Checking

Counterexample generation simpler for linear time



Introduction Modeling Specifications CTL LTL and CTL* SAT Abstraction

Linear vs. Branching Time: Summary

Branching time is more powerful, but also trickier

Two vending machine models
A F Gϕ vs. AF AGϕ

Linear time is more suitable for compositional verification and
Bounded Model Checking

Counterexample generation simpler for linear time



Introduction Modeling Specifications CTL LTL and CTL* SAT Abstraction

Safety

A safety property describes something bad that should not
happen

AG¬(grant0 ∧ grant1): requestors 0 and 1 should not be
granted access to the shared resource simultaneously

AG¬(door = open ∧ engine = running)
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Liveness

A liveness property describes something good that should
happen

AG(req → F ack): requests should be acknowledged
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Safety or Liveness?

The definitions given so far may be confusing

AG(command = stop → Xstate = halt)

AG(command = stop → F state = halt)

AG(req → F ack)
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Safety in Linear Time

A linear-time property is a set of (linear) traces or infinite
sequences over the atomic propositions

A property ϕ is a safety property if every trace not in ϕ has a
prefix that cannot be extended to a trace in ϕ

Intuitively, the prefix includes the bad event that causes the
property to fail

AG(p → X q) is a safety property

A counterexample includes a state where p holds followed by a
state where ¬q holds
The prefix that includes these two states cannot be extended
to an infinite path satisfying the property
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Liveness in Linear Time

A linear-time property ϕ is a liveness property if every finite
sequence over the atomic propositions can be extended to an
infinite sequence in ϕ

Intuitively, finite prefixes do not affect the fulfillment of the
eventualities that characterize liveness properties

AG(p → F q) is a liveness property

One can add a state where q holds to any finite prefix
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Neither Safe Nor Live

A(p Uq) is neither a safety property nor a liveness property

A trace satisfying G(p ∧ ¬q) is a counterexample with no
prefix that cannot be extended
A trace satisfying ¬q U(¬p¬q) is a counterexample with a
finite prefix that cannot be extended

Every property can be written as the intersection of a safety
property and a liveness property

A(p U q) = A((q R(p ∨ q)) ∧ F q)
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Classification of Properties

Time structure: branching, linear

Bisimilarity, trace equivalence

Safety, liveness

Existential, universal

Tense: future, past

X versus Y (neXt vs. Yesterday)
See (Laroussinie and Schnoebelen [2000])
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CTL*

CTL* is a powerful branching-time temporal logic

We use a subset of the operators (X and U) and the E
quantifier to define the syntax

The remaining operators are defined as abbreviations

We need both state formulae and path formulae to recursively
define the logic

The state formulae give CTL*
Path formulae can only appear as subformulae
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CTL* Syntax

An atomic proposition is a state formula

A state formula is also a path formula

If ϕ and ψ are state formulae, so are ¬ϕ and ϕ ∧ ψ

If ϕ is a path formula, Eϕ is a state formula

If ϕ and ψ are path formulae, so are ¬ϕ and ϕ ∧ ψ

If ϕ and ψ are path formulae, so are Xϕ and ψUϕ
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CTL* Abbreviations

ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)

true = ϕ ∨ ¬ϕ

false = ϕ ∧ ¬ϕ

ψ Rϕ = ¬(¬ψU¬ϕ)

Fϕ = trueUϕ

Gϕ = false Rϕ

Aϕ = ¬E¬ϕ
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“Pushing Down” Negations

¬AGFϕ = EFG¬ϕ

Negations can be pushed “down” toward the atomic
propositions

The basic rules are (beside DeMorgan)

ψ Rϕ = ¬(¬ψ U¬ϕ)
Aϕ = ¬E¬ϕ

From the first we get Gϕ = ¬F¬ϕ
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CTL* Semantics

The semantics of CTL* formulae are defined with respect to a
Kripke structure K

If formula ϕ holds of state s (path π) of K , we write
K , s |= ϕ (K , π |= ϕ)

The double turnstile is read “models”

K is omitted when no ambiguity arises

πi is π without the first i states
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CTL* Semantics

s |= p, p ∈ A iff p ∈ L(s)

s |= ¬ϕ iff s 6|= ϕ

s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

s |= Eϕ iff ∃π from s such that π |= ϕ

π |= ¬ϕ iff π 6|= ϕ

π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ

π |= Xϕ iff π1 |= ϕ

π |= ψ Uϕ iff ∃i ≥ 0 . πi |= ϕ and 0 ≤ j < i → πj |= ψ
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Semantics of X and U

s0

ψ ψ ψ ϕ

ψUϕ

Xϕ s0

ϕ
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CTL

Computational Tree Logic is a branching time fragment of
CTL*

In CTL every temporal operator must be immediately
preceded by a path quantifier

AF AGϕ is a CTL formula
A F Gϕ is not a CTL formula

Model checking easy relative to CTL*
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LTL

Linear Temporal Logic is a linear-time fragment of CTL*

In LTL there can be only one quantifier at the beginning of
the formula

The quantifier is usually A, in which case it is usually omitted

F Gϕ means A F Gϕ
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Omega-Automata

Properties can be described by automata that take the
computation of the system as input and either accept it or
reject it

For computations that finish regular automata suffice

For non-terminating computations we need ω-automata
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Automaton for Safety Property

AG(ϕ→ X¬ψ) is negated to get the formula EF(ϕ ∧ Xψ)

ψϕ
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Why Omega Automata?

For safety properties we can “stretch” regular automata
because it suffices to find the non-extensible prefixes of the
counterexamples

For liveness properties we need to address the fact that the
computations we consider do not terminate
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Büchi Automata

Büchi automata are similar to (nondeterministic) regular
automata except for the acceptance conditions

A Büchi automaton accepts an infinite sequence if there is a
run of it that goes through an accepting state infinitely often
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Büchi Automaton to Model Check AFGϕ

We negate the property to get EGF¬ϕ

¬ϕ

A computation accepted by the automaton is a
counterexample to AFGϕ
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Omega-Automata

Omega-automata describe linear-time properties

They are more expressive than LTL

p

p q

p

p
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Fairness

Fairness constraints are used to

Model features of the environment
Mitigate the effects of simplifications of the model

They instruct the model checker to disregard certain (unfair)
computations
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Modeling the Environment

Property: The combination lock will open unless we keep
making mistakes

Fairness constraint: provided we never give up

This constraint implies that the knob is turned infinitely often
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Mitigating Abstraction

Property: All requests are eventually acknowledged

Fairness constraints: provided all grantees eventually
relinquish the shared resource

These constraints imply that each requestor is not using the
shared resource infinitely often
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Büchi Fairness Constraints

A Büchi fairness constraint is a set of states that a fair run
must intersect infinitely often

LTL can express fairness constraints

A(G Fψ → ϕ) says that ϕ must hold only along paths where ψ
holds infinitely often

CTL cannot express fairness constraints

They must be specified separately
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CTL Model Checking

Given a Kripke structure K and a CTL formula ϕ, we want to
determine whether K |= ϕ

We find [[ϕ]]K , the set of all states s such that K , s |= ϕ

We then check whether S0 ⊆ [[ϕ]]K

When no confusion arises we write simply ϕ for [[ϕ]]K
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Computing Satisfying Sets

Work bottom-up on the parse graph of the CTL formula

Annotate every node with the satisfying set of the subformula
rooted at the node

The computation at each node of the parse graph depends on
its label
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Satisfying Sets for EG Eψ Uϕ

EG

EU

ψ ϕ

1

2

34

ϕ

ψ

ϕ
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Action for Each Label

Atomic proposition p: return set of states with p in their labels

¬ϕ: return the complement of [[ϕ]]K

ϕ ∧ ψ: return [[ϕ]]K ∩ [[ψ]]K

EXϕ: return the set of predecessors in K of the states in [[ϕ]]K

Eψ Uϕ: return the set of states with paths to states in [[ϕ]]K
that are entirely contained in [[ψ]]K (except possibly for the
last state of each path)

EGϕ: return the set of states on infinite paths entirely
contained in [[ϕ]]K
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Explicit Model Checking

To fix ideas, suppose Kripke structures are represented by
adjacency lists and sets by bit vectors

Boolean operations on sets can be performed in linear time

Computing EU amounts to reachability in a graph

Computing EG amounts to finding the strongly connected
components (SCCs) of a subgraph of K

Both reachability and SCC computation are based on
depth-first search and take time linear in the size of the
Kripke structure

In practice sets are often represented by hash tables
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Complexity of Explicit CTL MC

Considering fairness constraints does not change the
complexity of the algorithm

It suffices to discard SCCs that do not intersect all fair sets

CTL model checking is linear in the size of the formula and
the size of the structure
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Symbolic Model Checking

Linear time complexity is great unless your system has 1050

states

Number of states grows exponentially with number of state
variables

Explicit model checking limited to a few billion states

Symbolic model checking can do much more (though not
uniformly)
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Characteristic Functions

States are encoded as binary strings of length n (the number
of binary state variables)

A set of states V is represented by a characteristic function
χV : Bn → B that returns 1 for all elements of the set and 0
for all other states

We often drop the “χ” from χV when there is no ambiguity



Introduction Modeling Specifications CTL LTL and CTL* SAT Abstraction

Characteristic Functions

States are encoded as binary strings of length n (the number
of binary state variables)

A set of states V is represented by a characteristic function
χV : Bn → B that returns 1 for all elements of the set and 0
for all other states

We often drop the “χ” from χV when there is no ambiguity



Introduction Modeling Specifications CTL LTL and CTL* SAT Abstraction

Symbolic Representation

p

00

01

10

q

T (x1, x0, y1, y0) = (¬x1 ∧ ¬x0 ∧ ¬y1 ∧
y0) ∨ (¬x1 ∧ x0 ∧ ¬y0) ∨ (x1 ∧ ¬x0 ∧ ¬y0)

S0(x1, x0) = ¬x1 ∧ ¬x0

p(x1, x0) = x1 ∧ ¬x0

q(x1, x0) = ¬x1 ∧ x0
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Characteristic Functions

Let V contain all states with either the first or the last bit set
to 1

χV = x1 ∨ xn

Set V has 3 · 2n−2 elements

Great, but let us not get carried away, because it is not
possible to find a representation that is compact for most
functions
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Implicit Enumeration

Symbolic model checking enumerates states implicitly

No explicit loop on the states or the transitions is used

The cost of implicit enumeration is more affected by the size
of the representation than by the cardinality of the set
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Computing Predecessors

Let x (y) be the vector of current (next) state variables

The set of predecessors of the states in V is given by

∃y .T (x , y) ∧ V (y)

No loops over states and transitions
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Symbolic Model Checking

Boolean connectives give no difficulties

Complementation turns into negation

Union becomes disjunction and intersection becomes
conjunction

We have seen how to deal with EXϕ

For EU and EG we use a fixpoint characterization

A fixpoint x of f is such that f (x) = x
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Fixpoint Characterization

The satisfying sets of EU and EG computations are fixpoints
of monotonic functions over 2S

EψUϕ = ϕ ∨ [ψ ∧ EX EψUϕ]
EGϕ = ϕ ∧ EX EGϕ

Specifically, Eψ Uϕ is the least fixpoint and EGϕ is the
greatest fixpoint. This is written

EψUϕ = µZ . ϕ ∨ [ψ ∧ EX Z ]
EGϕ = νZ . ϕ ∧ EX Z

µ-calculus notation
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EψUϕ = µZ . ϕ ∨ [ψ ∧ EX Z ]
EGϕ = νZ . ϕ ∧ EX Z

µ-calculus notation



Introduction Modeling Specifications CTL LTL and CTL* SAT Abstraction

Fixpoint Characterization

The satisfying sets of EU and EG computations are fixpoints
of monotonic functions over 2S

EψUϕ = ϕ ∨ [ψ ∧ EX EψUϕ]
EGϕ = ϕ ∧ EX EGϕ

Specifically, Eψ Uϕ is the least fixpoint and EGϕ is the
greatest fixpoint. This is written

EψUϕ = µZ . ϕ ∨ [ψ ∧ EX Z ]
EGϕ = νZ . ϕ ∧ EX Z

µ-calculus notation



Introduction Modeling Specifications CTL LTL and CTL* SAT Abstraction

Tarski’s Theorem

A function f is monotonic if

x ≤ y → f (x) ≤ f (y)

A monotonic function over a finite lattice has a least fixpoint
that can be computed as the limit of the sequence

0, f (0), f (f (0)), f (f (f (0))), . . .

For greatest fixpoints

1, f (1), f (f (1)), f (f (f (1))), . . .

This is the kitty version of the theorem for finite lattices
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Computing Eψ Uϕ and Eψ Rϕ

Z = ∅;
ζ = S ;

while (Z 6= ζ) {
ζ = Z ;
Z = ϕ ∨ (ψ ∧ EXZ );

}

Z = S ;
ζ = ∅;

while (Z 6= ζ) {
ζ = Z ;
Z = ϕ ∧ (ψ ∨ EXZ );

}
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Backward vs. Forward Search

The algorithm we have presented is based on backward search
in the Kripke structure (EX computes predecessors)

Part of CTL can be model checked using forward search
(using EY that computes successors)

Forward search popular for invariants (AG p)

Forward search is also used to find states reachable from
initial states and prune backward search
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On-the-Fly Model Checking

In checking K |= EF p we can stop the computation of the
least fixpoint as soon as all initial states are acquired

This is an instance of on-the-fly model checking

In general, on-the-fly model checking stops as soon as the
answer is known
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ECTL and ACTL

ECTL is a fragment of CTL that consists of existential
properties

Negation can only occur in front of atomic propositions

The path quantifier A cannot be used

ACTL consists of the negation of ECTL formulae (universal
properties)
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ECTL and ACTL Examples

EF(ϕ ∧ EG¬ψ) ECTL

AG(ϕ→ AFψ) ACTL

Negation of the previous formula

AG(AFϕ→ AFψ) mixed

EF(EGϕ ∨ EGψ) ECTL
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Counterexamples and Witnesses

If a property fails it is useful to show an execution of the
system that is a counterexample

For a property that holds, it may be useful to show an
execution of the system that is a witness

A witness to K , s |= ϕ is a counterexample to K , s |= ¬ϕ and
vice versa
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Witness Example

Witness for the ECTL property

EF(ϕ ∧ EG¬ψ)

¬ψϕ,¬ψ ¬ψ
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A Witness May Not Suffice

One witness computation does not suffice to show that AGϕ
holds in a structure with multiple paths

One counterexample computation does not suffice to show
that EF¬ϕ fails

Complete witnesses can be found for ECTL formulae and
complete counterexamples for ACTL formulae
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Branching Witnesses

Consider a witness for the ECTL formula

EF(EGϕ ∧ EGψ)

ψ

ϕ, ψ

ϕ ϕ

ψ
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Adding Fairness Constraints

Fairness constraints are given as sets of states that must be
traversed infinitely often (Büchi fairness)

In CTL the fair sets are the satisfying sets of CTL formulae
(distinct from the formulae for the properties to be verified)

Quantifiers are restricted to fair paths

Paths that intersect all the fair sets infinitely often
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Computing the Fair States

The fair states are those along fair paths

They are computed by the µ-calculus formula

νZ .EX[E Z U(Z ∧ c)]

in the case of one fairness constraint c
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MC for CTL with Fairness

Let Φ = νZ .
∧

i EX[EZ U(Z ∧ ci )]

The set of fair states with C = {ci}

EC Gϕ = νZ . ϕ ∧
∧

i EX[EZ U(Z ∧ ci )]

EC Xϕ = EX(ϕ ∧ Φ)

EC ψUϕ = Eψ U(ϕ ∧ Φ)
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Fair Witnesses

For EX and EU, we append witness to EG true to finite witness

For EGϕ, while tracing a loop in a fair SCC we need to insure
that all fair sets are visited

Finding a shortest witness is hard, but heuristics work
reasonably well
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5 Model Checking LTL and CTL*
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LTL Model Checking

LTL operators can be characterized in terms of fixpoints like
their CTL counterparts

ψUϕ = ϕ ∨ [ψ ∧ X(ψUϕ)]
ψ Rϕ = ϕ ∧ [ψ ∨ X(ψ Rϕ)]

The problem is that we have sets of paths instead of sets of
states

We take a different approach
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Model Checking LTL

Negate the given formula ϕ to get ¬ϕ

Build a Büchi automaton A¬ϕ that accepts exactly the
computations that model ¬ϕ

Compose A¬ϕ with the system to be verified

Check whether there is a fair path in the composition
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From Formula to Automaton

ψUϕ = ϕ ∨ [ψ ∧ X(ψ Uϕ)]

true

ϕ

ψ
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Model Checking AG(p → F q)

A counterexample to AG(p → F q) is an execution in which p

happens, but q does not follow it

Compose automaton for all counterexamples with model and
check for accepting path

b1

{p}

b

0

1

a0

a

a1

b0

A K ‖ A

K

p ∧ ¬q

true

¬q
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CTL* Model Checking

If formula is propositional, compute its satisfying set directly,
otherwise

There is a subformula that is an LTL formula Eψ: find its
satisfying set with LTL model checking algorithm and use it
as a new atomic proposition

Repeat until the satisfying set of the root of the parse tree is
found
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Bounded Model Checking

Checks for a counterexample to a property of a model

We assume finite state and LTL

Encodes the property checking problem as propositional
satisfiability (SAT)

Constructs a propositional formula that is satisfiable iff there
exits a length-k counterexample, e.g.,

I (s0) ∧
∧

0≤i<k

T (si , si+1) ∧ ¬p(sk)

If no counterexample is found, BMC increases k until

a counterexample is found,
the search becomes intractable, or
k reaches a certain bound
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Falsification vs. Verification

Sometime, proving the absence of an error is more useful than
finding one

When checking an abstract model for a universal property

Finding an error in the abstract model does not imply its

existence in the original model

However, proving that the property passes in the abstract

model guarantee the absence of errors in the original model

BMC efficiency reduces as the length of the counterexample
increases

It may be more efficient to prove the property and stop early
than keep searching for a counterexample
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Proving Properties with BMC

The original BMC algorithm (Biere et al. [1999]), although
complete in theory, is limited in practice to falsification of LTL
properties

BMC can prove that an LTL property ψ passes on a model M
only if a bound, κ, is known such that:

if no counterexample of length up to κ is found, then
M |= Aψ

Several methods exist to compute a suitable κ

The optimum value of κ, however, is usually very expensive to
obtain

Finding it is at least as hard as checking whether M |= Aψ
(Clarke et al. [2004])
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Interpolation

Suppose
I (s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk ) ∧ ¬p(sk) is
unsatisfiable

Let F1 = I (s0) ∧ T (s0, s1) and
F2 = T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬p(sk)

Then F1(s0, s1) ∧ F2(s1, . . . , sk) is unsatisfiable

Interpolant I1(s1) (McMillan [2003]) is such that

F1(s0, s1) → I1(s1)
I1(s1) ∧ F2(s1, . . . , sk) is unsatisfiable

I1(s1) can be computed in linear time from a resolution proof
that F1(s0, s1) ∧ F2(s1, . . . , sk) is unsatisfiable

∃s0 . I (s0) ∧ T (s0, s1) is the strongest interpolant

set of states reachable from I (s0) in one step
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Interpolation

I1(s1) is a superset of the states reachable in one step such
that no member state has a path of length k − 1 to a bad
state

Replace I (s0) with I (s0) ∨ I1(s0) and repeat

If formula still unsatisfiable, interpolant I2(s1) is a superset of
states reachable in one or two steps such that no member
state has a path of length k − 1 to a bad state

A converging sequence of interpolants means that no states
satisfying ¬p (bad states) are reachable
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Informal Abstraction

In use since the early days of simulation

What if we write to a memory when the address contains Xs?

Still indispensable, but

May be laborious
Comes with no implied warranty

Bus

Arbiter
High Low High Low
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Informal Abstraction

Given concrete model C and property ϕ

Derive somehow an abstract model A from C

Abstraction should preserve detail relevant to ϕ

Check whether A |= ϕ

If A |= ϕ confidence in correctness of C is increased

If A 6|= ϕ check counterexample

Is failure due to a real bug or an artifact of abstraction?
Either fix bug or refine abstraction
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Formal Abstraction

Comes with warranty

Simulation Relations

s2

p p

K K ′

s0 s ′0

s ′1qqs1

p

bisimilarity preserves all of µ-calculus
simulation equivalence preserves linear-time properties
simulation preserves passing universal properties
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Simulation Relations

Computing simulation relations is expensive

Avoid direct computation

Cone of Influence (COI) Reduction and slicing yield a bisimilar
model
The symmetry quotient induced by an invariance group is
bisimilar to the original model
Predicate abstraction leads to bisimulation or simulation
Freeing some components leads to simulation

Simulation is sufficient for language containment
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Property Driven Abstraction

Rule of thumb: The more you want to preserve, the less you can
abstract

Bisimulation does not allow much abstraction

Property driven abstraction

focus on preserving only the property of interest
Start with a coarse abstraction
Let the property guide the initial abstraction and the
refinement
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Abstraction Refinement

What is not in the abstract model is ignored

Refinement brings in something that was previously ignored

ϕ
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Abstraction Refinement

For universal properties:

Choose initial abstract model
while the property fails

if concrete model also fails, report failure

refine

report success

For mixed properties, use two abstractions

If property fails on abstract model, an abstract
counterexample is produced
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Back to the Cube

A cube is divided into 27 equal smaller cubes (blocks
hereafter). Is it possible to trace a path from any point on the
surface to the center that always travels parallel to some side
of the cube and visits each block exactly once?

If we number the smaller cubes consecutively, top-down, front
to back, and left to right, we find that there are 14
odd-numbered blocks and 13 even-numbered blocks

Since all adjacent blocks have different parity, we cannot find
a path of length 27 ending with an even-numbered block.

Since the center block is numbered 14, the answer is “no”

The same argument applies whenever the side of the cube is
divided into an odd number of parts, so that the number of
blocks is (2n + 1)3 for some n > 0
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Model Checking the Cube

We encode the problem with two state variables:

posn ∈ {1, . . . , 27} and visited ⊆ {1, . . . , 27}

S = {1, . . . , 27} × 2{1,...,27}

S0 = {(p, {p}) | p ∈ {1, . . . , 27} \ {14}}

Let adj(p) return the set of positions adjacent to block p

T = {((p, v), (p′, v ′)) | (p, v) ∈ S ∧p′ ∈ adj(p) \ v ∧ v ′ = v \ {p′}}

Finally, the property:

ϕ = AG(posn = 14 → visited 6= {1, . . . , 27}) .

In Verilog, we need 32 binary variables. Out of the 232 states,
3.46426 · 107 are reachable and ϕ is proved in about one minute
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Augmenting the Transition Relation

We can do significantly better by keeping the same state
encoding, initial states and property, but augmenting the
transition relation

Let opp(p) returns the set of positions in the cube that have
parity opposite to block p. The transition relation can then be
defined as before, but with opp(p) replacing adj(p)

The new relation has many more transitions. For instance, it
is now possible to go from Block 1 to Block 6

The number of reachable states correspondingly increases to
5.41574 · 108, but the model checking time decreases to less
than a second

Since ϕ is universal, the fact that it passes on the model with
the augmented transition relation guarantees that it passes
also on the original model
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Changing State Space

The proof that there is no path refers to the parity of the block
numbers and the total number of blocks of each parity.

parity ∈ {0, 1}, visitedO ∈ {1, . . . , 14}, visitedE ∈ {1, . . . , 13}

S = {0, 1} × {1, . . . , 14} × {1, . . . , 13}

S0 = {(0, 0, 1), (1, 1, 0)}

The transition relation is

{((0, vO , vE ), (1, vO , v
′
E )) | (0, vO , vE ) ∈ S∧vE < 13∧v ′

E = vE+1}∪

{((1, vO , vE ), (0, v ′
O , vE )) | (1, vO , vE ) ∈ S∧vO < 14∧v ′

O = vO+1}

Transitions are possible to states of opposite parity with one of the
two counters incremented (if it has not saturated).
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Changing the State Space

The property needs to be changed

ϕ1 = AG(parity = 0 → (visitedO 6= 14 ∨ visitedE 6= 13))

Since parity = 0 corresponds to posn ∈ {2, 4, . . . , 26}, our new
property actually corresponds to

ϕ2 = AG(posn ∈ {2, 4, . . . , 26} → visited 6= {1, . . . , 27})

If ϕ2 is satisfied on the original model, ϕ is satisfied as well.
The number of binary variables has been reduced from 32 to 9,
there are only 53 reachable states, and verification takes negligible
time. Interestingly, the following property also holds:

ϕ′
1 = AG(parity = 0 → visitedO 6= 14)
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Another Twist

In the reachable states of our model, the values of visitedO and
visitedE never differ by more than one in absolute value. If we let

diff = visitedE− visitedO

then we can choose the following encoding:

parity ∈ {0, 1} and diff ∈ {−1, 0,+1}

Each state is a pair consisting of parity and difference:

S = {0, 1} × {−1, 0,+1}

S0 = {(0,+1), (1,−1)}

The transition relation is

{((0, d), (1, d−1)) | d ∈ {0,+1}}∪{((1, d), (0, d+1)) | d ∈ {−1, 0}}
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Another Twist

Once again, we need to rewrite the property to be checked because
the state encoding has changed:

ϕ3 = AG(parity = 0 → diff 6= −1)

Since diff 6= −1 implies visitedO 6= 14 ∨ visitedE 6= 13, we
have further strengthened our property.
Since ϕ3 holds in our new model, as long as satisfaction of ϕ3 in
the new, 3-bit model implies satisfaction of ϕ3 in the previos, 9-bit
model, then we can conclude that ϕ holds in the original model.
There are four reachable states in the 3-bit model, and ϕ3 is
proved in almost no time.
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State Encoding

If we use the following encoding:

diff = −1 → diff1 = 0 ∧ diff0 = 0

diff = 0 → diff1 = 0 ∧ diff0 = 1

diff = +1 → diff1 = 1 ∧ diff0 = 0

then, over all four reachable states, we have

diff1 ↔ parity = 0 ∧ diff0 = 0

We can replace one state bit with a combinational function of the
other two. In the resulting model, ϕ3 becomes

AG(parity = 0 → (parity = 0 ∨ diff0 = 1))

which simplifies to AG true; this property trivially holds.
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