# Introduction to Model Checking 

Fabio Somenzi<br>Department of Electrical, Computer, and Energy Engineering University of Colorado at Boulder

$$
\text { July 25, } 2009
$$

## Outline

(1) Introduction
(2) Modeling Systems and Properties

3 Specification Mechanisms
(4) CTL Model Checking
(5) Model Checking LTL and CTL*
(6) SAT-Based Model Checking
(7) Abstraction

## The Sales Pitch

- Two thirds of ASIC budget goes into verification
- Dynamic verification has improved, but
- The verification crisis only got worse over the last decade
- Over $60 \%$ of IC designs requires a second spin
- Bugs that go undetected may end up costing hundreds of millions of dollars
- The FDIV bug costed Intel over $\$ 500 \mathrm{M}$
- Security and dependability are increasingly important


## The Sales Pitch

- Two thirds of ASIC budget goes into verification
- Dynamic verification has improved, but ...
- The verification crisis only got worse over the last decade
- Over $60 \%$ of IC designs requires a second spin
- Bugs that go undetected may end up costing hundreds of millions of dollars
- The FDIV bug costed Intel over $\$ 500 \mathrm{M}$
- Security and dependability are increasingly important


## The Sales Pitch

- Two thirds of ASIC budget goes into verification
- Dynamic verification has improved, but ...
- The verification crisis only got worse over the last decade
- Over 60\% of IC designs requires a second spin
- Bugs that go undetected may end up costing hundreds of millions of dollars
- The FDIV bug costed Intel over \$ 500M
- Security and dependability are increasingly important


## The Sales Pitch

- Two thirds of ASIC budget goes into verification
- Dynamic verification has improved, but ...
- The verification crisis only got worse over the last decade
- Over $60 \%$ of IC designs requires a second spin
- Bugs that go undetected may end up costing hundreds of millions of dollars
- The FDIV bug costed Intel over $\$ 500 \mathrm{M}$
- Security and dependability are increasingly important


## The Sales Pitch

- Two thirds of ASIC budget goes into verification
- Dynamic verification has improved, but ...
- The verification crisis only got worse over the last decade
- Over $60 \%$ of IC designs requires a second spin
- Bugs that go undetected may end up costing hundreds of millions of dollars
- The FDIV bug costed Intel over \$ 500M
- Security and dependability are increasingly important


## The Sales Pitch

- Two thirds of ASIC budget goes into verification
- Dynamic verification has improved, but...
- The verification crisis only got worse over the last decade
- Over $60 \%$ of IC designs requires a second spin
- Bugs that go undetected may end up costing hundreds of millions of dollars
- The FDIV bug costed Intel over \$ 500M
- Security and dependability are increasingly important


## Binary-Gray-Binary


$\mathrm{AG}(p \leftrightarrow z)$ : invariably (AG) $p$ and $z$ have the same value

## Binary-Gray-Binary


$\mathrm{AG}(p \leftrightarrow z)$ invariably (AG) $p$ and $z$ have the same value

## Binary-Gray-Binary


$\mathrm{AG}(p \leftrightarrow z)$ : invariably (AG) $p$ and $z$ have the same value

## Verilog Description

```
module gray (clock, i, z);
    input clock, i;
    output z;
    reg p, q, r;
    wire w;
    always @ (posedge clock) begin
        r=z;
        q = p;
        p = i;
    end
    assign w = p^q, z = w^r;
endmodule // gray
```


## States and Transitions



## States and Transitions


$(p \leftrightarrow z) \rightarrow \mathrm{AG}(p \leftrightarrow z) \quad$ holds of all initial states


## States and Transitions


$(p \leftrightarrow z) \rightarrow \mathrm{AG}(p \leftrightarrow z) \quad$ holds of all initial states
$(q \leftrightarrow r) \rightarrow \mathrm{AG}(p \leftrightarrow z) \quad$ holds of all initial states
AG $((p \leftrightarrow z) \leftrightarrow(q \leftrightarrow r))$ holds of all initial states

## States and Transitions


$(p \leftrightarrow z) \rightarrow \mathrm{AG}(p \leftrightarrow z) \quad$ holds of all initial states
$(q \leftrightarrow r) \rightarrow \mathrm{AG}(p \leftrightarrow z) \quad$ holds of all initial states
$\mathrm{AG}((p \leftrightarrow z) \leftrightarrow(q \leftrightarrow r)) \quad$ holds of all initial states

## Another Property


$\mathrm{EF}(p \leftrightarrow z) \quad$ " $p$ and $z$ may become equal" does not hold of all initial states

## The CGW Puzzle


r|rl: boat and goat on right bank; cabbage and wolf on left

$$
\mathrm{E} \neg \text { yellow } \mathrm{U} \text { cyan }
$$

there is a path to a cyan state not going through any yellow states

## Solving the Puzzle

- Compute

$$
\mu Z \text {. cyan } \vee(\neg \text { yellow } \wedge E X Z)
$$



## Solving the Puzzle

- Compute

$$
\mu Z \text {. cyan } \vee(\neg \text { yellow } \wedge E X Z)
$$



## Solving the Puzzle

- Compute

$$
\mu Z \text {. cyan } \vee(\neg \text { yellow } \wedge E X Z)
$$



## Solving the Puzzle

- Compute

$$
\mu Z \text {. cyan } \vee(\neg \text { yellow } \wedge E X Z)
$$



## Solving the Puzzle

- Compute

$$
\mu Z \text {. cyan } \vee(\neg \text { yellow } \wedge E X Z)
$$



## Solving the Puzzle

- Compute

$$
\mu Z \text {. cyan } \vee(\neg \text { yellow } \wedge E X Z)
$$



## Solving the Puzzle

- Compute

$$
\mu Z \text {. cyan } \vee(\neg \text { yellow } \wedge E X Z)
$$



## Solving the Puzzle

- Compute

$$
\mu Z \text {. cyan } \vee(\neg \text { yellow } \wedge E X Z)
$$



## Solving the Puzzle

- Compute

$$
\mu Z \text {. cyan } \vee(\neg \text { yellow } \wedge E X Z)
$$



## Model Checking

- Check whether the given finite-state system is a model for a property
- That is, check whether the computations of the system satisfy the property
- The check is based on exploring the states of the system


## The Cube Puzzle


$\mathrm{AG}\left(\right.$ position $=$ center $\rightarrow \quad \bigvee \neg$ visited $\left._{i}\right)$

## The Cube Puzzle


$\mathrm{AG}\left(\right.$ position $=$ center $\rightarrow \bigvee_{0 \leq i<27} \neg$ visited $\left._{i}\right)$

## The Cube Puzzle


$\mathrm{AG}\left(\right.$ position $=$ center $\rightarrow \bigvee_{0 \leq i<27} \neg$ visited $\left._{i}\right)$
There are $3.46 \cdot 10^{7}$ reachable states out of $4.29 \cdot 10^{9}$

## Glacier Gorge



## Further Up



## The Starry Sky Above Me...

- Galaxies in the (observable) universe: $2.5 \cdot 10^{11}$
- Stars in the Milky Way: $4 \cdot 10^{11}$
- Stars in the universe: $10^{23}$
- Average number of neutrinos per cubic meter: $3.3 \cdot 10^{8}$
- Neutrinos in the universe: $10^{93}$ (wild guess)
- A small sequential circuit may have more than $10^{100}$ states ( $10^{100}=1$ googol)


## The Starry Sky Above Me...

- Galaxies in the (observable) universe: $2.5 \cdot 10^{11}$
- Stars in the Milky Way: $4 \cdot 10^{11}$
- Stars in the universe: $10^{23}$
- Average number of neutrinos per cubic meter: $3.3 \cdot 10^{8}$
- Neutrinos in the universe: $10^{93}$ (wild guess)
- A small sequential circuit may have more than $10^{100}$ states ( $10^{100}=1$ googol)


## The Starry Sky Above Me...

- Galaxies in the (observable) universe: $2.5 \cdot 10^{11}$
- Stars in the Milky Way: $4 \cdot 10^{11}$
- Stars in the universe: $10^{23}$
- Average number of neutrinos per cubic meter: $3.3 \cdot 10^{8}$
- Neutrinos in the universe: $10^{93}$ (wild guess)
- A small sequential circuit may have more than $10^{100}$ states ( $10^{100}=1$ googol)


## Combating State Explosion

- Symbolic Model Checking
- Represent sets (of states and transitions) by their characteristic functions
- $\{00,01,10\} \longrightarrow \neg x_{1} \vee \neg x_{2}$
- $x_{1} \vee x_{100}$ represents $3 \cdot 2^{98}$ elements
- BDDs and CNF popular representations
- Do not enumerate the elements of the sets
- Manipulate the characteristic functions instead
- Abstraction
- Infer properties of the concrete model from the analysis of a simplified abstract model


## Combating State Explosion

- Symbolic Model Checking
- Represent sets (of states and transitions) by their characteristic functions
- $\{00,01,10\} \longrightarrow \neg x_{1} \vee \neg x_{2}$
- $x_{1} \vee x_{100}$ represents $3 \cdot 2^{98}$ elements
- BDDs and CNF popular representations
- Do not enumerate the elements of the sets
- Manipulate the characteristic functions instead
- Abstraction
- Infer properties of the concrete model from the analysis of a simplified abstract model


## Familiar Abstractions



```
#include <iostream>
int main()
{
    std::cout << "Hello, world!" << std::endl;
    return 0;
}
```


## Layered Abstractions



## Peterson Mutex Algorithm

always @ (posedge clock) begin
self $=$ select;
case (pc[self])
LO: if (!pause) pc[self] = L1;
L1: begin intr[self] $=1 ; \mathrm{pc}[$ self $]=\mathrm{L} 2$; end
L2: begin turn $={ }^{\sim}$ self; pc[self] $=\mathrm{L} 3$; end
L3: if (!intr[ ${ }^{\sim}$ self] || turn == self) pc[self] $=\mathrm{L} 4$;
L4: if (!pause) pc[self] $=\mathrm{L} 5$; // critical
L5: begin intr[self] $=0 ; p c[s e l f]=$ L0; end
endcase
end

## Properties for Mutex Algorithm

- Mutual exclusion
- $\mathrm{AG} \neg(\mathrm{pc}[0]=\mathrm{L} 4 \wedge \mathrm{pc}[1]=\mathrm{L} 4)$
- Absence of starvation
- $\mathrm{AG}(\mathrm{pc}[0]=\mathrm{L} 1 \rightarrow \mathrm{AF} \mathrm{pc}[0]=\mathrm{L} 4)$
- $\mathrm{AG}(\mathrm{pc}[1]=\mathrm{L} 1 \rightarrow \mathrm{AF} \mathrm{pc}[1]=\mathrm{L} 4)$
- Temporal logic operators
- AG: invariably, AF: inevitably


## Nondeterminism

always @ (posedge clock) begin
self $=$ select;
case (pc[self])
LO: if (!pause) pc[self] = L1;
L1: begin intr[self] $=1 ; p c[s e l f]=\mathrm{L} 2$; end
L2: begin turn $={ }^{\sim}$ self; $p c[$ self $]=\mathrm{L} 3$; end
L3: if (!intr[ ${ }^{\sim}$ self] || turn == self) pc[self] = L4;
L4: if (!pause) pc[self] = L5; // critical
L5: begin intr[self] $=0 ; p c[s e l f]=L 0$; end
endcase

## Fairness Conditions

- Fair scheduling
- GFself $=1 \wedge$ GFself $=0$
- Neither process dwells forever in the critical section
- GFpc[0] $\neq \mathrm{L} 4 \wedge$ GFpc[1] $\neq \mathrm{L} 4$
- Temporal logic operators
- G F: infinitely often


## Outline

## (1) Introduction

(2) Modeling Systems and Properties
(3) Specification Mechanisms

4 CTL Model Checking
(5) Model Checking LTL and CTL*

6 SAT-Based Model Checking
(7) Abstraction

## Kripke Structures

- Finite transition systems without inputs
- $\left\langle S, T, S_{0}, A, L\right\rangle$
- $S$ : finite set of states
- $T \subseteq S \times S$ : transition relation
- $S_{0} \subseteq S$ : set of initial states
- A: set of atomic propositions
- $L: S \rightarrow 2^{A}$ : labeling function


## Kripke Structure Example



- $K=\left\langle S, T, S_{0}, A, L\right\rangle$
- $S=\{a, b, c\}$
- $T=\{(a, a),(a, b),(b, c),(c, c)\}$
- $S_{0}=\{a\}$
- $A=\{p, q\}$
- $L:\{a, b, c\} \rightarrow\{\{ \},\{p\},\{q\},\{p, q\}\}$
- $L(a)=\{p\}$
- $L(b)=\{ \}$
- $L(c)=\{p, q\}$


## Composition

- Complex systems are composed of several modules
- Each module is described as a finite state machine (FSM)
- The overall Kripke structure is obtained as the product of the FSMs
- State explosion!
- The product can be either synchronous or asynchronous (interleaving)


## Specifications

- Properties are sets of behaviors
- Various specification mechanisms are in use: Temporal logics and automata are popular
- The examples we have seen are formulae of the temporal logic CTL
- Syntactic sugar often useful (e.g., PSL/Sugar)


## Specifications

- Properties are sets of behaviors
- Various specification mechanisms are in use: Temporal logics and automata are popular
- The examples we have seen are formulae of the temporal logic CTL
e Syntactic sugar often useful (e.g., PSL/Sugar)


## Specifications

- Properties are sets of behaviors
- Various specification mechanisms are in use: Temporal logics and automata are popular
- The examples we have seen are formulae of the temporal logic CTL
- Syntactic sugar often useful (e.g., PSL/Sugar)


## Specifications

- Properties are sets of behaviors
- Various specification mechanisms are in use: Temporal logics and automata are popular
- The examples we have seen are formulae of the temporal logic CTL
- Syntactic sugar often useful (e.g., PSL/Sugar)


## Temporal Logics

- Temporal logics add temporal operators and path quantifiers to standard (e.g., propositional) logics
- Temporal operators allow one to conveniently describe the order of occurrence of events and other statements involving time without explicitly mentioning time
- Expressiveness of propositional temporal logic in between those of propositional logic and predicate logic


## Temporal Logics

- Temporal logics add temporal operators and path quantifiers to standard (e.g., propositional) logics
- Temporal operators allow one to conveniently describe the order of occurrence of events and other statements involving time without explicitly mentioning time
- Expressiveness of propositional temporal logic in between those of propositional logic and predicate logic


## Operators and Quantifiers

- G $\varphi$ : $\varphi$ holds globally ( $\square \varphi$ )
- F $\varphi$ : $\varphi$ holds eventually ( $\diamond \varphi$ )
- $\psi \mathrm{U} \varphi: \psi$ holds until $\varphi$ holds
- $\psi \mathrm{R} \varphi: \psi$ releases $\varphi$
- $\mathrm{X} \varphi: \varphi$ holds at the next state $(\bigcirc \varphi)$
- E: along at least one path
- A: along all paths
- In CTL all temporal operators are immediately preceeded by a path quantifier


## Operators and Quantifiers

- G $\varphi$ : $\varphi$ holds globally ( $\square \varphi$ )
- F $\varphi$ : $\varphi$ holds eventually ( $\diamond \varphi$ )
- $\psi \mathrm{U} \varphi: \psi$ holds until $\varphi$ holds
- $\psi \mathrm{R} \varphi: \psi$ releases $\varphi$
- $\mathrm{X} \varphi: \varphi$ holds at the next state $(\bigcirc \varphi)$
- E: along at least one path
- A: along all paths
- In CTL all temporal operators are immediately preceeded by a path quantifier


## Branching Time

Branching time logics reason about computation trees


## Linear Time

Linear time logics reason about sets of computation paths


## Linear vs. Branching Time: Syntax

- A linear-time temporal logic formula can contain only one path quantifier at the beginning
- AFGp
- A(Fp $\quad$ Fq)
- EGFp (existential linear-time formula)
- A branching-time formula may have multiple quantifiers
- AF AG $p$
- AGEF $p$
- EGEF $p$


## Linear vs. Branching Time



- AFG $\varphi$ holds in this structure
- Infinite paths eventually dwell in either a or $c$ where $\varphi$ holds
- AFAG $\varphi$ does not hold in this structure
- As long as a run dwells in a, it can always go to a state where $\varphi$ does not hold
- No CTL formula exists that is equivalent to A F G $\varphi$


## Linear vs. Branching Time



- AFG $\varphi$ holds in this structure
- Infinite paths eventually dwell in either a or $c$ where $\varphi$ holds
- AF AG $\varphi$ does not hold in this structure
- As long as a run dwells in a, it can always go to a state where $\varphi$ does not hold


## Linear vs. Branching Time



- AFG $\varphi$ holds in this structure
- Infinite paths eventually dwell in either a or $c$ where $\varphi$ holds
- AF AG $\varphi$ does not hold in this structure
- As long as a run dwells in a, it can always go to a state where $\varphi$ does not hold
- No CTL formula exists that is equivalent to AFG $\varphi$


## Linear vs. Branching Time



Linear-time properties cannot distinguish these two

## Trace Equivalence vs. Bisimilarity

- Linear time properties cannot distinguish two structures if they are trace (language) equivalent
- Branching time properties cannot distinguish two structures if they are bisimilar
- Bisimilarity is stronger than trace equivalence (see previous example)


## Trace Equivalence vs. Bisimilarity

- Linear time properties cannot distinguish two structures if they are trace (language) equivalent
- Branching time properties cannot distinguish two structures if they are bisimilar
- Bisimilarity is stronger than trace equivalence (see previous example)


## Bisimilar States


$p$ and $p^{\prime}$ are bisimilar

## Bisimulation Relation

- A relation $B$ among the states of two Kripke structures $K$ and $K^{\prime}$ with $A=A^{\prime}$ is a bisimulation relation if $\left(p, p^{\prime}\right) \in B$ implies
- $L(p)=L\left(p^{\prime}\right)$
- $(p, q) \in T \rightarrow \exists q^{\prime} \cdot\left(p^{\prime}, q^{\prime}\right) \in T^{\prime} \wedge\left(q, q^{\prime}\right) \in B$
- $\left(p^{\prime}, q^{\prime}\right) \in T^{\prime} \rightarrow \exists q .(p, q) \in T \wedge\left(q, q^{\prime}\right) \in B$


## Bisimilar Structures

- Two Kripke structures $K$ and $K^{\prime}$ are bisimulation equivalent $\left(K \equiv K^{\prime}\right)$ if there is a bisimulation relation between their states such that every initial state of one structure is bisimilar to some initial state of the other structure


## Bisimilar Structures

- Two Kripke structures $K$ and $K^{\prime}$ are bisimulation equivalent $\left(K \equiv K^{\prime}\right)$ if there is a bisimulation relation between their states such that every initial state of one structure is bisimilar to some initial state of the other structure
- Two structures are bisimulation equivalent iff they satisfy the same branching-time properties


## Bisimilar Structures

- Two Kripke structures $K$ and $K^{\prime}$ are bisimulation equivalent $\left(K \equiv K^{\prime}\right)$ if there is a bisimulation relation between their states such that every initial state of one structure is bisimilar to some initial state of the other structure
- Two structures are bisimulation equivalent iff they satisfy the same branching-time properties
- CTL properties suffice (Browne et al. [1988])


## Similar States


$p$ is simulated by $p^{\prime}$

## Simulation Relation

- A relation $\Sigma$ among the states of two Kripke structures $K$ and $K^{\prime}$ with $A \subseteq A^{\prime}$ is a simulation relation if $\left(p, p^{\prime}\right) \in \Sigma$ implies
- $L(p)=L^{\prime}\left(p^{\prime}\right) \cap A$
- $(p, q) \in T \rightarrow \exists q^{\prime} .\left(p^{\prime}, q^{\prime}\right) \in T^{\prime} \wedge\left(q, q^{\prime}\right) \in \Sigma$
- We say that $p$ is simulated by $p^{\prime}$


## Example of Simulation



## Similar and Simulation-Equivalent Structures

- Kripke structure $K^{\prime}$ simulates structure $K$ (written $K \preceq K^{\prime}$ ) if there exists a simulation relation $\Sigma \subseteq S \times S^{\prime}$ such that for every initial state $s$ of $K$ there is an initial state $s^{\prime}$ of $K^{\prime}$ such that $\left(s, s^{\prime}\right) \in \Sigma$
- Two Kripke structures $K$ and $K^{\prime}$ are simulation equivalent
$\left(K \sim K^{\prime}\right)$ iff $K \preceq K^{\prime}$ and $K^{\prime} \preceq K$
- Two structures are simulation equivalent iff they satisfy the same branching-time universal properties


## Similar and Simulation-Equivalent Structures

- Kripke structure $K^{\prime}$ simulates structure $K$ (written $K \preceq K^{\prime}$ ) if there exists a simulation relation $\Sigma \subseteq S \times S^{\prime}$ such that for every initial state $s$ of $K$ there is an initial state $s^{\prime}$ of $K^{\prime}$ such that $\left(s, s^{\prime}\right) \in \Sigma$
- If $K \preceq K^{\prime}$ and $\varphi$ is a universal branching-time formula over $A$, then $K^{\prime} \models \varphi$ implies $K \models \varphi$.
- Two structures are simulation equivalent iff they satisfy the same branching-time universal properties


## Similar and Simulation-Equivalent Structures

- Kripke structure $K^{\prime}$ simulates structure $K$ (written $K \preceq K^{\prime}$ ) if there exists a simulation relation $\Sigma \subseteq S \times S^{\prime}$ such that for every initial state $s$ of $K$ there is an initial state $s^{\prime}$ of $K^{\prime}$ such that $\left(s, s^{\prime}\right) \in \Sigma$
- If $K \preceq K^{\prime}$ and $\varphi$ is a universal branching-time formula over $A$, then $K^{\prime} \models \varphi$ implies $K \models \varphi$.
- Two Kripke structures $K$ and $K^{\prime}$ are simulation equivalent $\left(K \sim K^{\prime}\right)$ iff $K \preceq K^{\prime}$ and $K^{\prime} \preceq K$
- Two structures are simulation equivalent iff they satisfy the same branching-time universal properties


## Similar and Simulation-Equivalent Structures

- Kripke structure $K^{\prime}$ simulates structure $K$ (written $K \preceq K^{\prime}$ ) if there exists a simulation relation $\Sigma \subseteq S \times S^{\prime}$ such that for every initial state $s$ of $K$ there is an initial state $s^{\prime}$ of $K^{\prime}$ such that $\left(s, s^{\prime}\right) \in \Sigma$
- If $K \preceq K^{\prime}$ and $\varphi$ is a universal branching-time formula over $A$, then $K^{\prime} \models \varphi$ implies $K \models \varphi$.
- Two Kripke structures $K$ and $K^{\prime}$ are simulation equivalent $\left(K \sim K^{\prime}\right)$ iff $K \preceq K^{\prime}$ and $K^{\prime} \preceq K$
- Two structures are simulation equivalent iff they satisfy the same branching-time universal properties


## Linear vs. Branching Time: Summary

- Branching time is more powerful, but also trickier
- Two vending machine models
- $\operatorname{AFG} \varphi$ vs. AFAG $\varphi$
- Linear time is more suitable for compositional verification and Bounded Model Checking
- Counterexample generation simpler for linear time


## Linear vs. Branching Time: Summary

- Branching time is more powerful, but also trickier
- Two vending machine models
- $\operatorname{AFG} \varphi$ vs. AFAG $\varphi$
- Linear time is more suitable for compositional verification and Bounded Model Checking
- Counterexample generation simpler for linear time


## Linear vs. Branching Time: Summary

- Branching time is more powerful, but also trickier
- Two vending machine models
- $\operatorname{AFG} \varphi$ vs. AFAG $\varphi$
- Linear time is more suitable for compositional verification and Bounded Model Checking
- Counterexample generation simpler for linear time


## Safety

- A safety property describes something bad that should not happen
- AG $\neg\left(\right.$ grant $_{0} \wedge$ grant $\left._{1}\right)$ : requestors 0 and 1 should not be granted access to the shared resource simultaneously
- $A G \neg($ door $=$ open $\wedge$ engine $=$ running $)$


## Liveness

- A liveness property describes something good that should happen
- $A G(r e q \rightarrow F$ ack $)$ : requests should be acknowledged


## Safety or Liveness?

- The definitions given so far may be confusing
- $\mathrm{AG}($ command $=$ stop $\rightarrow$ X state $=$ halt $)$
- $A G($ command $=$ stop $\rightarrow$ Fstate $=$ halt $)$
- AG(req $\rightarrow$ Fack)


## Safety in Linear Time

- A linear-time property is a set of (linear) traces or infinite sequences over the atomic propositions
- A property $\varphi$ is a safety property if every trace not in $\varphi$ has a prefix that cannot be extended to a trace in $\varphi$
- Intuitively, the prefix includes the bad event that causes the property to fail
- A counterexample includes a state where $p$ holds followed by a
- The prefix that includes these two states cannot be extended to an infinite path satisfying the property


## Safety in Linear Time

- A linear-time property is a set of (linear) traces or infinite sequences over the atomic propositions
- A property $\varphi$ is a safety property if every trace not in $\varphi$ has a prefix that cannot be extended to a trace in $\varphi$
- Intuitively, the prefix includes the bad event that causes the property to fail
- $\mathrm{AG}(p \rightarrow \mathrm{X} q)$ is a safety property
- A counterexample includes a state where $p$ holds followed by a state where $\neg q$ holds
- The prefix that includes these two states cannot be extended to an infinite path satisfying the property


## Liveness in Linear Time

- A linear-time property $\varphi$ is a liveness property if every finite sequence over the atomic propositions can be extended to an infinite sequence in $\varphi$
- Intuitively, finite prefixes do not affect the fulfillment of the eventualities that characterize liveness properties
- One can add a state where $q$ holds to any finite prefix


## Liveness in Linear Time

- A linear-time property $\varphi$ is a liveness property if every finite sequence over the atomic propositions can be extended to an infinite sequence in $\varphi$
- Intuitively, finite prefixes do not affect the fulfillment of the eventualities that characterize liveness properties
- $\mathrm{AG}(p \rightarrow \mathrm{~F} q)$ is a liveness property
- One can add a state where $q$ holds to any finite prefix


## Neither Safe Nor Live

- $\mathrm{A}(p \cup q)$ is neither a safety property nor a liveness property
- A trace satisfying $\mathrm{G}(p \wedge \neg q)$ is a counterexample with no prefix that cannot be extended
- A trace satisfying $\neg q \mathrm{U}(\neg p \neg q)$ is a counterexample with a finite prefix that cannot be extended
- Every property can be written as the intersection of a safety property and a liveness property - $\mathrm{A}(p \cup q)=\mathrm{A}((q \mathrm{R}(p \vee q)) \wedge \mathrm{Fq})$


## Neither Safe Nor Live

- $\mathrm{A}(p \mathrm{U} q)$ is neither a safety property nor a liveness property
- A trace satisfying $\mathrm{G}(p \wedge \neg q)$ is a counterexample with no prefix that cannot be extended
- A trace satisfying $\neg q \mathrm{U}(\neg p \neg q)$ is a counterexample with a finite prefix that cannot be extended
- Every property can be written as the intersection of a safety property and a liveness property
- $\mathrm{A}(p \cup q)=\mathrm{A}((q \mathrm{R}(p \vee q)) \wedge \mathrm{Fq})$


## Classification of Properties

- Time structure: branching, linear
- Bisimilarity, trace equivalence
- Safety, liveness
- Existential, universal
- Tense: future, past
- X versus Y (neXt vs. Yesterday)
- See (Laroussinie and Schnoebelen [2000])


## Outline

(1) Introduction
(2) Modeling Systems and Properties

3 Specification Mechanisms
(4) CTL Model Checking
(5) Model Checking LTL and CTL*
(6) SAT-Based Model Checking
(7) Abstraction

## CTL*

- CTL* is a powerful branching-time temporal logic
- We use a subset of the operators ( X and U ) and the E quantifier to define the syntax
- The remaining operators are defined as abbreviations
- We need both state formulae and path formulae to recursively define the logic
- The state formulae give CTL*
- Path formulae can only appear as subformulae


## CTL*

- CTL* is a powerful branching-time temporal logic
- We use a subset of the operators $(X$ and $U)$ and the $E$ quantifier to define the syntax
- The remaining operators are defined as abbreviations
- We need both state formulae and path formulae to recursively define the logic
- The state formulae give CTL*
- Path formulae can only appear as subformulae


## CTL*

- CTL* is a powerful branching-time temporal logic
- We use a subset of the operators $(X$ and $U)$ and the $E$ quantifier to define the syntax
- The remaining operators are defined as abbreviations
- We need both state formulae and path formulae to recursively define the logic
- The state formulae give CTL*
- Path formulae can only appear as subformulae


## CTL*

- CTL* is a powerful branching-time temporal logic
- We use a subset of the operators ( $X$ and $U$ ) and the $E$ quantifier to define the syntax
- The remaining operators are defined as abbreviations
- We need both state formulae and path formulae to recursively define the logic
- The state formulae give CTL*
- Path formulae can only appear as subformulae


## CTL* Syntax

- An atomic proposition is a state formula
- A state formula is also a path formula
- If $\varphi$ and $\psi$ are state formulae, so are $\neg \varphi$ and $\varphi \wedge \psi$
- If $\varphi$ is a path formula, $\mathrm{E} \varphi$ is a state formula
- If $\varphi$ and $\psi$ are path formulae, so are $\neg \varphi$ and $\varphi \wedge \psi$
- If $\varphi$ and $\psi$ are path formulae, so are $\mathrm{X} \varphi$ and $\psi \mathrm{U} \varphi$


## CTL* Abbreviations

- $\varphi \vee \psi=\neg(\neg \varphi \wedge \neg \psi)$
- true $=\varphi \vee \neg \varphi$
- false $=\varphi \wedge \neg \varphi$
- $\psi \mathrm{R} \varphi=\neg(\neg \psi \mathrm{U} \neg \varphi)$
- $\mathrm{F} \varphi=\operatorname{true} \mathrm{U} \varphi$
- G $\varphi=$ false $\mathrm{R} \varphi$
- $\mathrm{A} \varphi=\neg \mathrm{E} \neg \varphi$


## "Pushing Down" Negations

- $\neg \mathrm{AGF} \varphi=\mathrm{EFG} \neg \varphi$
- Negations can be pushed "down" toward the atomic propositions
- The basic rules are (beside DeMorgan)
- $\psi \mathrm{R} \varphi=\neg(\neg \psi \mathrm{U} \neg \varphi)$
- $\mathrm{A} \varphi=\neg \mathrm{E} \neg \varphi$
- From the first we get $\mathrm{G} \varphi=\neg \mathrm{F} \neg \varphi$


## CTL* Semantics

- The semantics of CTL* formulae are defined with respect to a Kripke structure $K$
- If formula $\varphi$ holds of state $s$ (path $\pi$ ) of K, we write $K, s \models \varphi(K, \pi \models \varphi)$
- The double turnstile is read "models"
- $K$ is omitted when no ambiguity arises
- $\pi^{i}$ is $\pi$ without the first $i$ states


## CTL* Semantics

- The semantics of CTL* formulae are defined with respect to a Kripke structure K
- If formula $\varphi$ holds of state $s$ (path $\pi$ ) of $K$, we write $K, s \models \varphi(K, \pi \models \varphi)$
- The double turnstile is read "models"
- $K$ is omitted when no ambiguity arises
- $\pi^{i}$ is $\pi$ without the first $i$ states


## CTL* Semantics

- The semantics of CTL* formulae are defined with respect to a Kripke structure K
- If formula $\varphi$ holds of state $s$ (path $\pi$ ) of $K$, we write $K, s \models \varphi(K, \pi \models \varphi)$
- The double turnstile is read "models"
- $K$ is omitted when no ambiguity arises
- $\pi^{i}$ is $\pi$ without the first $i$ states


## CTL* Semantics

- $s \models p, p \in A$ iff $p \in L(s)$
- $s \models \neg \varphi$ iff $s \not \models \varphi$
- $s \models \varphi \wedge \psi$ iff $s \models \varphi$ and $s \models \psi$
- $s \models \mathrm{E} \varphi$ iff $\exists \pi$ from $s$ such that $\pi \models \varphi$
- $\pi \models \neg \varphi$ iff $\pi \not \models \varphi$
- $\pi \models \varphi \wedge \psi$ iff $\pi \models \varphi$ and $\pi \models \psi$
- $\pi \models \mathrm{X} \varphi$ iff $\pi^{1} \models \varphi$
- $\pi \models \psi \cup \varphi$ iff $\exists i \geq 0 . \pi^{i} \models \varphi$ and $0 \leq j<i \rightarrow \pi^{j} \models \psi$


## Semantics of $X$ and $U$



## CTL

- Computational Tree Logic is a branching time fragment of CTL*
- In CTL every temporal operator must be immediately preceded by a path quantifier
- AF AG $\varphi$ is a CTL formula
- $\operatorname{AFG} \varphi$ is not a CTL formula
- Model checking easy relative to CTL*


## CTL

- Computational Tree Logic is a branching time fragment of CTL*
- In CTL every temporal operator must be immediately preceded by a path quantifier
- AF AG $\varphi$ is a CTL formula
- AFG $\varphi$ is not a CTL formula
- Model checking easy relative to CTL*


## LTL

- Linear Temporal Logic is a linear-time fragment of CTL*
- In LTL there can be only one quantifier at the beginning of the formula
- The quantifier is usually A , in which case it is usually omitted - $\mathrm{FG} \varphi$ means AFG $\varphi$


## LTL

- Linear Temporal Logic is a linear-time fragment of CTL*
- In LTL there can be only one quantifier at the beginning of the formula
- The quantifier is usually $A$, in which case it is usually omitted
- FG $\varphi$ means AFG $\varphi$

Omega-Automata

- Properties can be described by automata that take the computation of the system as input and either accept it or reject it
- For computations that finish regular automata suffice
- For non-terminating computations we need $\omega$-automata

Omega-Automata

- Properties can be described by automata that take the computation of the system as input and either accept it or reject it
- For computations that finish regular automata suffice
- For non-terminating computations we need $\omega$-automata

Omega-Automata

- Properties can be described by automata that take the computation of the system as input and either accept it or reject it
- For computations that finish regular automata suffice
- For non-terminating computations we need $\omega$-automata

Automaton for Safety Property

- $\operatorname{AG}(\varphi \rightarrow \mathrm{X} \neg \psi)$ is negated to get the formula $\operatorname{EF}(\varphi \wedge \mathrm{X} \psi)$


Why Omega Automata?

- For safety properties we can "stretch" regular automata because it suffices to find the non-extensible prefixes of the counterexamples
- For liveness properties we need to address the fact that the computations we consider do not terminate

Büchi Automata

- Büchi automata are similar to (nondeterministic) regular automata except for the acceptance conditions
- A Büchi automaton accepts an infinite sequence if there is a run of it that goes through an accepting state infinitely often

Büchi Automaton to Model Check AF G $\varphi$

- We negate the property to get EGF $\neg \varphi$

- A computation accepted by the automaton is a counterexample to A F G $\varphi$


## Omega-Automata

- Omega-automata describe linear-time properties
- They are more expressive than LTL



## Fairness

- Fairness constraints are used to
- Model features of the environment
- Mitigate the effects of simplifications of the model
- They instruct the model checker to disregard certain (unfair) computations


## Modeling the Environment

- Property: The combination lock will open unless we keep making mistakes
- Fairness constraint: provided we never give up
- This constraint implies that the knob is turned


## Modeling the Environment

- Property: The combination lock will open unless we keep making mistakes
- Fairness constraint: provided we never give up
- This constraint implies that the knob is turned


## Modeling the Environment

- Property: The combination lock will open unless we keep making mistakes
- Fairness constraint: provided we never give up
- This constraint implies that the knob is turned infinitely often


## Mitigating Abstraction

- Property: All requests are eventually acknowledged
- Fairness constraints: provided all grantees eventually relinquish the shared resource
- These constraints imply that each requestor is not using the shared resource infinitely often


## Mitigating Abstraction

- Property: All requests are eventually acknowledged
- Fairness constraints: provided all grantees eventually relinquish the shared resource
- These constraints imply that each requestor is not using the shared resource infinitely often


## Mitigating Abstraction

- Property: All requests are eventually acknowledged
- Fairness constraints: provided all grantees eventually relinquish the shared resource
- These constraints imply that each requestor is not using the shared resource infinitely often


## Büchi Fairness Constraints

- A Büchi fairness constraint is a set of states that a fair run must intersect infinitely often
- LTL can express fairness constraints
- A(GF $\psi \rightarrow \varphi)$ says that $\varphi$ must hold only along paths where $\psi$ holds infinitely often
- CTL cannot express fairness constraints
- They must be specified separately


## Outline

(1) Introduction
(2) Modeling Systems and Properties
(3) Specification Mechanisms
(4) CTL Model Checking
(5) Model Checking LTL and CTL*

6 SAT-Based Model Checking
(7) Abstraction

## CTL Model Checking

- Given a Kripke structure $K$ and a CTL formula $\varphi$, we want to determine whether $K \models \varphi$
- We find $\llbracket \varphi \rrbracket_{K}$, the set of all states $s$ such that $K, s \models \varphi$
- We then check whether $S_{0} \subseteq \llbracket \varphi \rrbracket_{K}$
- When no confusion arises we write simply $\varphi$ for $\llbracket \varphi \rrbracket K$


## CTL Model Checking

- Given a Kripke structure $K$ and a CTL formula $\varphi$, we want to determine whether $K \models \varphi$
- We find $\llbracket \varphi \rrbracket_{K}$, the set of all states $s$ such that $K, s \models \varphi$
- We then check whether $S_{0} \subseteq \llbracket \varphi \rrbracket_{K}$
- When no confusion arises we write simply $\varphi$ for $\llbracket \varphi \rrbracket_{K}$


## CTL Model Checking

- Given a Kripke structure $K$ and a CTL formula $\varphi$, we want to determine whether $K \models \varphi$
- We find $\llbracket \varphi \rrbracket_{K}$, the set of all states $s$ such that $K, s \models \varphi$
- We then check whether $S_{0} \subseteq \llbracket \varphi \rrbracket_{K}$
- When no confusion arises we write simply $\varphi$ for $\llbracket \varphi \rrbracket_{K}$


## CTL Model Checking

- Given a Kripke structure $K$ and a CTL formula $\varphi$, we want to determine whether $K \models \varphi$
- We find $\llbracket \varphi \rrbracket_{K}$, the set of all states $s$ such that $K, s \models \varphi$
- We then check whether $S_{0} \subseteq \llbracket \varphi \rrbracket_{K}$
- When no confusion arises we write simply $\varphi$ for $\llbracket \varphi \rrbracket K$


## Computing Satisfying Sets

- Work bottom-up on the parse graph of the CTL formula
- Annotate every node with the satisfying set of the subformula rooted at the node
- The computation at each node of the parse graph depends on its label


## Satisfying Sets for EGE $\psi \cup \varphi$



## Action for Each Label

- Atomic proposition $p$ : return set of states with $p$ in their labels
- $\neg \varphi$ : return the complement of $\llbracket \varphi \rrbracket_{K}$
- $\varphi \wedge \psi:$ return $\llbracket \varphi \rrbracket_{K} \cap \llbracket \psi \rrbracket_{K}$
- EX $\varphi$ : return the set of predecessors in $K$ of the states in $\llbracket \varphi \rrbracket_{K}$
- $\mathrm{E} \psi \mathrm{U} \varphi$ : return the set of states with paths to states in $\llbracket \varphi \rrbracket_{K}$ that are entirely contained in $\llbracket \psi \rrbracket_{K}$ (except possibly for the last state of each path)
- EG $\varphi$ : return the set of states on infinite paths entirely contained in $\llbracket \varphi \rrbracket_{K}$


## Action for Each Label

- Atomic proposition $p$ : return set of states with $p$ in their labels
- $\neg \varphi$ : return the complement of $\llbracket \varphi \rrbracket_{K}$
- $\varphi \wedge \psi$ : return $\llbracket \varphi \rrbracket_{K} \cap \llbracket \psi \rrbracket_{K}$
- EX $\varphi$ : return the set of predecessors in $K$ of the states in $\left[\varphi \rrbracket_{K}\right.$
- $\mathbf{E} \psi \cup \varphi$ : return the set of states with paths to states in $\llbracket \varphi \rrbracket_{K}$ that are entirely contained in $\llbracket \psi \rrbracket_{K}$ (except possibly for the last state of each path)
- $\mathrm{EG} \varphi$ : return the set of states on infinite paths entirely contained in $\llbracket \varphi \rrbracket_{K}$


## Action for Each Label

- Atomic proposition $p$ : return set of states with $p$ in their labels
- $\neg \varphi$ : return the complement of $\llbracket \varphi \rrbracket_{K}$
- $\varphi \wedge \psi$ : return $\llbracket \varphi \rrbracket_{K} \cap \llbracket \psi \rrbracket_{K}$
- EX $\varphi$ : return the set of predecessors in $K$ of the states in $\llbracket \varphi \rrbracket_{K}$
- $\mathrm{E} \psi \mathrm{U} \varphi$ : return the set of states with paths to states in $\llbracket \varphi \rrbracket_{K}$ that are entirely contained in $\llbracket \psi \rrbracket_{K}$ (except possibly for the last state of each path)
- EG $\varphi$ : return the set of states on infinite paths entirely contained in $\llbracket \varphi \rrbracket_{K}$


## Action for Each Label

- Atomic proposition $p$ : return set of states with $p$ in their labels
- $\neg \varphi$ : return the complement of $\llbracket \varphi \rrbracket_{K}$
- $\varphi \wedge \psi:$ return $\llbracket \varphi \rrbracket_{K} \cap \llbracket \psi \rrbracket_{K}$
- $\operatorname{EX} \varphi$ : return the set of predecessors in $K$ of the states in $\llbracket \varphi \rrbracket K$
- $\mathrm{E} \psi \mathrm{U} \varphi$ : return the set of states with paths to states in $\llbracket \varphi \rrbracket K$ that are entirely contained in $\llbracket \psi \rrbracket_{K}$ (except possibly for the last state of each path)
- EG $\varphi$ : return the set of states on infinite paths entirely contained in $\llbracket \varphi \rrbracket_{K}$


## Action for Each Label

- Atomic proposition $p$ : return set of states with $p$ in their labels
- $\neg \varphi$ : return the complement of $\llbracket \varphi \rrbracket_{K}$
- $\varphi \wedge \psi:$ return $\llbracket \varphi \rrbracket_{K} \cap \llbracket \psi \rrbracket_{K}$
- $\operatorname{EX} \varphi$ : return the set of predecessors in $K$ of the states in $\llbracket \varphi \rrbracket_{K}$
- $\mathrm{E} \psi \cup \varphi$ : return the set of states with paths to states in $\llbracket \varphi \rrbracket K$ that are entirely contained in $\llbracket \psi \rrbracket_{K}$ (except possibly for the last state of each path)
- $\mathrm{EG} \varphi$ : return the set of states on infinite paths entirely contained in $\llbracket \varphi \rrbracket_{K}$


## Explicit Model Checking

- To fix ideas, suppose Kripke structures are represented by adjacency lists and sets by bit vectors
- Boolean operations on sets can be performed in linear time
- Computing EU amounts to reachability in a graph
- Computing EG amounts to finding the strongly connected components (SCCs) of a subgraph of $K$
- Both reachability and SCC computation are based on depth-first search and take time linear in the size of the Kripke structure
- In practice sets are often represented by hash tables


## Explicit Model Checking

- To fix ideas, suppose Kripke structures are represented by adjacency lists and sets by bit vectors
- Boolean operations on sets can be performed in linear time
- Computing EU amounts to reachability in a graph
- Computing EG amounts to finding the strongly connected components (SCCs) of a subgraph of $K$
- Both reachability and SCC computation are based on depth-first search and take time linear in the size of the Kripke structure
- In practice sets are often represented by hash tables


## Explicit Model Checking

- To fix ideas, suppose Kripke structures are represented by adjacency lists and sets by bit vectors
- Boolean operations on sets can be performed in linear time
- Computing EU amounts to reachability in a graph
- Computing EG amounts to finding the strongly connected components (SCCs) of a subgraph of $K$
- Both reachability and SCC computation are based on depth-first search and take time linear in the size of the Kripke structure
- In practice sets are often represented by hash tables


## Complexity of Explicit CTL MC

- Considering fairness constraints does not change the complexity of the algorithm
- It suffices to discard SCCs that do not intersect all fair sets
- CTL model checking is linear in the size of the formula and the size of the structure


## Symbolic Model Checking

- Linear time complexity is great unless your system has $10^{50}$ states
- Number of states grows exponentially with number of state variables
- Explicit model checking limited to a few billion states
- Symbolic model checking can do much more (though not uniformly)


## Symbolic Model Checking

- Linear time complexity is great unless your system has $10^{50}$ states
- Number of states grows exponentially with number of state variables
- Explicit model checking limited to a few billion states
- Symbolic model checking can do much more (though not uniformly)


## Symbolic Model Checking

- Linear time complexity is great unless your system has $10^{50}$ states
- Number of states grows exponentially with number of state variables
- Explicit model checking limited to a few billion states
- Symbolic model checking can do much more (though not uniformly)


## Characteristic Functions

- States are encoded as binary strings of length $n$ (the number of binary state variables)
- A set of states $V$ is represented by a characteristic function $\chi v: B^{n} \rightarrow B$ that returns 1 for all elements of the set and 0 for all other states
- We often drop the " $\chi$ " from $\chi v$ when there is no ambiguity


## Characteristic Functions

- States are encoded as binary strings of length $n$ (the number of binary state variables)
- A set of states $V$ is represented by a characteristic function $\chi_{v}: B^{n} \rightarrow B$ that returns 1 for all elements of the set and 0 for all other states
- We often drop the " $\chi$ " from $\chi_{v}$ when there is no ambiguity


## Symbolic Representation



- $T\left(x_{1}, x_{0}, y_{1}, y_{0}\right)=\left(\neg x_{1} \wedge \neg x_{0} \wedge \neg y_{1} \wedge\right.$ $\left.y_{0}\right) \vee\left(\neg x_{1} \wedge x_{0} \wedge \neg y_{0}\right) \vee\left(x_{1} \wedge \neg x_{0} \wedge \neg y_{0}\right)$
- $S_{0}\left(x_{1}, x_{0}\right)=\neg x_{1} \wedge \neg x_{0}$
- $p\left(x_{1}, x_{0}\right)=x_{1} \wedge \neg x_{0}$
- $q\left(x_{1}, x_{0}\right)=\neg x_{1} \wedge x_{0}$


## Characteristic Functions

- Let $V$ contain all states with either the first or the last bit set to 1

$$
\chi v=x_{1} \vee x_{n}
$$

- Set $V$ has $3 \cdot 2^{n-2}$ elements
- Great, but let us not get carried away, because it is not possible to find a representation that is compact for most functions


## Characteristic Functions

- Let $V$ contain all states with either the first or the last bit set to 1

$$
\chi v=x_{1} \vee x_{n}
$$

- Set $V$ has $3 \cdot 2^{n-2}$ elements
- Great, but let us not get carried away, because it is not possible to find a representation that is compact for most functions


## Characteristic Functions

- Let $V$ contain all states with either the first or the last bit set to 1

$$
\chi v=x_{1} \vee x_{n}
$$

- Set $V$ has $3 \cdot 2^{n-2}$ elements
- Great, but let us not get carried away, because it is not possible to find a representation that is compact for most functions


## Implicit Enumeration

- Symbolic model checking enumerates states implicitly
- No explicit loop on the states or the transitions is used
- The cost of implicit enumeration is more affected by the size of the representation than by the cardinality of the set


## Implicit Enumeration

- Symbolic model checking enumerates states implicitly
- No explicit loop on the states or the transitions is used
- The cost of implicit enumeration is more affected by the size of the representation than by the cardinality of the set


## Computing Predecessors

- Let $x(y)$ be the vector of current (next) state variables
- The set of predecessors of the states in $V$ is given by

$$
\exists y . T(x, y) \wedge V(y)
$$

- No loops over states and transitions


## Computing Predecessors

- Let $x(y)$ be the vector of current (next) state variables
- The set of predecessors of the states in $V$ is given by

$$
\exists y . T(x, y) \wedge V(y)
$$

- No loops over states and transitions


## Symbolic Model Checking

- Boolean connectives give no difficulties
- Complementation turns into negation
- Union becomes disjunction and intersection becomes conjunction
- We have seen how to deal with $\operatorname{EX} \varphi$
- For EU and EG we use a fixpoint characterization
- A fixpoint $x$ of $f$ is such that $f(x)=x$


## Fixpoint Characterization

- The satisfying sets of EU and EG computations are fixpoints of monotonic functions over $2^{S}$
- $\mathrm{E} \psi \mathrm{U} \varphi=\varphi \vee[\psi \wedge \operatorname{EXE} \psi \mathrm{U} \varphi]$
- $\mathrm{EG} \varphi=\varphi \wedge \mathrm{EXEG} \varphi$
- Specifically, $\mathrm{E} \psi \mathrm{U} \varphi$ is the least fixpoint and $\mathrm{EG} \varphi$ is the greatest fixpoint. This is written

- $\mu$-calculus notation


## Fixpoint Characterization

- The satisfying sets of EU and EG computations are fixpoints of monotonic functions over $2^{S}$
- $\mathbf{E} \psi \mathrm{U} \varphi=\varphi \vee[\psi \wedge \operatorname{EXE} \psi \mathbf{U} \varphi]$
- $\mathrm{EG} \varphi=\varphi \wedge \operatorname{EXEG} \varphi$
- Specifically, $\mathrm{E} \psi \mathrm{U} \varphi$ is the least fixpoint and $\mathrm{EG} \varphi$ is the greatest fixpoint. This is written
- $\mathrm{E} \psi \mathrm{U} \varphi=\mu Z . \varphi \vee[\psi \wedge \mathrm{EX} Z]$
- $\mathrm{EG} \varphi=\nu Z . \varphi \wedge \mathrm{EX} Z$
- $\mu$-calculus notation


## Fixpoint Characterization

- The satisfying sets of EU and EG computations are fixpoints of monotonic functions over $2^{S}$
- $\mathrm{E} \psi \mathrm{U} \varphi=\varphi \vee[\psi \wedge \operatorname{EXE} \psi \mathrm{U} \varphi]$
- $\mathrm{EG} \varphi=\varphi \wedge \mathrm{EXEG} \varphi$
- Specifically, $\mathrm{E} \psi \mathrm{U} \varphi$ is the least fixpoint and $\mathrm{EG} \varphi$ is the greatest fixpoint. This is written
- $\mathrm{E} \psi \mathrm{U} \varphi=\mu Z . \varphi \vee[\psi \wedge \mathrm{EX} Z]$
- $\mathrm{EG} \varphi=\nu Z . \varphi \wedge \mathrm{EX} Z$
- $\mu$-calculus notation


## Tarski's Theorem

- A function $f$ is monotonic if

$$
x \leq y \rightarrow f(x) \leq f(y)
$$

- A monotonic function over a finite lattice has a least fixpoint that can be computed as the limit of the sequence

$$
0, f(0), f(f(0)), f(f(f(0)))
$$

- For greatest fixpoints

$$
1, f(1), f(f(1)), f(f(f(1))),
$$

- This is the kitty version of the theorem for finite lattices


## Tarski's Theorem

- A function $f$ is monotonic if

$$
x \leq y \rightarrow f(x) \leq f(y)
$$

- A monotonic function over a finite lattice has a least fixpoint that can be computed as the limit of the sequence

$$
0, f(0), f(f(0)), f(f(f(0))), \ldots
$$

- For greatest fixpoints
$\square$
- This is the kitty version of the theorem for finite lattices


## Tarski's Theorem

- A function $f$ is monotonic if

$$
x \leq y \rightarrow f(x) \leq f(y)
$$

- A monotonic function over a finite lattice has a least fixpoint that can be computed as the limit of the sequence

$$
0, f(0), f(f(0)), f(f(f(0))), \ldots
$$

- For greatest fixpoints

$$
1, f(1), f(f(1)), f(f(f(1))), \ldots
$$

- This is the kitty version of the theorem for finite lattices


## Tarski's Theorem

- A function $f$ is monotonic if

$$
x \leq y \rightarrow f(x) \leq f(y)
$$

- A monotonic function over a finite lattice has a least fixpoint that can be computed as the limit of the sequence

$$
0, f(0), f(f(0)), f(f(f(0))), \ldots
$$

- For greatest fixpoints

$$
1, f(1), f(f(1)), f(f(f(1))), \ldots
$$

- This is the kitty version of the theorem for finite lattices


## Computing $\mathrm{E} \psi \mathrm{U} \varphi$ and $\mathrm{E} \psi \operatorname{R} \varphi$

$$
\begin{aligned}
& Z=\varnothing \\
& \zeta=S ;
\end{aligned}
$$

while $(Z \neq \zeta)$ \{

$$
\begin{aligned}
& \zeta=Z \\
& Z=\varphi \vee(\psi \wedge \mathrm{EX} Z) ;
\end{aligned}
$$

\}
$Z=S ;$
$\zeta=\varnothing ;$
while $(Z \neq \zeta)$ \{

$$
\begin{aligned}
& \zeta=Z \\
& Z=\varphi \wedge(\psi \vee \mathrm{EX} Z)
\end{aligned}
$$

$$
\}
$$

## Computing $\mathrm{E} \psi \cup \varphi$



Computing EG $\varphi$


## Backward vs. Forward Search

- The algorithm we have presented is based on backward search in the Kripke structure (EX computes predecessors)
- Part of CTL can be model checked using forward search (using EY that computes successors)
- Forward search popular for invariants (AGp)
- Forward search is also used to find states reachable from initial states and prune backward search


## On-the-Fly Model Checking

- In checking $K \models$ EF $p$ we can stop the computation of the least fixpoint as soon as all initial states are acquired
- This is an instance of on-the-fly model checking
- In general, on-the-fly model checking stops as soon as the answer is known


## ECTL and ACTL

- ECTL is a fragment of CTL that consists of existential properties
- Negation can only occur in front of atomic propositions
- The path quantifier A cannot be used
- ACTL consists of the negation of ECTL formulae (universal properties)


## ECTL and ACTL

- ECTL is a fragment of CTL that consists of existential properties
- Negation can only occur in front of atomic propositions
- The path quantifier A cannot be used
- ACTL consists of the negation of ECTL formulae (universal properties)


## ECTL and ACTL Examples

- $\mathrm{EF}(\varphi \wedge \mathrm{EG} \neg \psi) \mathrm{ECTL}$
- AG $(\varphi \rightarrow \mathrm{AF} \psi) \mathrm{ACTL}$
- Negation of the previous formula
- $\operatorname{AG}(\mathrm{AF} \varphi \rightarrow \mathrm{AF} \psi)$ mixed
- EF(EG $\varphi \vee \mathrm{EG} \psi) \mathrm{ECTL}$


## Counterexamples and Witnesses

- If a property fails it is useful to show an execution of the system that is a counterexample
- For a property that holds, it may be useful to show an execution of the system that is a witness
- A witness to $K, s \models \varphi$ is a counterexample to $K, s \models \neg \varphi$ and vice versa

Witness Example

- Witness for the ECTL property

$$
\mathrm{EF}(\varphi \wedge \mathrm{EG} \neg \psi)
$$



## A Witness May Not Suffice

- One witness computation does not suffice to show that $\mathrm{AG} \varphi$ holds in a structure with multiple paths
- One counterexample computation does not suffice to show that EF $\neg \varphi$ fails
- Complete witnesses can be found for ECTL formulae and complete counterexamples for ACTL formulae


## A Witness May Not Suffice

- One witness computation does not suffice to show that $\mathrm{AG} \varphi$ holds in a structure with multiple paths
- One counterexample computation does not suffice to show that $\mathrm{EF} \neg \varphi$ fails
- Complete witnesses can be found for ECTL formulae and complete counterexamples for ACTL formulae


## A Witness May Not Suffice

- One witness computation does not suffice to show that $\mathrm{AG} \varphi$ holds in a structure with multiple paths
- One counterexample computation does not suffice to show that $\mathrm{EF} \neg \varphi$ fails
- Complete witnesses can be found for ECTL formulae and complete counterexamples for ACTL formulae

Branching Witnesses

- Consider a witness for the ECTL formula

$$
\mathrm{EF}(\mathrm{EG} \varphi \wedge \mathrm{EG} \psi)
$$



## Adding Fairness Constraints

- Fairness constraints are given as sets of states that must be traversed infinitely often (Büchi fairness)
- In CTL the fair sets are the satisfying sets of CTL formulae (distinct from the formulae for the properties to be verified)
- Quantifiers are restricted to fair paths
- Paths that intersect all the fair sets infinitely often


## Adding Fairness Constraints

- Fairness constraints are given as sets of states that must be traversed infinitely often (Büchi fairness)
- In CTL the fair sets are the satisfying sets of CTL formulae (distinct from the formulae for the properties to be verified)
- Paths that intersect all the fair sets infinitely often


## Adding Fairness Constraints

- Fairness constraints are given as sets of states that must be traversed infinitely often (Büchi fairness)
- In CTL the fair sets are the satisfying sets of CTL formulae (distinct from the formulae for the properties to be verified)
- Quantifiers are restricted to fair paths
- Paths that intersect all the fair sets infinitely often


## Computing the Fair States

- The fair states are those along fair paths
- They are computed by the $\mu$-calculus formula

$$
\nu Z . \operatorname{EX}[\mathrm{E} Z \mathrm{U}(Z \wedge c)]
$$

in the case of one fairness constraint $c$

## MC for CTL with Fairness

- Let $\Phi=\nu Z . \wedge_{i} \operatorname{EX}\left[\mathrm{E} Z \mathrm{U}\left(Z \wedge c_{i}\right)\right]$
- The set of fair states with $C=\left\{c_{i}\right\}$
- $\mathrm{E}_{C} \mathrm{G} \varphi=\nu Z . \varphi \wedge \wedge_{i} \mathrm{EX}\left[\mathrm{E} Z \mathrm{U}\left(Z \wedge c_{i}\right)\right]$
- $\mathrm{E}_{C} \mathrm{X} \varphi=\mathrm{EX}(\varphi \wedge \Phi)$
- $\mathrm{E}_{C} \psi \mathrm{U} \varphi=\mathrm{E} \psi \mathrm{U}(\varphi \wedge \Phi)$


## Fair Witnesses

- For EX and EU, we append witness to EG true to finite witness
- For EG $\varphi$, while tracing a loop in a fair SCC we need to insure that all fair sets are visited
- Finding a shortest witness is hard, but heuristics work reasonably well


## Outline

(1) Introduction
(2) Modeling Systems and Properties
(3) Specification Mechanisms
(4) CTL Model Checking
(5) Model Checking LTL and CTL*

6 SAT-Based Model Checking
(7) Abstraction

## LTL Model Checking

- LTL operators can be characterized in terms of fixpoints like their CTL counterparts
- $\psi \mathrm{U} \varphi=\varphi \vee[\psi \wedge \mathrm{X}(\psi \mathrm{U} \varphi)]$
- $\psi \mathrm{R} \varphi=\varphi \wedge[\psi \vee \mathrm{X}(\psi \mathrm{R} \varphi)]$
- The problem is that we have sets of paths instead of sets of states
- We take a different approach


## Model Checking LTL

- Negate the given formula $\varphi$ to get $\neg \varphi$
- Build a Büchi automaton $A_{\neg \varphi}$ that accepts exactly the computations that model $\neg \varphi$
- Compose $A_{\neg \varphi}$ with the system to be verified
- Check whether there is a fair path in the composition


## From Formula to Automaton

$$
\psi \cup \varphi=\varphi \vee[\psi \wedge \mathrm{X}(\psi \cup \varphi)]
$$



## Model Checking AG $(p \rightarrow \mathrm{~F} q)$

- A counterexample to $\mathrm{AG}(p \rightarrow \mathrm{Fq})$ is an execution in which $p$ happens, but $q$ does not follow it
- Compose automaton for all counterexamples with model and check for accepting path



## CTL* Model Checking

- If formula is propositional, compute its satisfying set directly, otherwise
- There is a subformula that is an LTL formula $\mathrm{E} \psi$ : find its satisfying set with LTL model checking algorithm and use it as a new atomic proposition
- Repeat until the satisfying set of the root of the parse tree is found


## Outline

(1) Introduction
(2) Modeling Systems and Properties

3 Specification Mechanisms
(4) CTL Model Checking
(5) Model Checking LTL and CTL*
(6) SAT-Based Model Checking
(7) Abstraction

## Bounded Model Checking

- Checks for a counterexample to a property of a model
- We assume finite state and LTL
- Encodes the property checking problem as propositional satisfiability (SAT)
- Constructs a propositional formula that is satisfiable iff there exits a length-k counterexample, e.g.,

- If no counterexample is found, BMC increases $k$ until
- a counterexample is found,
- the search becomes intractable, or
- $k$ reaches a certain bound


## Bounded Model Checking

- Checks for a counterexample to a property of a model - We assume finite state and LTL
- Encodes the property checking problem as propositional satisfiability (SAT)
- Constructs a propositional formula that is satisfiable iff there exits a length- $k$ counterexample, e.g.,

- If no counterexample is found, BMC increases $k$ until
- a counterexample is found,
- the search becomes intractable, or
- $k$ reaches a certain bound


## Bounded Model Checking

- Checks for a counterexample to a property of a model
- We assume finite state and LTL
- Encodes the property checking problem as propositional satisfiability (SAT)
- Constructs a propositional formula that is satisfiable iff there exits a length- $k$ counterexample, e.g.,

$$
I\left(s_{0}\right) \wedge \bigwedge_{0 \leq i<k} T\left(s_{i}, s_{i+1}\right) \wedge \neg p\left(s_{k}\right)
$$

- If no counterexample is found, BMC increases $k$ until
- a counterexample is found,
- the search becomes intractable, or
- $k$ reaches a certain bound


## Bounded Model Checking

- Checks for a counterexample to a property of a model
- We assume finite state and LTL
- Encodes the property checking problem as propositional satisfiability (SAT)
- Constructs a propositional formula that is satisfiable iff there exits a length- $k$ counterexample, e.g.,

$$
I\left(s_{0}\right) \wedge \bigwedge_{0 \leq i<k} T\left(s_{i}, s_{i+1}\right) \wedge \neg p\left(s_{k}\right)
$$

- If no counterexample is found, BMC increases $k$ until
- a counterexample is found,
- the search becomes intractable, or
- $k$ reaches a certain bound


## Falsification vs. Verification

- Sometime, proving the absence of an error is more useful than finding one
- When checking an abstract model for a universal property
- Finding an error in the abstract model does not imply its existence in the original model
- However, proving that the property passes in the abstract model guarantee the absence of errors in the original model
- BMC efficiency reduces as the length of the counterexample increases
- It may be more efficient to prove the property and stop early than keep searching for a counterexample


## Proving Properties with BMC

- The original BMC algorithm (Biere et al. [1999]), although complete in theory, is limited in practice to falsification of LTL properties
only if a bound, $\kappa$, is known such that:
- if no counterexample of length up to $\kappa$ is found, then $\mathcal{M}=A \psi$
- Several methods exist to compute a suitable $\kappa$
- The optimum value of $\kappa$, however, is usually very expensive to obtain
- Finding it is at least as hard as checking whether $M \models \mathrm{~A} \psi$


## Proving Properties with BMC

- The original BMC algorithm (Biere et al. [1999]), although complete in theory, is limited in practice to falsification of LTL properties
- BMC can prove that an LTL property $\psi$ passes on a model $\mathcal{M}$ only if a bound, $\kappa$, is known such that:
- if no counterexample of length up to $\kappa$ is found, then $\mathcal{M} \models \mathrm{A} \psi$
- Several methods exist to compute a suitable
- The optimum value of $\kappa$, however, is usually very expensive to obtain
- Finding it is at least as hard as checking whether $M=A \psi$


## Proving Properties with BMC

- The original BMC algorithm (Biere et al. [1999]), although complete in theory, is limited in practice to falsification of LTL properties
- BMC can prove that an LTL property $\psi$ passes on a model $\mathcal{M}$ only if a bound, $\kappa$, is known such that:
- if no counterexample of length up to $\kappa$ is found, then

$$
\mathcal{M} \models \mathrm{A} \psi
$$

- Several methods exist to compute a suitable $\kappa$ obtain
$\square$


## Proving Properties with BMC

- The original BMC algorithm (Biere et al. [1999]), although complete in theory, is limited in practice to falsification of LTL properties
- BMC can prove that an LTL property $\psi$ passes on a model $\mathcal{M}$ only if a bound, $\kappa$, is known such that:
- if no counterexample of length up to $\kappa$ is found, then

$$
\mathcal{M} \models \mathrm{A} \psi
$$

- Several methods exist to compute a suitable $\kappa$
- The optimum value of $\kappa$, however, is usually very expensive to obtain
- Finding it is at least as hard as checking whether $M \models \mathrm{~A} \psi$ (Clarke et al. [2004])


## Interpolation

- Suppose
$I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)$ is unsatisfiable
- Let $F_{1}=I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right)$ and
$F_{2}=T\left(s_{1}, s_{2}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)$
- Then $F_{1}\left(s_{0}, s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- Interpolant $\mathcal{I}_{1}\left(s_{1}\right)($ McMillan [2003]) is such that
- $F_{1}\left(s_{0}, s_{1}\right) \rightarrow \mathcal{I}_{1}\left(s_{1}\right)$
- $\mathcal{I}_{1}\left(s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- $\mathcal{I}_{1}\left(s_{1}\right)$ can be computed in linear time from a resolution proof that $F_{1}\left(s_{0}, s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- $\exists s_{0} \cdot I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right)$ is the strongest interpolant
- set of states reachable from I ( $s_{0}$ ) in one step


## Interpolation

- Suppose
$I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)$ is unsatisfiable
- Let $F_{1}=I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right)$ and

$$
F_{2}=T\left(s_{1}, s_{2}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)
$$

- Then $F_{1}\left(s_{0}, s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- Interpolant $\mathcal{I}_{1}\left(s_{1}\right)$ (McMillan [2003]) is such that - $F_{1}\left(s_{0}, s_{1}\right) \rightarrow \mathcal{I}_{1}\left(s_{1}\right)$ - $\mathcal{I}_{1}\left(s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- $\mathcal{I}_{1}\left(s_{1}\right)$ can be computed in linear time from a resolution proof that $F_{1}\left(s_{0}, s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- $\exists s_{0} \cdot I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right)$ is the strongest interpolant
- set of states reachable from $I\left(s_{0}\right)$ in one step


## Interpolation

- Suppose
$I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)$ is unsatisfiable
- Let $F_{1}=I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right)$ and

$$
F_{2}=T\left(s_{1}, s_{2}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)
$$

- Then $F_{1}\left(s_{0}, s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- Interpolant $\mathcal{I}_{1}\left(s_{1}\right)$ (McMillan [2003]) is such that - $F_{1}\left(s_{0}, s_{1}\right) \rightarrow \mathcal{I}_{1}\left(s_{1}\right)$
- $\mathcal{I}_{1}\left(s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- $\mathcal{I}_{1}\left(s_{1}\right)$ can be computed in linear time from a resolution proof that $F_{1}\left(s_{0}, s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- $\exists s_{0} \cdot I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right)$ is the strongest interpolant
- set of states reachable from $/\left(s_{0}\right)$ in one step


## Interpolation

- Suppose
$I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)$ is unsatisfiable
- Let $F_{1}=I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right)$ and

$$
F_{2}=T\left(s_{1}, s_{2}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)
$$

- Then $F_{1}\left(s_{0}, s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- Interpolant $\mathcal{I}_{1}\left(s_{1}\right)$ (McMillan [2003]) is such that
- $F_{1}\left(s_{0}, s_{1}\right) \rightarrow \mathcal{I}_{1}\left(s_{1}\right)$
- $\mathcal{I}_{1}\left(s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable


## Interpolation

- Suppose
$I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)$ is unsatisfiable
- Let $F_{1}=I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right)$ and

$$
F_{2}=T\left(s_{1}, s_{2}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)
$$

- Then $F_{1}\left(s_{0}, s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- Interpolant $\mathcal{I}_{1}\left(s_{1}\right)$ (McMillan [2003]) is such that
- $F_{1}\left(s_{0}, s_{1}\right) \rightarrow \mathcal{I}_{1}\left(s_{1}\right)$
- $\mathcal{I}_{1}\left(s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- $\mathcal{I}_{1}\left(s_{1}\right)$ can be computed in linear time from a resolution proof that $F_{1}\left(s_{0}, s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable


## Interpolation

- Suppose
$I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)$ is unsatisfiable
- Let $F_{1}=I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right)$ and

$$
F_{2}=T\left(s_{1}, s_{2}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)
$$

- Then $F_{1}\left(s_{0}, s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- Interpolant $\mathcal{I}_{1}\left(s_{1}\right)$ (McMillan [2003]) is such that
- $F_{1}\left(s_{0}, s_{1}\right) \rightarrow \mathcal{I}_{1}\left(s_{1}\right)$
- $\mathcal{I}_{1}\left(s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- $\mathcal{I}_{1}\left(s_{1}\right)$ can be computed in linear time from a resolution proof that $F_{1}\left(s_{0}, s_{1}\right) \wedge F_{2}\left(s_{1}, \ldots, s_{k}\right)$ is unsatisfiable
- $\exists s_{0} \cdot I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right)$ is the strongest interpolant
- set of states reachable from $I\left(s_{0}\right)$ in one step


## Interpolation

- $\mathcal{I}_{1}\left(s_{1}\right)$ is a superset of the states reachable in one step such that no member state has a path of length $k-1$ to a bad state
- Replace $I\left(s_{0}\right)$ with $I\left(s_{0}\right) \vee \mathcal{I}_{1}\left(s_{0}\right)$ and repeat
- If formula still unsatisfiable, interpolant $\mathcal{I}_{2}\left(s_{1}\right)$ is a superset of states reachable in one or two steps such that no member state has a path of length $k-1$ to a bad state
- A converging sequence of interpolants means that no states satisfying $\neg p$ (bad states) are reachable


## Interpolation

- $\mathcal{I}_{1}\left(s_{1}\right)$ is a superset of the states reachable in one step such that no member state has a path of length $k-1$ to a bad state
- Replace $I\left(s_{0}\right)$ with $I\left(s_{0}\right) \vee \mathcal{I}_{1}\left(s_{0}\right)$ and repeat
- If formula still unsatisfiable, interpolant $\mathcal{I}_{2}\left(s_{1}\right)$ is a superset of states reachable in one or two steps such that no member state has a path of length $k-1$ to a bad state
- A converging sequence of interpolants means that no states satisfying $\neg p$ (bad states) are reachable


## Interpolation

- $\mathcal{I}_{1}\left(s_{1}\right)$ is a superset of the states reachable in one step such that no member state has a path of length $k-1$ to a bad state
- Replace $I\left(s_{0}\right)$ with $I\left(s_{0}\right) \vee \mathcal{I}_{1}\left(s_{0}\right)$ and repeat
- If formula still unsatisfiable, interpolant $\mathcal{I}_{2}\left(s_{1}\right)$ is a superset of states reachable in one or two steps such that no member state has a path of length $k-1$ to a bad state
- A converging sequence of interpolants means that no states satisfying $\neg p$ (bad states) are reachable


## Outline

(1) Introduction
(2) Modeling Systems and Properties

3 Specification Mechanisms
(4) CTL Model Checking
(5) Model Checking LTL and CTL*
(6) SAT-Based Model Checking
(7) Abstraction

## Informal Abstraction

- In use since the early days of simulation
- What if we write to a memory when the address contains Xs?
- Still indispensable, but
- May be laborious
- Comes with no implied warranty



## Informal Abstraction

- In use since the early days of simulation
- What if we write to a memory when the address contains Xs?
- Still indispensable, but
- May be laborious
- Comes with no implied warranty



## Informal Abstraction

- Given concrete model $C$ and property $\varphi$
- Derive somehow an abstract model $A$ from $C$
- Abstraction should preserve detail relevant to $\varphi$
- Check whether $A \models \varphi$
- If $A \models \varphi$ confidence in correctness of $C$ is increased
- If $A \not \vDash \varphi$ check counterexample
- Is failure due to a real bug or an artifact of abstraction?
- Either fix bug or refine abstraction


## Formal Abstraction

- Comes with warranty
- Simulation Relations

- bisimilarity preserves all of $\mu$-calculus
- simulation equivalence preserves linear-time properties
- simulation preserves passing universal properties


## Formal Abstraction

- Comes with warranty
- Simulation Relations

- bisimilarity preserves all of $\mu$-calculus
- simulation equivalence preserves linear-time properties
- simulation preserves passing universal properties


## Simulation Relations

- Computing simulation relations is expensive
- Avoid direct computation
- Cone of Influence (COI) Reduction and slicing yield a bisimilar model
- The symmetry quotient induced by an invariance group is bisimilar to the original model
- Predicate abstraction leads to bisimulation or simulation
- Freeing some components leads to simulation
- Simulation is sufficient for language containment


## Property Driven Abstraction

Rule of thumb: The more you want to preserve, the less you can abstract

- Bisimulation does not allow much abstraction
- Property driven abstraction
- focus on preserving only the property of interest
- Start with a coarse abstraction
- Let the property guide the initial abstraction and the refinement


## Abstraction Refinement

- What is not in the abstract model is ignored
- Refinement brings in something that was previously ignored



## Abstraction Refinement

- What is not in the abstract model is ignored
- Refinement brings in something that was previously ignored



## Abstraction Refinement

- What is not in the abstract model is ignored
- Refinement brings in something that was previously ignored



## Abstraction Refinement

- For universal properties:
- Choose initial abstract model
- while the property fails
- if concrete model also fails, report failure
- refine
- report success
- For mixed properties, use two abstractions
- If property fails on abstract model, an abstract counterexample is produced


## Back to the Cube

- A cube is divided into 27 equal smaller cubes (blocks hereafter). Is it possible to trace a path from any point on the surface to the center that always travels parallel to some side of the cube and visits each block exactly once?
- If we number the smaller cubes consecutively, top-down, front
to back, and left to right, we find that there are 14 odd-numbered blocks and 13 even-numbered blocks
- Since all adjacent blocks have different parity, we cannot find a path of length 27 ending with an even-numbered block.
- Since the center block is numbered 14 the answer is "no"
- The same argument applies whenever the side of the cube is divided into an odd number of parts, so that the number of blocks is $(2 n+1)^{3}$ for some $n>0$


## Back to the Cube

- A cube is divided into 27 equal smaller cubes (blocks hereafter). Is it possible to trace a path from any point on the surface to the center that always travels parallel to some side of the cube and visits each block exactly once?
- If we number the smaller cubes consecutively, top-down, front to back, and left to right, we find that there are 14 odd-numbered blocks and 13 even-numbered blocks
- Since all adjacent blocks have different parity, we cannot find a path of length 27 ending with an even-numbered block. - Since the center block is numbered 14 , the answer is "no" - The same argument applies whenever the side of the cube is divided into an odd number of parts, so that the number of blocks is $(2 n+1)^{3}$ for some $n>0$


## Back to the Cube

- A cube is divided into 27 equal smaller cubes (blocks hereafter). Is it possible to trace a path from any point on the surface to the center that always travels parallel to some side of the cube and visits each block exactly once?
- If we number the smaller cubes consecutively, top-down, front to back, and left to right, we find that there are 14 odd-numbered blocks and 13 even-numbered blocks
- Since all adjacent blocks have different parity, we cannot find a path of length 27 ending with an even-numbered block.


## Back to the Cube

- A cube is divided into 27 equal smaller cubes (blocks hereafter). Is it possible to trace a path from any point on the surface to the center that always travels parallel to some side of the cube and visits each block exactly once?
- If we number the smaller cubes consecutively, top-down, front to back, and left to right, we find that there are 14 odd-numbered blocks and 13 even-numbered blocks
- Since all adjacent blocks have different parity, we cannot find a path of length 27 ending with an even-numbered block.
- Since the center block is numbered 14, the answer is "no"



## Back to the Cube

- A cube is divided into 27 equal smaller cubes (blocks hereafter). Is it possible to trace a path from any point on the surface to the center that always travels parallel to some side of the cube and visits each block exactly once?
- If we number the smaller cubes consecutively, top-down, front to back, and left to right, we find that there are 14 odd-numbered blocks and 13 even-numbered blocks
- Since all adjacent blocks have different parity, we cannot find a path of length 27 ending with an even-numbered block.
- Since the center block is numbered 14, the answer is "no"
- The same argument applies whenever the side of the cube is divided into an odd number of parts, so that the number of blocks is $(2 n+1)^{3}$ for some $n>0$


## Model Checking the Cube

We encode the problem with two state variables:

$$
\begin{gathered}
\text { posn } \in\{1, \ldots, 27\} \text { and visited } \subseteq\{1, \ldots, 27\} \\
\qquad S=\{1, \ldots, 27\} \times 2^{\{1, \ldots, 27\}} \\
S_{0}=\{(p,\{p\}) \mid p \in\{1, \ldots, 27\} \backslash\{14\}\}
\end{gathered}
$$

Let $\operatorname{adj}(p)$ return the set of positions adjacent to block $p$

Finally, the property:

$$
\varphi=\mathrm{AG}(\text { posn }=14 \rightarrow \text { visited } \neq\{1, \ldots, 27\})
$$

In Verilog, we need 32 binary variables. Out of the $2^{32}$ states,

## Model Checking the Cube

We encode the problem with two state variables:

$$
\begin{gathered}
\text { posn } \in\{1, \ldots, 27\} \text { and visited } \subseteq\{1, \ldots, 27\} \\
\qquad S=\{1, \ldots, 27\} \times 2^{\{1, \ldots, 27\}} \\
S_{0}=\{(p,\{p\}) \mid p \in\{1, \ldots, 27\} \backslash\{14\}\}
\end{gathered}
$$

Let $\operatorname{adj}(p)$ return the set of positions adjacent to block $p$

$$
T=\left\{\left((p, v),\left(p^{\prime}, v^{\prime}\right)\right) \mid(p, v) \in S \wedge p^{\prime} \in \operatorname{adj}(p) \backslash v \wedge v^{\prime}=v \backslash\left\{p^{\prime}\right\}\right\}
$$

Finally, the property:
$\square$

## Model Checking the Cube

We encode the problem with two state variables:

$$
\begin{gathered}
\text { posn } \in\{1, \ldots, 27\} \text { and visited } \subseteq\{1, \ldots, 27\} \\
\qquad S=\{1, \ldots, 27\} \times 2^{\{1, \ldots, 27\}} \\
S_{0}=\{(p,\{p\}) \mid p \in\{1, \ldots, 27\} \backslash\{14\}\}
\end{gathered}
$$

Let $\operatorname{adj}(p)$ return the set of positions adjacent to block $p$

$$
T=\left\{\left((p, v),\left(p^{\prime}, v^{\prime}\right)\right) \mid(p, v) \in S \wedge p^{\prime} \in \operatorname{adj}(p) \backslash v \wedge v^{\prime}=v \backslash\left\{p^{\prime}\right\}\right\}
$$

Finally, the property:

$$
\varphi=\mathrm{AG}(\operatorname{posn}=14 \rightarrow \operatorname{visited} \neq\{1, \ldots, 27\}) .
$$

In Verilog, we need 32 binary variables. Out of the $2^{32}$ states, $3.46426 \cdot 10^{7}$ are reachable and $\varphi$ is proved in about one minute

## Augmenting the Transition Relation

- We can do significantly better by keeping the same state encoding, initial states and property, but augmenting the transition relation
- Let $\operatorname{opp}(p)$ returns the set of positions in the cube that have parity opposite to block $p$. The transition relation can then be defined as before, but with $\operatorname{opp}(p)$ replacing $\operatorname{adj}(p)$
- The new relation has many more transitions. For instance, it is now possible to go from Block 1 to Block 6
- The number of reachable states corresnondingly increases to $5.41574 \cdot 10^{8}$, but the model checking time decreases to less than a second
- Since $\varphi$ is universal, the fact that it passes on the model with the augmented transition relation guarantees that it passes also on the original model


## Augmenting the Transition Relation

- We can do significantly better by keeping the same state encoding, initial states and property, but augmenting the transition relation
- Let $\operatorname{opp}(p)$ returns the set of positions in the cube that have parity opposite to block $p$. The transition relation can then be defined as before, but with $\operatorname{opp}(p)$ replacing $\operatorname{adj}(p)$
is now possible to go from Block 1 to Block 6
- The number of reachable states correspondingly increases to $5.41574 \cdot 10^{8}$, but the model checking time decreases to less than a second
- Since $\varphi$ is universal, the fact that it passes on the model with the augmented transition relation guarantees that it passes also on the original model


## Augmenting the Transition Relation

- We can do significantly better by keeping the same state encoding, initial states and property, but augmenting the transition relation
- Let $\operatorname{opp}(p)$ returns the set of positions in the cube that have parity opposite to block $p$. The transition relation can then be defined as before, but with $\operatorname{opp}(p)$ replacing $\operatorname{adj}(p)$
- The new relation has many more transitions. For instance, it is now possible to go from Block 1 to Block 6
5.41574 than a second
- Since $\varphi$ is universal, the fact that it passes on the model with the augmented transition relation guarantees that it passes also on the original model


## Augmenting the Transition Relation

- We can do significantly better by keeping the same state encoding, initial states and property, but augmenting the transition relation
- Let $\operatorname{opp}(p)$ returns the set of positions in the cube that have parity opposite to block $p$. The transition relation can then be defined as before, but with $\operatorname{opp}(p)$ replacing $\operatorname{adj}(p)$
- The new relation has many more transitions. For instance, it is now possible to go from Block 1 to Block 6
- The number of reachable states correspondingly increases to $5.41574 \cdot 10^{8}$, but the model checking time decreases to less than a second
the augmented transition relation guarantees that it passes
also on the original model


## Augmenting the Transition Relation

- We can do significantly better by keeping the same state encoding, initial states and property, but augmenting the transition relation
- Let $\operatorname{opp}(p)$ returns the set of positions in the cube that have parity opposite to block $p$. The transition relation can then be defined as before, but with $\operatorname{opp}(p)$ replacing $\operatorname{adj}(p)$
- The new relation has many more transitions. For instance, it is now possible to go from Block 1 to Block 6
- The number of reachable states correspondingly increases to $5.41574 \cdot 10^{8}$, but the model checking time decreases to less than a second
- Since $\varphi$ is universal, the fact that it passes on the model with the augmented transition relation guarantees that it passes also on the original model


## Changing State Space

The proof that there is no path refers to the parity of the block numbers and the total number of blocks of each parity.

$$
\text { parity } \in\{0,1\}, \text { visited } 0 \in\{1, \ldots, 14\}, \text { visitedE } \in\{1, \ldots, 13\}
$$

$$
\begin{gathered}
S=\{0,1\} \times\{1, \ldots, 14\} \times\{1, \ldots, 13\} \\
S_{0}=\{(0,0,1),(1,1,0)\}
\end{gathered}
$$

The transition relation is

Transitions are possible to states of opposite parity with one of the two counters incremented (if it has not saturated)

## Changing State Space

The proof that there is no path refers to the parity of the block numbers and the total number of blocks of each parity.

$$
\begin{aligned}
& \text { parity } \in\{0,1\} \text {, visited } \in\{1, \ldots, 14\}, \text { visitedE } \in\{1, \ldots, 13\} \\
& \qquad S=\{0,1\} \times\{1, \ldots, 14\} \times\{1, \ldots, 13\} \\
& S_{0}=\{(0,0,1),(1,1,0)\}
\end{aligned}
$$

The transition relation is

$$
\begin{aligned}
&\left\{\left(\left(0, v_{O}, v_{E}\right),\left(1, v_{O}, v_{E}^{\prime}\right)\right) \mid\left(0, v_{O}, v_{E}\right) \in S \wedge v_{E}<13 \wedge v_{E}^{\prime}=v_{E}+1\right\} \cup \\
&\left\{\left(\left(1, v_{O}, v_{E}\right),\left(0, v_{O}^{\prime}, v_{E}\right)\right) \mid\left(1, v_{O}, v_{E}\right) \in S \wedge v_{O}<14 \wedge v_{O}^{\prime}=v_{O}+1\right\}
\end{aligned}
$$

Transitions are possible to states of opposite parity with one of the two counters incremented (if it has not saturated).

## Changing the State Space

The property needs to be changed

$$
\varphi_{1}=A G(\text { parity }=0 \rightarrow(\text { visited } 0 \neq 14 \vee \text { visitedE } \neq 13))
$$

Since parity $=0$ corresponds to posn $\in\{2,4, \ldots, 26\}$, our new
property actually corresponds to

$$
\varphi_{2}=A G(\text { posn } \in\{2,4, \ldots, 26\} \rightarrow \text { visited } \neq\{1, \ldots, 27\})
$$

If $\varphi_{2}$ is satisfied on the original model, $\varphi$ is satisfied as well The number of binary variables has been reduced from 32 to 9 there are only 53 reachable states, and verification takes negligible time. Interestingly, the following property also holds:

$$
\varphi_{1}^{\prime}=A G(\text { parity }=0 \rightarrow \text { visitedo } \neq 14)
$$

## Changing the State Space

The property needs to be changed

$$
\varphi_{1}=A G(\text { parity }=0 \rightarrow(\text { visited } 0 \neq 14 \vee \text { visitedE } \neq 13))
$$

Since parity $=0$ corresponds to posn $\in\{2,4, \ldots, 26\}$, our new property actually corresponds to

$$
\varphi_{2}=A G(\operatorname{posn} \in\{2,4, \ldots, 26\} \rightarrow \text { visited } \neq\{1, \ldots, 27\})
$$

If $\varphi_{2}$ is satisfied on the original model, $\varphi$ is satisfied as well.
there are only 53 reachable states, and verification takes negligible time. Interestingly, the following property also holds:

$$
\varphi_{1}^{\prime}=\mathrm{AG}(\text { parity }=0 \rightarrow \text { visited } 0 \neq 14)
$$

## Changing the State Space

The property needs to be changed

$$
\varphi_{1}=A G(\text { parity }=0 \rightarrow(\text { visited } 0 \neq 14 \vee \text { visitedE } \neq 13))
$$

Since parity $=0$ corresponds to posn $\in\{2,4, \ldots, 26\}$, our new property actually corresponds to

$$
\varphi_{2}=A G(\operatorname{posn} \in\{2,4, \ldots, 26\} \rightarrow \text { visited } \neq\{1, \ldots, 27\})
$$

If $\varphi_{2}$ is satisfied on the original model, $\varphi$ is satisfied as well. The number of binary variables has been reduced from 32 to 9 , there are only 53 reachable states, and verification takes negligible time. Interestingly, the following property also holds:

$$
\varphi_{1}^{\prime}=\mathrm{AG}(\text { parity }=0 \rightarrow \text { visited } 0 \neq 14)
$$

## Another Twist

In the reachable states of our model, the values of visited0 and visitedE never differ by more than one in absolute value. If we let

$$
\text { diff }=\text { visitedE }- \text { visited0 }
$$

then we can choose the following encoding:

$$
\text { parity } \in\{0,1\} \text { and } \operatorname{diff} \in\{-1,0,+1\}
$$

Each state is a pair consisting of parity and difference:


The transition relation is


## Another Twist

In the reachable states of our model, the values of visited0 and visitedE never differ by more than one in absolute value. If we let

$$
\text { diff }=\text { visitedE }- \text { visited0 }
$$

then we can choose the following encoding:

$$
\text { parity } \in\{0,1\} \text { and } \operatorname{diff} \in\{-1,0,+1\}
$$

Each state is a pair consisting of parity and difference:

$$
\begin{gathered}
S=\{0,1\} \times\{-1,0,+1\} \\
S_{0}=\{(0,+1),(1,-1)\}
\end{gathered}
$$

The transition relation is
$\{((0, d),(1, d-1)) \mid d \in\{0,+1\}\} \cup\{((1, d),(0, d+1)) \mid d \in\{-1,0\}\}$

## Another Twist

Once again, we need to rewrite the property to be checked because the state encoding has changed:

$$
\varphi_{3}=\mathrm{AG}(\text { parity }=0 \rightarrow \operatorname{diff} \neq-1)
$$

Since diff $\neq-1$ implies visited $\neq 14 \vee$ visitedE $\neq 13$, we have further strengthened our property.
> the new, 3-bit model implies satisfaction of $\varphi_{3}$ in the previos, 9-bit model, then we can conclude that $\varphi$ holds in the original model There are four reachable states in the 3-bit model, and $\varphi_{3}$ is proved in almost no time.

## Another Twist

Once again, we need to rewrite the property to be checked because the state encoding has changed:

$$
\varphi_{3}=\mathrm{AG}(\text { parity }=0 \rightarrow \operatorname{diff} \neq-1)
$$

Since $\operatorname{diff} \neq-1$ implies visited $\neq 14 \vee$ visitedE $\neq 13$, we have further strengthened our property. Since $\varphi_{3}$ holds in our new model, as long as satisfaction of $\varphi_{3}$ in the new, 3 -bit model implies satisfaction of $\varphi_{3}$ in the previos, 9 -bit model, then we can conclude that $\varphi$ holds in the original model.
proved in almost no time

## Another Twist

Once again, we need to rewrite the property to be checked because the state encoding has changed:

$$
\varphi_{3}=\mathrm{AG}(\text { parity }=0 \rightarrow \operatorname{diff} \neq-1)
$$

Since $\operatorname{diff} \neq-1$ implies visited $\neq 14 \vee$ visitedE $\neq 13$, we have further strengthened our property.
Since $\varphi_{3}$ holds in our new model, as long as satisfaction of $\varphi_{3}$ in the new, 3 -bit model implies satisfaction of $\varphi_{3}$ in the previos, 9-bit model, then we can conclude that $\varphi$ holds in the original model. There are four reachable states in the 3-bit model, and $\varphi_{3}$ is proved in almost no time.

## State Encoding

If we use the following encoding:

$$
\begin{aligned}
\operatorname{diff}=-1 & \rightarrow \operatorname{diff}_{1}=0 \wedge \operatorname{diff}_{0}=0 \\
\operatorname{diff}=0 & \rightarrow \operatorname{diff}_{1}=0 \wedge \operatorname{diff}_{0}=1 \\
\operatorname{diff}=+1 & \rightarrow \operatorname{diff}_{1}=1 \wedge \operatorname{diff}_{0}=0
\end{aligned}
$$

then, over all four reachable states, we have

$$
\operatorname{diff}_{1} \leftrightarrow \text { parity }=0 \wedge \operatorname{diff}_{0}=0
$$

We can replace one state bit with a combinational function of the other two. In the resulting model, $\varphi_{3}$ becomes

$$
A G\left(\text { parity }=0 \rightarrow\left(\text { parity }=0 \vee \operatorname{diff}_{0}=1\right)\right)
$$

which simplifies to AG true; this property trivially holds.

## State Encoding

If we use the following encoding:

$$
\begin{aligned}
\operatorname{diff}=-1 & \rightarrow \operatorname{diff}_{1}=0 \wedge \operatorname{diff}_{0}=0 \\
\operatorname{diff}=0 & \rightarrow \operatorname{diff}_{1}=0 \wedge \operatorname{diff}_{0}=1 \\
\operatorname{diff}=+1 & \rightarrow \operatorname{diff}_{1}=1 \wedge \operatorname{diff}_{0}=0
\end{aligned}
$$

then, over all four reachable states, we have

$$
\operatorname{diff}_{1} \leftrightarrow \text { parity }=0 \wedge \operatorname{diff}_{0}=0
$$

We can replace one state bit with a combinational function of the other two. In the resulting model, $\varphi_{3}$ becomes

$$
\mathrm{AG}\left(\text { parity }=0 \rightarrow\left(\text { parity }=0 \vee \operatorname{diff}_{0}=1\right)\right)
$$

which simplifies to AG true; this property trivially holds.

