
Synchronous Elastic Systems

Mike Kishinevsky and Jordi Cortadella
Universitat Politecnica

de Catalunya
Barcelona, Spain

Intel
Strategic CAD Labs

Hillsboro, USA

DAC Summer School
July 26, 2009

Contributors to SELF research

Micro-architectural pipelining, speculation
Marc Galceran Oms, Timothy Kam
Design experiments: Alexander Gotmanov
Performance analysis: Jorge Júlvez
Theory of elastic machines:
Sava Krstic and John O’Leary
Optimization: Dmitry Bufistov, Josep
Carmona
Bill Grundmann

2

Agenda

I. Basics of elastic systems

II. Why to study

III. Early evaluation and
performance analysis

IV. Correct-by-construction pipelining

V. Communication fabrics

VI. Open problems

3

Token (of data)

Synchronous Stream of Data

… 147
Clock cycle 012…

4

Token

Synchronous Elastic Stream

… 147
012…

4 17
012… 345

Clock cycle

Clock cycle…
Bubble (no data)

5

Synchronous Circuit

+
… 147 … 348

201…

Latency = 0

6

Synchronous Elastic Circuit

+
Latency = 0… 147

+
Latency can vary

e

… 348
201…

348…147…
201…

7

Ordinary Synchronous System

A C

DB

A C

DB

=

Changing latencies changes behavior

8

Synchronous Elastic
(characteristic property)

A C

DB

A C

DB

=

Changing latencies does NOT change behavior
= time elasticity

e

ee

e

ee

ee e

9

Elasticity?

Elasticity refers to elasticity of time, i.e. tolerance to
changes in timing parameters, not properties of materials

Luca Carloni et al. in the first systematic study of such
systems called them Latency Insensitive Systems
Other used names:
– Latency tolerant systems
– Synchronous emulation of asynchronous systems
– Synchronous handshake circuits

We use term “synchronous elastic” to link to asynchronous
elastic systems that have been developed before

e.g., David Muller’s pipelines of late 1950s
Ivan Sutherland’s micro-pipelines 1989

Tolerate the variability of input data arrival and
computation delays

Asynchronous elastic tolerate changes in continuous time
S h l ti i di t ti

10

Why

Scalable

Modular (Plug & Play)

Potential for better energy-delay trade-offs
– design for typical case instead of worst case
– can separate performance critical parts from non-critical and

optimize in isolation

New micro-architectural opportunities
in digital design

Not asynchronous: use existing design experience, CAD
tools and flows... but have some advantages of
asynchronous

11

What can we do with
synchronous elastic systems?

12

Variable latency units

L = 1

L = 3

L = 2

L = 1

ALU
ALU

start done

13

adds

Benchmark
“Patricia”
from
Media Bench

Statistics
of operand
sizes

bits of adder used

adds

12 bits of an adder
do 95% of additions

14

Power-delay for an adder

1 1.25 1.5

Compare
64 bits
VLA and
prefix adder

relative delay
15

Variable-latency cache hits

2-way associative
32KB

2-cycle hit

1-cycle hit

12-cycle miss

L1-cache

L2-cache

suggested by Joel Emer for ASIM experiment

16

Variable-latency cache hits

Pseudo-associative
32KB

{1-2} cycle hit

1-cycle hit

12-cycle miss

L1-cache

L2-cache

Sequential access: if hit in first access L = 1, if not – L=2
Trade-off: faster, or larger, or less power cache

17

Variable-latency cache hits

Pseudo-associative
64KB

{2-3} cycle hit

1-cycle hit

12-cycle miss

L1-cache

L2-cache

Sequential access: if hit in first access L = 1, if not – L=2
Trade-off: faster, or larger, or less power cache

18

Motivation example

19

9 8 6

4 4

39

10

4

10 - Combinational block
with delay 10

- Initialized register (dot)

Cycle time is

Throughput is 1

Effective cycle
time is 21

211916

Retiming can
not do better!

Retiming and Recycling
(R&R) can

Effective cycle
time is 19

Effective cycle
time is 16

Throughput is 4/5

Effective cycle
time is 15

12

Find a minimal effective cycle time of the circuit
represented as retiming graph (RG)!

The longest combinational path delayThe number of valid data/clock cyclecycle time/throughput

Retiming graph

5 registers,
4 tokens

Correct-by-construction automatic pipelining
in presence of iteration dependencies

Transforms:
– bypass
– retiming
– elasticize
– early enabling
– insert buffers

and negative tokens
– size elastic buffer capacity

ID E1 E2RF

ID E1 E2RF

1
0

1
0

-1

SPEC

IMP
Correct-by-construction

20

and correct-by-construction speculation

21

How to Design Synchronous Elastic Systems

Example of the implementation:
SELF = Synchronous Elastic Flow

Other implementations are possible

22

Pipelined communication
sender receiver

DataData

What if the sender does not always send valid data?

23

The Valid bit
sender receiver

Data Data

Valid Valid

What if the receiver is not always ready ?

24

The Stop bit

00000

sender

Data

Valid

Stop

receiver

Data

Valid

Stop

25

The Stop bit

11000

sender

Data

Valid

Stop

receiver

Data

Valid

Stop

26

The Stop bit

11100

sender

Data

Valid

Stop

receiver

Data

Valid

Stop

27

The Stop bit

11111

sender

Data

Valid

Stop

receiver

Data

Valid

Stop

Back-pressure

28

The Stop bit

10000

sender

Data

Valid

Stop

receiver

Data

Valid

Stop

Long combinational path

29

Cyclic structures

Data

Valid

Stop

Combinational cycle

One can build circuits with combinational cycles (constructive cycles by Berry),
but synthesis and timing tools do not like them

30

Example: pipelined linear communication chain
with transparent latches

sender receiver
H L H L

½ cycle ½ cycle

Master and slave latches with independent control

31

Shorthand notation
(clock lines not shown)

D Q

clkEn

En

…

32

SELF (linear communication)
sender receiver

V V V V

S S S S

En En En En

1 1

Data

Valid

Stop

Data

Valid

Stop

1 1

33

SELF
sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

34

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

SELF

35

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

SELF

36

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

SELF

37

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

SELF

38

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

0

0

SELF

39

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

0

0

SELF

40

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

0

0

SELF

41

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

0

0

SELF

42

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

0

0

SELF

43

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

1

SELF

44

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

1

1

Data

Valid

Stop

SELF

45

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

1

1

Data

Valid

Stop

SELF

46

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

1

1

Data

Valid

Stop

SELF

47

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

1

1

Data

Valid

Stop

SELF

48

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

1

1

Data

Valid

Stop

SELF

49

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

1

1

Data

Valid

Stop

SELF

50

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

1

1

Data

Valid

Stop

SELF

51

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

1

1

Data

Valid

Stop

SELF

52

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

1

0

Data

Valid

Stop

SELF

53

sender receiver

V V V V

S S S S

En En En En

1

0

Data

Valid

Stop

Data

Valid

Stop

SELF

54

sender receiver

V V V V

S S S S

En En En En

1

0

Data

Valid

Stop

Data

Valid

Stop

SELF

55

sender receiver

V V V V

S S S S

En En En En

1

0

Data

Valid

Stop

Data

Valid

Stop

SELF

56

sender receiver

V V V V

S S S S

En En En En

1

0

Data

Valid

Stop

Data

Valid

Stop

SELF

57

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

SELF

58

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

SELF

59

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

SELF

60

Elastic channel and its protocol

Idle Retry

Transfer

Valid * not Stop

not Valid Valid * Stop

Sender Receiver
Data

Valid

Stop

61

Retry
Transfer

Elastic channel protocol

Sender Receiver

Data

Valid

Stop

Data

Valid

Stop

* D D * C C C B * A

0 1 1 0 1 1 1 1 0 1

0 0 1 0 0 1 1 0 0 0

Idle

62

Basic VS block

Si

Eni

Vi

Si-1

Vi-1

VS
Si

Eni

Vi

Si-1

Vi-1

VS block + data-path latch = elastic HALF-buffer (EHB)
EHB + EHB = elastic buffer with capacity 2

Control specification of the EB

63

Two implementations

64

65

Elastic buffer keeps data while stop is in flight

W1R1

W2R1

W1R2

W2R2

W1R1 Cannot be done with
Single Edge Flops
without double pumping

Can use latches inside
Master-Slave as shown before

EBs = FIFOs with two parameters:
Forward latency
Capacity

Backward latency for stop
propagation assumed (but need
not be) equal to fwd latency

Typical case: (1,2) -
1 cycle forward latency
with capacity of 2

Replaces “normal” registers
Decoupling buffers

66

Join

VS

+

V1

V2

S1

S2

V

S

VS

VS

67

(Lazy) Fork

V1

V2

S1

S2

V

S

68

Eager Fork

V1

V2

S1

S2

^

^

V

S

69

Eager fork (another implementation)

VS

VS VS

VSVS

70

Variable Latency Units

[0 - k]
cycles

V/S V/S

donego clear

Coarse grain control

71

72

Elasticization

Synchronous Elastic

73

CLK

74

CLK

PC

IF/ID ID/EX EX/MEM MEM/WB

J
O
I
N

J
O
I
N

F
O
R
K

FORK

75

V

S

CLK

V

S

V

S

V

S

V

S

J
O
I
N

J
O
I
N

F
O
R
K

FORK

76

1

0

CLK

1

0

1

0

1

0

1

0

J
O
I
N

J
O
I
N

F
O
R
K

FORK 0

0

77

1

0

1

0

1

0

1

0

1

0

Elastic control layer
Generation of gated clocks

CLK

Equivalence

D: a b c d e d f g h i j …

Synchronous: stream of data

SELF: elastic stream of data

D: a * b * * c d e * d f * g h * * i j …
V: 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 …
S: 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 …

Transfer sub-stream = original stream
Called: transfer equivalence, flow equivalence, or latency equivalence

78

79

Marked Graph models
of elastic systems

80

Modelling elastic control with Petri nets

data-token

bubble

data-tokenbubble

81

Modelling elastic control with Petri nets

data-tokenbubble 2 data-tokens

Hiding internal transitions of elastic buffers

82

Modelling elastic control with Marked Graphs

83

Forward
(Valid or Request)

Backward
(Stop or Acknowledgement)

Modelling elastic control with Marked Graphs

84

Elastic control with Timed Marked Graphs.
Continuous time = asynchronous

d=250ps d=151ps

250 151

Delays in time units

85

Elastic control with Timed Marked Graphs.
Discrete time = synchronous elastic

d=1 d=1

1 1

Latencies in clock cycles

86

Elastic control with Timed Marked Graphs.
Discrete time. Multi-cycle operation

d=2 d=1

2 1

87

Elastic control with Timed Marked Graphs.
Discrete time. Variable latency operation

d {1,2} d=1

{1,2} 1

e.g. discrete probabilistic distribution:
average latency 0.8*1 + 0.2*2 = 1.2

∈

88

Modeling forks and joins

d=1

1

89

Modelling combinational elastic blocks

d=1 d=0

1 0

90

Elastic Marked Graphs

An Elastic Marked Graph (EMG) is a Timed MG such that
for any arc a there exists a complementary arc a’
satisfying the following condition
•a = a’• and •a’ = a•

Initial number of tokens on a and a’ (M0(a)+M0(a’)) =
capacity of the corresponding elastic buffer

Similar forms of “pipelined” Petri Nets and Marked Graphs
have been previously used for modeling pipelining in HW
and SW (e.g. Patil 1974; Tsirlin, Rosenblum 1982)

91

Reminder: Performance analysis of Marked graphs

Efficient algorithms: (Karp 1978), (Dasdan,Gupta 1998)

A B C

Th(C)=2/5

Th(B)=3/5

Th(A)=3/7

Th=min(Th(A), Th(B), Th(C))=2/5

Th = operations / cycle = number of firings per time unit

The throughput is given by the
minimum mean-weight cycle

92

Early evaluation

Naïve solution: introduce choice places
– issue tokens at choice node only into one (some) relevant path
– problem: tokens can arrive to merge nodes out-of-order

later token can overpass the earlier one

Solution: change enabling rule
– early evaluation
– issue negative tokens to input places without tokens,

i.e. keep the same firing rule
– Add symmetric sub-channels with negative tokens
– Negative tokens kill positive tokens when meet

Two related problems:
Early evaluation and Exceptions (how to kill a data-token)

93

Examples of early evaluation

MULTIPLIER

a
b

c if a = 0 then c := 0 -- don’t wait for b*

MULTIPLEXOR

a
b

c

s

if s = T then c := a -- don’t wait for b
else c := b -- don’t wait for a

T
F

94

Related work

Petri nets
– Extensions to model OR causality

Kishinevsky et al. Change Diagrams [e.g. book of
1994]
Yakovlev et al. Causal Nets 1996

Asynchronous systems
– Reese et al 2002: Early evaluation
– Brej 2003: Early evaluation with anti-tokens
– Ampalan & Singh 2006: preemption using anti-tokens

95

Dual Marked Graph
Marking: Arcs (places) −> Z
(allow negative markings)
Some nodes are labeled as early-enabling

Enabling rules for a node:
– Positive enabling: M(a) > 0 for every input arc
– Early enabling (for early enabling nodes):

M(a) > 0 for some input arcs
– Negative enabling: M(a) < 0 for every output arc

Firing rule: the same as in regular MG

96

Dual Marked Graphs

Early enabling can be associated with an
external guard that depends on data variables
(e.g., a select signal of a multiplexor)
Actual enabling guards are abstracted away
(unless needed)
Anti-token generation: When an early enabled
node fires, it generates anti-tokens in the
predecessor arcs that had no tokens
Anti-token propagation counterflow: When
negative enabled node fires, it propagates the
anti-tokens from the successor to the
predecessor arcs

97

Dual Marked Graph model

-1

Enabled !

-1

-1

-1

-1

98

Passive anti-token
Passive DMG = version of DMG without negative enabling
Negative tokens can only be generated due to early
enabling, but cannot propagate
Let D be a strongly connected DMG such that all cycles
have positive cumulative marking
Let Dp be a corresponding passive DMG.

If environment (consumers) never generate negative
tokens, and there are no multi-cycle operations then
throughput (D) = throughput (Dp)

– If capacity of input places for early enabling transitions is unlimited,
then active anti-tokens do not improve performance

– Active anti-tokens reduce activity in the data-path
(good for power reduction)

Presenter
Presentation Notes
statement should checked

99

Properties of DMGs
Firing invariant: Let node n be simultaneously positive (early) and
negative enabled in marking M.
Let M1 be the result of firing n from M due to positive (early) enabling.
Let M2 be the result of firing n from M due to negative enabling.
Then, M1 = M2

Token preservation. Let c be a cycle of a strongly connected DMG with
initial marking M0.
For every reachable marking M : M(c) = M0(c)

Liveness. A strongly connected passive DMG is live iff for every cycle c:
M(c) > 0.
– For DMGs this is a sufficient condition of liveness
– It is also a necessary condition for positive liveness

Repetitive behavior. In a SC DMG: a firing sequence s from M leads to
the same marking iff every node fires in s the same number of times

DMGs have properties similar to regular MGs

100

Implementing early enabling

101

How to implement anti-tokens ?

Positive tokens

Negative tokens

102

How to implement anti-tokens ?

Positive tokens

Negative tokens

103

How to implement anti-tokens ?

Valid+ Valid+

Valid–

Valid+

Stop+ Stop+

Valid–

Stop–Stop–

+

-

104

Controller for elastic buffer

V

S

V

S

Data

H

H

L

L

L

H

V

S

V

S

En En

105

Dual controller for elastic buffer

S+

V+

V-

S-

S+

V+

V-

S-

En En

Dual Join and Fork

106

Join with early evaluation

107

Condition on Early Evaluation Function

Early evaluation function makes decision based on presence
of valid bits, not on their absence

Formally: EE is positive unate with respect to data input

Example: legal EE function for a data-path MUX
(s – select input)

108

109

Passive anti-token (capacity one)

Bigger capacity can be achieved by “injecting”
anti-token up-down counters on elastic channels

Properties of elastic channels

Invariants: mutually exclusive
Kill (V -) and Stop (S +)
Valid (V +) and retain of a kill (S -)

110

111

Conclusions

Early evaluation can increase performance
beyond the min cycle ratio

The duality between positive and negative
tokens suggests a clean and effective
implementation

Dual Marked Graphs is a formal model for
analytical analysis and optimization methods

Performance analysis
with early evaluation

112

113

Revisit Performance Analysis of Marked Graphs

∫∞→
=

t

pttp)d(mm
0

1lim ττ

The throughput can also be computed by means of
linear programming

Average marking

pp
mth min=

Throughput

),min(21 pp mmth =

t1 t2

t3

p1 p2

[Campos, Chiola, Silva 1991]

114

a

b

d c

p1 p2

p3 p4

p5

max th

mp1 = 1 + tb – ta
mp2 = 0 + ta – tb
mp3 = 1 + td – ta
mp4 = 0 + ta – tc
mp5 = 1 + tc – td

Th = 0.5

reachability

th ≤ mp2 // transition b
th ≤ mp4 // transition c
th ≤ mp5 // transition d
th ≤ min(mp1, mp3) // transition a

th constraints

Revisit Performance Analysis of Marked Graphs

115

GMG = Multi-guarded Dual Marked Graph

Refinement of passive DMGs
Every node has a set of guards
Every guard is a set of input places (arcs)

Example:
t1 t2

t4

p1 p2

t3

p3

G(t4)={{p1,p3},{p2,p3}}

116

Early evaluation

α1-α

β 1-β

117

Early evaluation

α1−α

β 1−β

α
β

(0.43) (0.60) (0.40)

0.600.600.540.540.490.490.460.460.440.440.430.431.01.0

0.540.540.510.510.480.480.460.460.440.440.430.430.80.8

0.490.490.480.480.470.470.450.450.440.440.430.430.60.6

0.450.450.450.450.450.450.440.440.440.440.430.430.40.4

0.430.430.430.430.420.420.420.420.420.420.420.420.20.2

0.400.400.400.400.400.400.400.400.400.400.400.400.00.0

1.01.00.80.80.60.60.40.40.20.20.00.0

0.600.600.540.540.490.490.460.460.440.440.430.431.01.0

0.540.540.510.510.480.480.460.460.440.440.430.430.80.8

0.490.490.480.480.470.470.450.450.440.440.430.430.60.6

0.450.450.450.450.450.450.440.440.440.440.430.430.40.4

0.430.430.430.430.420.420.420.420.420.420.420.420.20.2

0.400.400.400.400.400.400.400.400.400.400.400.400.00.0

1.01.00.80.80.60.60.40.40.20.20.00.0

118

LP formulation for an upper bound of a
throughput (by example)

Th = (2 - α) / (3 - α)

α

1-α

a

b

d c

p1 p2

p3 p4

p5

max th
mp1 = 1 + tb – ta
mp2 = 0 + ta – tb
mp3 = 1 + td – ta
mp4 = 0 + ta – tc
mp5 = 1 + tc – td

th ≤ mp2
th ≤ mp4
th ≤ mp5

th = α mp1 + (1-α) mp3

119

Averaging cycle throughput or cycle times
does not work

Th = (2 - α) / (3 - α)

α

1-α

a

b

d c

p1 p2

p3 p4

p5

1/2

2/3

Th’ = α 1/2 + (1- α) 2/3 = (4 - α) / 6

1/Th” = 2α + (1- α) 3/2 = (3 + α) / 2
Th” = 2/(3+ α)

Averaging throughput of
individual cycles

Averaging effective cycle times
of individual cycles

Correct-by-construction pipelining

121

Notation for elastic systems

Elastic buffer (latency=1, capacity=2)
with one token of information

Empty elastic buffer (latency=1, capacity=2)

Channel with an injector of k negative tokens
-k

Empty elastic buffer (latency=0, capacity=m) m

Elastic transforms
=

m=

=
-1 -1 -2

-1
=

-k
=...

k

...

k

W R

wa ra

wd rd = W R

wa ra

=

rdwd
0

1

Bypass transform

Classic transform. Works for elastic systems

Pipelining by example

rawa

F2F1 F4F3

RF

Convert to elastic form

Pipelining by example

rawa

F2F1 F4F3

RF

Handshakes added to the environmentHandshakes added to the environment

Pipelining by example

rawa

F2F1 F4F3

RF

Bypass 4 times

Pipelining by example

rawa

F2F1 F4F3

=

Early evaluation elastic multiplexer
Only waits for the branch that is needed

Pipelining by example

rawa

F2F1 F4F3

=

To simplify the presentation:
Assume only dependencies of depth 1
Prune away unneeded bypasses

Pipelining by example

rawa

F2F1 F4F3

=

Pipelining by example

rawa

F2F1 F4F3

=

Insert empty buffers

Pipelining by example

rawa

F2F1 F4F3

=

Cannot retime!

Pipelining by example

rawa

F2F1 F4F3

=

Insert empty buffers.
To enable retiming use a form with
negative tokens

Pipelining by example

rawa

F2F1 F4F3

=

-3

Pipelining by example

rawa

F2F1 F4F3

=

-3

Retime
Assume for now retiming is done like in
normal synchronous designs
Will come back to this later

Pipelining by example

rawa

F2F1 F4F3

=

-3

Pipelining by example

rawa

F2F1 F4F3

=

-3

Deadlock!

Why deadlock?

-3

Why deadlock?

-3

Positively live system all cycles have positive marking

Cycle with sum of tokens = -2

Transformations

Correct designs

?

Retiming of Elastic Buffers

F

-1

F

-1

A

A

Presenter
Presentation Notes
40.5’

F -1

Deadlock!

F

-1

A

Retiming of Elastic Buffers

Retiming move removed
required buffer capacity
from the old location

How to fix deadlock

-3

Extra capacity

Pipelining by example

rawa

F2F1 F4F3

=

-3

Size buffers
(by adding (0,k) buffers)

Pipelining by example

rawa

F2F1 F4F3

=

-3

3

Correct fully pipelined design

Transformations

Correct designs
upsize

F -1

F

-1

1
A

Retiming of Elastic Buffers

Would require solving capacity
sizing problem for every
retiming move

F -1

F

-1

12
A

2

Retiming of Elastic Buffers

Conservatively preserve
previous capacity

Transformations

Correct designs
upsize downsize

conservatively
preserve
capacity

150

Correctness (short story)

Developed theory of elastic machines
(for late evaluation)
Verify correctness of any elastic implementation = check
conformance with the definition of elastic machine
All SELF controllers are verified for conformance
Elasticization is correct-by-construction

Theory for early evaluation and negative delays is more
challenging
– Sketch of a theory, but no fully satisfactory compositional

properties found yet
– Verification done on concrete systems and controllers

What is a Communication Fabric?
Part of the design that pushes data around
Glue between different IP blocks
Include not only wires, but also…
– switches, arbiters, routers, buffers and queues,

addressing logic, logic managing credits, logic for cache
coherency, starvation and deadlock prevention, clock
and power down logic etc.

Often has regular parts (e.g. ring or mesh
topology), but need not be

Elasticity is a natural requirement, but different
notion of equivalence: only relative order matters

Many Communication Fabrics

High-end interconnect
– Connects cores in high-end chips
– Implements cache coherence

IO/Mem fabrics
– PC MCH (Memory Control Hub), PCH, SCH

Implements PCI-compatible memory-
mapped IO

– SOC chips
System Interconnect
Memory Controller
Often simpler than PCI: no configuration,
etc.

Message fabrics
– Power messages, sideband wires, etc. in

most designs
– Don’t care about performance

Core i7-based
Platform

Atom-based
Platform

Tree topology NoC

R

R

RR

R

AGENT

AGENT

AGENT

AGENT

AGENT

AGENT

AGENT

[In collaboration with Ken Stevens, Charles Dike, Bill Grundmann] 153

Router node interface

RouterA

B

C

154

NoC Router

EHB M

S

A

EHB

EHB

S

M

S

M

C

B

Relative order of tokens
between agents is preserved

155

Switch and Merge

156

Some open problems

Better performance analysis (bounds) for system with early
evaluation

Given: The number and sizes of IP blocks & communication
requirements & message ordering constraints & flow control rates
Find: Optimal floorplans & communication fabrics in (perf, area,
energy) space

Compositional theory of elastic machines with early evaluation

Given: a class of communication fabric & message ordering
constraints & flow control details
Prove: no deadlocks, every message gets delivered

Summary

SELF gives a low cost implementation of elastic machines

Functionality is correct when latencies change

New micro-architectural opportunities and new automatuion
methods

Compositional theory proving correctness

Early evaluation - mechanism for performance and power
optimization

Applications to design of NoCs and communication fabrics

158

See reference list for some relevant
publications

159

Bibliography on Synchronous Elastic (aka Latency Insensitive)

Systems

July 20, 2009

Latency insensitive designs

[CMSV01,CSV02,CSV03,CM04,BMdS06a,Sve04,VA09]

SELF implementation and compilation to elastic designs

[CKG06,CK07,HB08]

Interlock pipelines

[JKB+02]

Synchronous translation of CSP

[OB97,PvB01]

Performance analysis

[JCK06]

Optimization

[LK03,BCKS07,CKC+08,CSV03,BMdS06b,BJC08]

Slack matching

[MM98]

Theory

[GTL03,KCKO06,CMSV01]

Variable latency units

[BMP97,BML+99,BCK09]

1

Petri Nets

[Mur89]

Early evaluation and event models with early evaluation

[BG03,CK07,TFRT02,RTTH05,AS06,KKTV94,YKK+96]

Microarchitectural transformations

[HE96,KKCGO08,GOCK09]

Desynchronization

[VM02,CKLS06]

Communication Fabrics & NoCs

[MOP+09]

References

[AS06] Manoj Ampalam and Montek Singh. Counterflow pipelining: Architectural support
for preemption in asynchronous systems using anti-tokens. In Proc. International
Conf. Computer-Aided Design (ICCAD), pages 611–618, 2006.

[BCK09] D. Baneres, J. Cortadella, and M. Kishinevsky. Variable-latency design using function
speculation. In Proc. Design, Automation and Test in Europe (DATE), April 2009.

[BCKS07] Dmitry Bufistov, Jordi Cortadella, Mike Kishinevsky, and Sachin Sapatnekar. A gen-
eral model for performance optimization of sequential systems. In ICCAD ’07: Pro-
ceedings of the 2007 IEEE/ACM international conference on Computer-aided design,
pages 362–369, 2007.

[BG03] C.F. Brej and J.D. Garside. Early output logic using anti-tokens. In Int. Workshop
on Logic Synthesis, pages 302–309, May 2003.

[BJC08] D. Bufistov, J. Júlvez, and J. Cortadella. Performance optimization of elastic systems
using buffer resizing and buffer insertion. In Proc. International Conf. Computer-
Aided Design (ICCAD), pages 442–448, November 2008.

[BMdS06a] J. Boucaron, J. Millo, and R. de Simone. Another glance at relay stations in latency-
insensitive design. Electr. Notes Theor. Comput. Sci., 146(2):41–59, 2006.

[BMdS06b] J. Boucaron, J. Millo, and R. de Simone. Latency-insensitive design and central repet-
itive scheduling. In IEEE-ACM International Conference MEMOCODE’06, pages
175–183, 2006.

2

[BML+99] L. Benini, G. De Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino. Automatic
synthesis of large telescopic units based on near-minimum timed supersetting. IEEE
Transactions on Computers, 48(8):769–779, 1999.

[BMP97] Luca Benini, Enrico Macii, and Massimo Poncino. Telescopic units: increasing the
average throughput of pipelined designs by adaptive latency control. In DAC ’97:
Proceedings of the 34th annual conference on Design automation, pages 22–27, New
York, NY, USA, 1997. ACM Press.

[CK07] J. Cortadella and M. Kishinevsky. Synchronous elastic circuits with early evaluation
and token counterflow. In Proc. ACM/IEEE Design Automation Conference, pages
416–419, June 2007.

[CKC+08] Jordi Cortadella, Mike Kishinevsky, Josep Carmona, Dmitry Bufistov, and Jorge
Julvez. Elasticity and Petri nets. LNCS Transactions on Petri Nets and Other Models
of Concurrency (ToPNoC), 1:221 – 249, February 2008.

[CKG06] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of synchronous elastic
architectures. In Proc. ACM/IEEE Design Automation Conference, pages 657–662,
July 2006.

[CKLS06] Jordi Cortadella, Alex Kondratyev, Luciano Lavagno, and Christos Sotiriou. Desyn-
chronization: Synthesis of asynchronous circuits from synchronous specifications.
IEEE Transactions on Computer-Aided Design, 25(10):1904–1921, 2006.

[CM04] M.R. Casu and L. Macchiarulo. A new approach to latency insensitive design. In
Proc. Digital Automation Conference (DAC), pages 576–581, June 2004.

[CMSV01] L. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. Theory of latency-
insensitive design. IEEE Transactions on Computer-Aided Design, 20(9):1059–1076,
September 2001.

[CSV02] L.P. Carloni and A.L. Sangiovanni-Vincentelli. Coping with latency in SoC design.
IEEE Micro, Special Issue on Systems on Chip, 22(5):12, October 2002.

[CSV03] L. Carloni and A.L. Sangiovanni-Vincentelli. Combining retiming and recycling to
optimize the performance of synchronous circuits. In 16th Symp. on Integrated Circuits
and System Design (SBCCI), pages 47–52, September 2003.

[GOCK09] Marc Galceran-Oms, Jordi Cortadella, and Mike Kishinevsky. Speculation in elastic
systems. In Proc. International Workshop on Logic Synthesis, July 2009.

[GTL03] P. Le Guernic, J.-P. Talpin, and J.-Ch. Le Lann. Polychrony for system design.
Journal of Circuits, Systems and Computers, 12(3):261–304, April 2003.

[HB08] Greg Hoover and Forrest Brewer. Synthesizing synchronous elastic flow networks. In
DATE ’08: Proceedings of the conference on Design, automation and test in Europe,
pages 306–311, 2008.

3

[HE96] S. Hassoun and C. Ebeling. Architectural retiming: Pipelining latency-constrained
circuits. In Proc. ACM/IEEE Design Automation Conference, pages 708–713, June
1996.

[JCK06] J. Júlvez, J. Cortadella, and M. Kishinevsky. Performance analysis of concurrent
systems with early evaluation. In Proc. International Conf. Computer-Aided Design
(ICCAD), November 2006.

[JKB+02] Hans M. Jacobson, Prabhakar N. Kudva, Pradip Bose, Peter W. Cook, Stanley E.
Schuster, Eric G. Mercer, and Chris J. Myers. Synchronous interlocked pipelines. In
Proc. International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 3–12, April 2002.

[KCKO06] Sava Krstic, Jordi Cortadella, Michael Kishinevsky, and John O’Leary. Synchronous
elastic networks. In FMCAD, pages 19–30. IEEE Computer Society, 2006.

[KKCGO08] T. Kam, M. Kishinevsky, J. Cortadella, and M. Galceran-Oms. Correct-by-
construction microarchitectural pipelining. In Proc. International Conf. Computer-
Aided Design (ICCAD), pages 434–441, November 2008.

[KKTV94] Michael Kishinevsky, Alex Kondratyev, Alexander Taubin, and Victor Varshavsky.
Concurrent Hardware: The Theory and Practice of Self-Timed Design. Series in
Parallel Computing. John Wiley & Sons, 1994.

[LK03] R. Lu and C.-K. Koh. Performance optimization of latency insensitive systems
through buffer queue sizing of communication channels. In Proc. International Conf.
Computer-Aided Design (ICCAD), pages 227–231, November 2003.

[MM98] R. Manohar and A. J. Martin. Slack elasticity in concurrent computing. In Proc.
4th Int. Conf. on the Mathematics of Program Construction, volume 1422 of Lecture
Notes in Computer Science, pages 272–285, 1998.

[MOP+09] Radu Marculescu, Umit Y. Ogras, Li-Shiuan Peh, Natalie Enright Jerger, and Yatin
Hoskote. Outstanding research problems in noc design: System, microarchitecture,
and circuit perspectives. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 28(1):3 – 21, 2009.

[Mur89] T. Murata. Petri Nets: Properties, analysis and applications. Proceedings of the
IEEE, pages 541–580, April 1989.

[OB97] John O’Leary and Geoffrey Brown. Synchronous emulation of asynchronous circuits.
IEEE Transactions on Computer-Aided Design, 16(2):205–209, February 1997.

[PvB01] Ad Peeters and Kees van Berkel. Synchronous handshake circuits. In Proc. Inter-
national Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 86–95. IEEE Computer Society Press, March 2001.

[RTTH05] R. Reese, M. Thornton, C. Traver, and D. Hemmendinger. Early evaluation for
performance enhancement in phased logic. IEEE Transactions on Computer-Aided
Design, 24(4):532–550, April 2005.

4

[Sve04] Christer Svensson. Synchronous latency insensitive design. In 10th International
Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC
2004), page 3, 2004.

[TFRT02] M. Thornton, K. Fazel, R. Reese, and C. Traver. Generalized early evaluation in
self-timed circuits. In Proc. Design, Automation and Test In Europe (DATE), March
2002.

[VA09] M. Vijayaraghavan and Arvind. Bounded dataflow networks and latency-insensitive
circuits. In Proceedings of the 7th International Conference on Formal Methods and
Models for Codesign (MEMOCODE), July 2009.

[VM02] Victor Varshavsky and Vyacheslav Marakhovsky. GALA (globally asynchronous -
locally arbitrary) design. In J. Cortadella, A. Yakovlev, and G. Rozenberg, editors,
Concurrency and Hardware Design, volume 2549 of Lecture Notes in Computer Sci-
ence, pages 61–107. Springer-Verlag, 2002.

[YKK+96] Alexandre Yakovlev, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and
Marta Pietkiewicz-Koutny. On the models for asynchronous circuit behaviour with
OR causality. Formal Methods in System Design, 9(3):189–233, 1996.

5

	Synchronous Elastic Systems
	Contributors to SELF research
	Agenda
	Synchronous Stream of Data
	Synchronous Elastic Stream
	Synchronous Circuit
	Synchronous Elastic Circuit
	Ordinary Synchronous System
	Synchronous Elastic �(characteristic property)
	Elasticity?
	Why
	What can we do with �synchronous elastic systems?
	Variable latency units
	Slide Number 14
	Power-delay for an adder
	Variable-latency cache hits
	Variable-latency cache hits
	Variable-latency cache hits
	Motivation example
	Correct-by-construction automatic pipelining in presence of iteration dependencies
	How to Design Synchronous Elastic Systems
	Pipelined communication
	The Valid bit
	The Stop bit
	The Stop bit
	The Stop bit
	The Stop bit
	The Stop bit
	Cyclic structures
	Example: pipelined linear communication chain with transparent latches
	Shorthand notation �(clock lines not shown)
	SELF (linear communication)
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	Elastic channel and its protocol
	Elastic channel protocol
	Basic VS block
	Control specification of the EB
	Two implementations
	Elastic buffer keeps data while stop is in flight
	Join
	(Lazy) Fork
	Eager Fork
	Eager fork (another implementation)
	Variable Latency Units
	Coarse grain control
	Elasticization
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Equivalence
	Marked Graph models�of elastic systems
	Modelling elastic control with Petri nets
	Modelling elastic control with Petri nets
	Modelling elastic control with Marked Graphs
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Modeling forks and joins
	Slide Number 89
	Elastic Marked Graphs
	Reminder: Performance analysis of Marked graphs
	Early evaluation
	Examples of early evaluation
	Related work
	Dual Marked Graph
	Dual Marked Graphs
	Dual Marked Graph model
	Passive anti-token
	Properties of DMGs
	Implementing early enabling
	How to implement anti-tokens ?
	How to implement anti-tokens ?
	How to implement anti-tokens ?
	Controller for elastic buffer
	Dual controller for elastic buffer
	Dual Join and Fork
	Join with early evaluation
	Condition on Early Evaluation Function
	Passive anti-token (capacity one)
	Properties of elastic channels
	Conclusions
	Performance analysis �with early evaluation
	Revisit Performance Analysis of Marked Graphs
	Slide Number 114
	GMG = Multi-guarded Dual Marked Graph
	Early evaluation
	Early evaluation
	LP formulation for an upper bound of a throughput (by example)
	Averaging cycle throughput or cycle times does not work
	Correct-by-construction pipelining
	Notation for elastic systems
	Elastic transforms
	Bypass transform
	Pipelining by example
	Pipelining by example
	Pipelining by example
	Pipelining by example
	Pipelining by example
	Pipelining by example
	Pipelining by example
	Pipelining by example
	Pipelining by example
	Pipelining by example
	Pipelining by example
	Pipelining by example
	Pipelining by example
	Why deadlock?
	Why deadlock?
	Transformations
	Retiming of Elastic Buffers
	Retiming of Elastic Buffers
	How to fix deadlock
	Pipelining by example
	Pipelining by example
	Transformations
	Retiming of Elastic Buffers
	Retiming of Elastic Buffers
	Transformations
	Correctness (short story)
	What is a Communication Fabric?
	Many Communication Fabrics
	Tree topology NoC
	Router node interface
	NoC Router
	Switch and Merge
	Some open problems
	Summary
	

