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Token (of data)

Synchronous Stream of Data

… 147
Clock cycle 012…
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Token

Synchronous Elastic Stream

… 147
012…

4 17
012… 345

Clock cycle

Clock cycle…
Bubble (no data)

5



Synchronous Circuit

+
… 147 … 348

201…

Latency = 0
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Synchronous Elastic Circuit

+
Latency = 0… 147

+
Latency can vary  

e

… 348
201…

348…147…
201…
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Ordinary Synchronous System

A C

DB

A C

DB

=

Changing latencies changes behavior
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Synchronous Elastic 
(characteristic property)

A C

DB

A C

DB

=

Changing latencies does NOT change behavior 
=  time elasticity

e

ee

e

ee

ee e
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Elasticity?

Elasticity refers to elasticity of time, i.e. tolerance to 
changes in timing parameters, not properties of materials

Luca Carloni et al. in the first systematic study of such 
systems called them Latency Insensitive Systems
Other used names: 
– Latency tolerant systems
– Synchronous emulation of asynchronous systems 
– Synchronous handshake circuits

We use term “synchronous elastic” to link to asynchronous 
elastic systems that have been developed before 

e.g., David Muller’s pipelines of late 1950s
Ivan Sutherland’s micro-pipelines 1989

Tolerate the variability of input data arrival and 
computation delays

Asynchronous elastic tolerate changes in continuous time
S h  l ti  i  di t  ti
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Why

Scalable

Modular (Plug & Play) 

Potential for better energy-delay trade-offs 
– design for typical case instead of worst case
– can separate performance critical parts from non-critical and 

optimize in isolation

New micro-architectural opportunities 
in digital design

Not asynchronous: use existing design experience, CAD 
tools and flows... but have some advantages of 
asynchronous

11



What can we do with 
synchronous elastic systems?
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Variable latency units

L = 1

L = 3

L = 2

L = 1

ALU
ALU

start done
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# 
adds

Benchmark
“Patricia”
from 
Media Bench

Statistics
of operand
sizes

bits of adder used 

# adds

12 bits of an adder
do 95% of additions
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Power-delay for an adder 

1 1.25 1.5

Compare 
64 bits 
VLA and
prefix adder

relative delay        
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Variable-latency cache hits

2-way associative 
32KB

2-cycle hit

1-cycle hit

12-cycle miss

L1-cache

L2-cache

suggested by Joel Emer for ASIM experiment

16



Variable-latency cache hits

Pseudo-associative
32KB

{1-2} cycle hit

1-cycle hit

12-cycle miss

L1-cache

L2-cache

Sequential access: if hit in first access L = 1, if not – L=2
Trade-off: faster, or larger, or less power cache 
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Variable-latency cache hits

Pseudo-associative
64KB

{2-3} cycle hit

1-cycle hit

12-cycle miss

L1-cache

L2-cache

Sequential access: if hit in first access L = 1, if not – L=2
Trade-off: faster, or larger, or less power cache 
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Motivation example

19

9 8 6

4 4

39

10

4

10 - Combinational block 
with delay 10

- Initialized  register (dot)

Cycle time is

Throughput is 1

Effective cycle 
time is 21

211916

Retiming can 
not do better!

Retiming and Recycling 
(R&R) can

Effective cycle 
time is 19

Effective cycle 
time is 16

Throughput is 4/5

Effective cycle 
time is 15

12

Find a minimal effective cycle time of the circuit 
represented as retiming graph (RG)!

The longest combinational path delayThe number of valid data/clock cyclecycle time/throughput

Retiming graph

5 registers, 
4 tokens



Correct-by-construction automatic pipelining 
in presence of iteration dependencies

Transforms:
– bypass
– retiming
– elasticize
– early enabling
– insert buffers 

and negative tokens
– size elastic buffer capacity

ID E1 E2RF




ID E1 E2RF









1
0

1
0

-1

SPEC

IMP
Correct-by-construction
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and correct-by-construction speculation



21

How to Design Synchronous Elastic Systems

Example of the implementation:
SELF = Synchronous Elastic Flow

Other implementations are possible
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Pipelined communication
sender receiver

DataData

What if the sender does not always send valid data?
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The Valid bit
sender receiver

Data Data

Valid Valid

What if the receiver is not always ready ?
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The Stop bit

00000

sender

Data

Valid

Stop

receiver

Data

Valid

Stop
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The Stop bit

11000

sender

Data

Valid

Stop

receiver

Data

Valid

Stop
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The Stop bit

11100

sender

Data

Valid

Stop

receiver

Data

Valid

Stop
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The Stop bit

11111

sender

Data

Valid

Stop

receiver

Data

Valid

Stop

Back-pressure
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The Stop bit

10000

sender

Data

Valid

Stop

receiver

Data

Valid

Stop

Long combinational path



29

Cyclic structures

Data

Valid

Stop

Combinational cycle

One can build circuits with combinational cycles (constructive cycles by Berry), 
but synthesis and timing tools do not like them
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Example: pipelined linear communication chain 
with transparent latches

sender receiver
H L H L

½ cycle ½ cycle

Master and slave latches with independent control
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Shorthand notation 
(clock lines not shown)

D Q

clkEn

En

…
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SELF (linear communication)
sender receiver

V V V V

S S S S

En En En En

1 1

Data

Valid

Stop

Data

Valid

Stop

1 1
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SELF
sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0
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sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

SELF
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sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

SELF
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sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

SELF
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sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

SELF
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sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

0

0

SELF
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sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

0

0

SELF
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sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

0

0

SELF
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sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

0

0

SELF



42

sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

0

0

SELF
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sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

1

SELF
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sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

1

1

Data

Valid

Stop

SELF
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sender receiver

V V V V

S S S S

En En En En

Data
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Stop
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sender receiver

V V V V
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Stop

1

1

Data
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sender receiver

V V V V
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En En En En
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sender receiver

V V V V
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En En En En
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sender receiver

V V V V
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sender receiver

V V V V

S S S S

En En En En

Data
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1

1
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sender receiver

V V V V

S S S S

En En En En

Data

Valid
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1

1

Data
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Stop

SELF
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sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

1

0

Data

Valid

Stop

SELF
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sender receiver

V V V V

S S S S

En En En En

1

0

Data

Valid

Stop

Data

Valid

Stop

SELF
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sender receiver

V V V V

S S S S

En En En En
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0
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Stop
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sender receiver

V V V V
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En En En En
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sender receiver

V V V V
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Stop

Data

Valid

Stop

SELF



57

sender receiver

V V V V

S S S S

En En En En
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Stop
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sender receiver

V V V V

S S S S

En En En En

Data

Valid
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Data
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Stop
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sender receiver

V V V V

S S S S

En En En En

Data

Valid

Stop

Data

Valid

Stop

1

0

SELF



60

Elastic channel and its protocol 

Idle Retry

Transfer

Valid * not Stop

not Valid Valid * Stop

Sender Receiver
Data

Valid

Stop
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Retry
Transfer

Elastic channel protocol

Sender Receiver

Data

Valid

Stop

Data

Valid

Stop

* D D * C C C B * A

0 1 1 0 1 1 1 1 0 1

0 0 1 0 0 1 1 0 0 0

Idle
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Basic VS block

Si

Eni

Vi

Si-1

Vi-1

VS
Si

Eni

Vi

Si-1

Vi-1

VS block + data-path latch = elastic HALF-buffer (EHB)
EHB + EHB = elastic buffer with capacity 2



Control specification of the EB
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Two implementations 
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Elastic buffer keeps data while stop is in flight

W1R1

W2R1

W1R2

W2R2

W1R1 Cannot be done with
Single Edge Flops
without double pumping

Can use latches inside 
Master-Slave as shown before

EBs = FIFOs with two parameters:
Forward latency
Capacity

Backward latency for stop 
propagation assumed (but need 
not be) equal to fwd latency

Typical case: (1,2) -
1 cycle forward latency 
with capacity of 2

Replaces “normal” registers
Decoupling buffers
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Join

VS

+

V1

V2

S1

S2

V

S

VS

VS
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(Lazy) Fork

V1

V2

S1

S2

V

S



68

Eager Fork

V1

V2

S1

S2

^

^

V

S
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Eager fork (another implementation)

VS

VS VS

VSVS
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Variable Latency Units 

[0 - k]
cycles

V/S V/S

donego clear



Coarse grain control
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Elasticization

Synchronous Elastic
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CLK
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CLK

PC

IF/ID ID/EX EX/MEM MEM/WB

J
O
I
N

J
O
I
N

F
O
R
K

FORK
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V

S

CLK

V

S

V

S

V

S

V

S

J
O
I
N

J
O
I
N

F
O
R
K

FORK
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1

0

CLK

1

0

1

0

1

0

1

0

J
O
I
N

J
O
I
N

F
O
R
K

FORK 0

0
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1

0

1

0

1

0

1

0

1

0

Elastic control layer
Generation of gated clocks

CLK



Equivalence 

D: a b c d e d f g h i j …

Synchronous: stream of data

SELF: elastic stream of data

D: a * b * * c d e * d f * g h * * i j …
V: 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 …
S: 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 … 

Transfer sub-stream = original stream
Called: transfer equivalence, flow equivalence, or latency equivalence
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Marked Graph models
of elastic systems
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Modelling elastic control with Petri nets

data-token

bubble

data-tokenbubble
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Modelling elastic control with Petri nets

data-tokenbubble 2 data-tokens

Hiding internal transitions of elastic buffers
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Modelling elastic control with Marked Graphs
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Forward 
(Valid or Request)

Backward 
(Stop or Acknowledgement)

Modelling elastic control with Marked Graphs
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Elastic control with Timed Marked Graphs.
Continuous time = asynchronous

d=250ps d=151ps

250 151

Delays in time units
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Elastic control with Timed Marked Graphs.
Discrete time = synchronous elastic

d=1 d=1

1 1

Latencies in clock cycles
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Elastic control with Timed Marked Graphs.
Discrete time. Multi-cycle operation

d=2 d=1

2 1
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Elastic control with Timed Marked Graphs.
Discrete time. Variable latency operation

d   {1,2} d=1

{1,2} 1

e.g. discrete probabilistic distribution: 
average latency 0.8*1 + 0.2*2 = 1.2

∈
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Modeling forks and joins

d=1

1



89

Modelling combinational elastic blocks

d=1 d=0

1 0
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Elastic Marked Graphs

An Elastic Marked Graph (EMG) is a Timed MG such that 
for any arc a there exists a complementary arc a’
satisfying the following condition 
•a = a’•  and  •a’ = a•

Initial number of tokens on a and a’ (M0(a)+M0(a’)) =
capacity of the corresponding elastic buffer

Similar forms of “pipelined” Petri Nets and Marked Graphs 
have been previously used for modeling pipelining in HW 
and SW (e.g. Patil 1974; Tsirlin, Rosenblum 1982)
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Reminder: Performance analysis of Marked graphs

Efficient algorithms: (Karp 1978), (Dasdan,Gupta 1998)

A B C

Th(C)=2/5

Th(B)=3/5

Th(A)=3/7

Th=min(Th(A), Th(B), Th(C))=2/5

Th = operations / cycle = number of firings per time unit 

The throughput is given by the
minimum mean-weight cycle
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Early evaluation

Naïve solution: introduce choice places 
– issue tokens at choice node only into one (some) relevant path
– problem: tokens can arrive to merge nodes out-of-order 

later token can overpass the earlier one

Solution: change enabling rule 
– early evaluation
– issue negative tokens to input places without tokens, 

i.e. keep the same firing rule
– Add symmetric sub-channels with negative tokens
– Negative tokens kill positive tokens when meet

Two related problems: 
Early evaluation and Exceptions (how to kill a data-token)
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Examples of early evaluation

MULTIPLIER

a
b

c if a = 0 then c := 0   -- don’t wait for b*

MULTIPLEXOR

a
b

c

s

if s = T then c := a   -- don’t wait for b
else c := b   -- don’t wait for a

T
F
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Related work

Petri nets
– Extensions to model OR causality

Kishinevsky et al. Change Diagrams [e.g. book of 
1994]
Yakovlev et al. Causal Nets 1996

Asynchronous systems
– Reese et al 2002: Early evaluation
– Brej 2003: Early evaluation with anti-tokens
– Ampalan & Singh 2006: preemption using anti-tokens
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Dual Marked Graph
Marking: Arcs (places) −> Z
(allow negative markings)
Some nodes are labeled as early-enabling

Enabling rules for a node:
– Positive enabling:  M(a) > 0 for every input arc
– Early enabling (for early enabling nodes): 

M(a) > 0 for some input arcs
– Negative enabling: M(a) < 0 for every output arc

Firing rule: the same as in regular MG
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Dual Marked Graphs

Early enabling can be associated with an 
external guard that depends on data variables 
(e.g., a select signal of a multiplexor) 
Actual enabling guards are abstracted away 
(unless needed)
Anti-token generation: When an early enabled 
node fires, it generates anti-tokens in the 
predecessor arcs that had no tokens
Anti-token propagation counterflow: When 
negative enabled node fires, it propagates the 
anti-tokens from the successor to the 
predecessor arcs
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Dual Marked Graph model

-1

Enabled !

-1

-1

-1

-1
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Passive anti-token
Passive DMG = version of DMG without negative enabling
Negative tokens can only be generated due to early 
enabling, but cannot propagate
Let D be a strongly connected DMG such that all cycles 
have positive cumulative marking
Let Dp be a corresponding passive DMG. 

If environment (consumers) never generate negative 
tokens, and there are no multi-cycle operations then 
throughput (D) = throughput (Dp)

– If capacity of input places for early enabling transitions is unlimited, 
then active anti-tokens do not improve performance

– Active anti-tokens reduce activity in the data-path 
(good for power reduction)

Presenter
Presentation Notes
statement should checked
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Properties of DMGs
Firing invariant: Let node n be simultaneously positive (early) and 
negative enabled in marking M. 
Let M1 be the result of firing n from M due to positive (early) enabling. 
Let M2 be the result of firing n from M due to negative enabling. 
Then, M1 = M2

Token preservation. Let  c be a cycle of a strongly connected DMG with 
initial marking M0. 
For every reachable marking M : M(c) = M0(c)

Liveness. A strongly connected passive DMG is live iff for every cycle c:
M(c) > 0. 
– For DMGs this is a sufficient condition of liveness
– It is also a necessary condition for positive liveness

Repetitive behavior. In a SC DMG: a firing sequence s from M leads to 
the same marking iff every node fires in s the same number of times

DMGs have properties similar to regular MGs
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Implementing early enabling
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How to implement anti-tokens ?

Positive tokens

Negative tokens
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How to implement anti-tokens ?

Positive tokens

Negative tokens
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How to implement anti-tokens ?

Valid+ Valid+

Valid–

Valid+

Stop+ Stop+

Valid–

Stop–Stop–

+

-
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Controller for elastic buffer

V

S

V

S

Data

H

H

L

L

L

H

V

S

V

S

En En
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Dual controller for elastic buffer

S+

V+

V-

S-

S+

V+

V-

S-

En En



Dual Join and Fork
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Join with early evaluation
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Condition on Early Evaluation Function

Early evaluation function makes decision based on presence
of valid bits, not on their absence

Formally: EE is positive unate with respect to data input

Example: legal EE function for a data-path MUX 
(s – select input)

108
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Passive anti-token (capacity one)

Bigger capacity can be achieved by “injecting” 
anti-token up-down counters on elastic channels



Properties of elastic channels

Invariants:   mutually exclusive 
Kill (V -) and Stop (S +) 
Valid (V +) and retain of a kill (S -)
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Conclusions

Early evaluation can increase performance 
beyond the min cycle ratio

The duality between positive and negative 
tokens suggests a clean and effective 
implementation

Dual Marked Graphs is a formal model for 
analytical analysis and optimization methods



Performance analysis 
with early evaluation
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Revisit Performance Analysis of Marked Graphs

∫∞→
=

t

pttp )d(mm
0

1lim ττ

The throughput can also be computed by means of
linear programming

Average marking

pp
mth min=

Throughput

),min( 21 pp mmth =

t1 t2

t3

p1 p2

[Campos, Chiola, Silva 1991]
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a

b

d c

p1 p2

p3 p4

p5

max th

mp1 = 1 + tb – ta
mp2 = 0 + ta – tb
mp3 = 1 + td – ta
mp4 = 0 + ta – tc
mp5 = 1 + tc – td

Th = 0.5

reachability

th ≤  mp2 // transition b
th ≤  mp4 // transition c
th ≤  mp5    // transition d
th ≤  min(mp1, mp3) // transition a

th constraints

Revisit Performance Analysis of Marked Graphs
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GMG = Multi-guarded Dual Marked Graph

Refinement of passive DMGs
Every node has a set of guards
Every guard is a set of input places (arcs)

Example:
t1 t2

t4

p1 p2

t3

p3

G(t4)={{p1,p3},{p2,p3}}
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Early evaluation

α1-α

β 1-β
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Early evaluation

α1−α

β 1−β

α
β

(0.43) (0.60) (0.40)

0.600.600.540.540.490.490.460.460.440.440.430.431.01.0

0.540.540.510.510.480.480.460.460.440.440.430.430.80.8

0.490.490.480.480.470.470.450.450.440.440.430.430.60.6

0.450.450.450.450.450.450.440.440.440.440.430.430.40.4

0.430.430.430.430.420.420.420.420.420.420.420.420.20.2

0.400.400.400.400.400.400.400.400.400.400.400.400.00.0

1.01.00.80.80.60.60.40.40.20.20.00.0

0.600.600.540.540.490.490.460.460.440.440.430.431.01.0

0.540.540.510.510.480.480.460.460.440.440.430.430.80.8

0.490.490.480.480.470.470.450.450.440.440.430.430.60.6

0.450.450.450.450.450.450.440.440.440.440.430.430.40.4

0.430.430.430.430.420.420.420.420.420.420.420.420.20.2

0.400.400.400.400.400.400.400.400.400.400.400.400.00.0

1.01.00.80.80.60.60.40.40.20.20.00.0
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LP formulation for an upper bound of a 
throughput (by example) 

Th = (2 - α) / (3 - α)

α

1-α

a

b

d c

p1 p2

p3 p4

p5

max th
mp1 = 1 + tb – ta
mp2 = 0 + ta – tb
mp3 = 1 + td – ta
mp4 = 0 + ta – tc
mp5 = 1 + tc – td

th ≤  mp2
th ≤  mp4
th ≤  mp5

th = α mp1 + (1-α) mp3
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Averaging cycle throughput or cycle times 
does not work

Th = (2 - α) / (3 - α)

α

1-α

a

b

d c

p1 p2

p3 p4

p5

1/2

2/3

Th’ = α 1/2 + (1- α) 2/3 = (4 - α) / 6 

1/Th” = 2α + (1- α) 3/2 = (3 + α) / 2
Th” = 2/(3+ α)

Averaging throughput of 
individual cycles

Averaging effective cycle times 
of individual cycles



Correct-by-construction pipelining
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Notation for elastic systems

Elastic buffer (latency=1, capacity=2) 
with one token of information

Empty elastic buffer (latency=1, capacity=2) 

Channel with an injector of k negative tokens 
-k

Empty elastic buffer (latency=0, capacity=m) m



Elastic transforms 
=

m=

=
-1 -1 -2

-1
=

-k
=...

k

...

k



W     R

wa ra

wd rd = W     R

wa ra

=

rdwd
0

1

Bypass transform

Classic transform. Works for elastic systems



Pipelining by example

rawa

F2F1 F4F3

RF

Convert to elastic form 



Pipelining by example

rawa

F2F1 F4F3

RF

Handshakes added to the environmentHandshakes added to the environment



Pipelining by example

rawa

F2F1 F4F3

RF

Bypass 4 times



Pipelining by example

rawa

F2F1 F4F3

=

Early evaluation elastic multiplexer 
Only waits for the branch that is needed



Pipelining by example

rawa

F2F1 F4F3

=

To simplify the presentation: 
Assume only dependencies of depth 1 
Prune away unneeded bypasses



Pipelining by example

rawa

F2F1 F4F3

=



Pipelining by example

rawa

F2F1 F4F3

=

Insert empty buffers



Pipelining by example

rawa

F2F1 F4F3

=

Cannot retime!



Pipelining by example

rawa

F2F1 F4F3

=

Insert empty buffers. 
To enable retiming use a form with 
negative tokens



Pipelining by example

rawa

F2F1 F4F3

=

-3



Pipelining by example

rawa

F2F1 F4F3

=

-3

Retime 
Assume for now retiming is done like in 
normal synchronous designs
Will come back to this later



Pipelining by example

rawa

F2F1 F4F3
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Pipelining by example

rawa

F2F1 F4F3

=

-3

Deadlock!



Why deadlock?

-3



Why deadlock?

-3

Positively live system  all cycles have positive marking

Cycle with sum of tokens = -2



Transformations

Correct designs

?



Retiming of Elastic Buffers
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Deadlock!
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A

Retiming of Elastic Buffers

Retiming move removed 
required buffer capacity 
from the old location 



How to fix deadlock

-3

Extra capacity



Pipelining by example

rawa

F2F1 F4F3

=

-3

Size buffers 
(by adding (0,k) buffers)



Pipelining by example

rawa

F2F1 F4F3

=

-3

3

Correct fully pipelined design



Transformations

Correct designs
upsize
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Retiming of Elastic Buffers

Would require solving capacity 
sizing problem for every 
retiming move 



F -1

F

-1

12
A

2

Retiming of Elastic Buffers

Conservatively preserve 
previous capacity



Transformations

Correct designs
upsize downsize

conservatively
preserve 
capacity
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Correctness (short story)

Developed theory of elastic machines 
(for late evaluation)
Verify correctness of any elastic implementation = check 
conformance with the definition of elastic machine
All SELF controllers are verified for conformance
Elasticization is correct-by-construction

Theory for early evaluation and negative delays is more 
challenging
– Sketch of a theory,  but no fully satisfactory compositional 

properties found yet
– Verification done on concrete systems and controllers



What is a Communication Fabric?
Part of the design that pushes data around
Glue between different IP blocks
Include not only wires, but also…
– switches, arbiters, routers, buffers and queues, 

addressing logic, logic managing credits, logic for cache 
coherency, starvation and deadlock prevention, clock 
and power down logic etc.

Often has regular parts (e.g. ring or mesh 
topology), but need not be

Elasticity is a natural requirement, but different 
notion of equivalence: only relative order matters



Many Communication Fabrics 

High-end interconnect
– Connects cores in high-end chips
– Implements cache coherence

IO/Mem fabrics
– PC MCH (Memory Control Hub), PCH, SCH 

Implements PCI-compatible memory-
mapped IO

– SOC chips
System Interconnect 
Memory Controller
Often simpler than PCI: no configuration, 
etc. 

Message fabrics
– Power messages, sideband wires, etc. in 

most designs
– Don’t care about performance

Core i7-based 
Platform

Atom-based 
Platform



Tree topology NoC

R

R

RR

R

AGENT

AGENT

AGENT

AGENT

AGENT

AGENT
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Router node interface

RouterA

B

C
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NoC Router

EHB M

S

A

EHB

EHB

S

M

S

M

C

B

Relative order of tokens 
between agents is preserved
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Switch and Merge

156



Some open problems

Better performance analysis (bounds) for system with early 
evaluation

Given: The number and sizes of IP blocks & communication 
requirements & message ordering constraints & flow control rates
Find: Optimal floorplans & communication fabrics in (perf, area, 
energy) space 

Compositional theory of elastic machines with early evaluation

Given: a class of communication fabric & message ordering 
constraints & flow control details
Prove: no deadlocks, every message gets delivered



Summary

SELF gives a low cost implementation of elastic machines 

Functionality is correct when latencies change 

New micro-architectural opportunities and new automatuion 
methods

Compositional theory proving correctness

Early evaluation - mechanism for performance and power 
optimization

Applications to design of NoCs and communication fabrics 
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See reference list for some relevant 
publications
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