
1

Simulation-driven verification
Design Automation Summer School, 2009

Bob Bentley
Director, Pre-silicon Validation

Enterprise Microprocessor Group
Intel Corporation

Hillsboro, Oregon, U.S.A.

DASS 20092

Agenda

• Microprocessor design scope
• What is Nehalem?
• RTL High Level Timeline
• RTL coding strategy
• RTL model health indicators
• RTL model build methodology
• Microprocessor Validation & Verification
• Verification environment
• Verification progress indicators
• Verification results

DASS 20093

Microprocessor Design Scope

•Typical lead x86 CPU design attributes:
•500+ person design team:

–logic and circuit design
–physical design
–validation and verification
–design automation & other support

•24-30 months from start of RTL to A0
tapeout

•12-18 months from A0 tapeout to first
production

DASS 20094

What is Nehalem?

• Nehalem (Intel® Core™ i7) is Intel’s newest production x86
microprocessor on 45nm technology
– Nehalem is the basis of a family of 45nm and 32nm products for

mobile, desktop and server systems
• Nehalem core was derived from Merom (Intel® Core™2 Duo),

with significant algorithmic and pipeline changes for:
– Higher performance
– Better power efficiency
– SMT (multithreading) support
– Higher frequency
– Greater parallelism via increases in buffer sizes, etc.

• Nehalem Uncore (System Agent) is completely new
– High speed point-to-point interconnect (QPI)
– Cross-bar interconnect (GQ) for LLC, cores, memory and I/O
– Integrated DDR3 memory controller
– Power control unit (PCU)

DASS 20095

Intel® Core™2 Duo, a.k.a. “Merom”

DASS 20096

Intel® Core™ i7, a.k.a. “Nehalem”

DASS 20097

NHM Core Clusters

• Core is organized as 4 clusters
– FE: Fetch bytes, decode instructions, provide uops
– OOO: Resource allocation, uop scheduling, retirement
– EXEC: FP/INT execution
– MEU: Load/store handling

DASS 20098

Nehalem RTL - High Level Timeline

2005
Q1

2006 2007
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q2Q1

Feature Coding

Feature Exercise
Code reviews

2004

MAS DP fubs
coded

All features
coded

Q1 Q2 Q3 Q4

Uncore Early Coding

Tech Readiness

Full verification
ECO control/DCCB

RTL Lockdown
Tape-in

DASS 20099

SystemVerilog Motivation

• In 2004 a cross-Intel working group recommended
SystemVerilog as the HDL convergence target:

“The only HDL capable of meeting the collection of varied
requirements for HDL standardization is SystemVerilog (SV),
given its continuing growth and acceptance as an industry
standard.”

• Rationale for choosing SystemVerilog:
– Strategic: Language convergence across all platform groups

(CPU, chipset, graphics, external IP)
– Strategic: Aligns internal resources with cutting edge tool

development, and leverages EDA industry for baseline tools
– Practical: Native SV language provides a significant leap in

coding capabilities over iHDL, enabling RTL abstraction
• Challenges

– Significant re-training of teams on SV and tools/flows
– Pioneering use of new versions of internal and external tools
– Changing RTL coder behavior to take advantage of new options

DASS 200910

Nehalem RTL coding strategy

• Nehalem was the first design project at Intel to use
SystemVerilog as the RTL development language

• Switching from an internal HDL to SystemVerilog
posed a fundamental decision
– Starting from Merom, should we morph it into Nehalem

(while trying to keep it “always alive”), or recode it from
scratch?

• We came up with a combo strategy
– UNCORE and MEU were coded from scratch
– FE, OOO and EXE were auto-translated from Merom

• In the end, we ended up with a lot of recoding in
the auto-translated clusters as well, due to the
scope of the uarch changes (e.g. SMT)

DASS 200911

Sample RTL Dashboard

DASS 200912

RTL Model Health Indicator

Nehalem Health Of Model

0

10

20

30

40

50

60

70

80

90

100

06ww01
77

06ww04
74

06ww07
71

06ww10
68

06ww13
65

06ww16
62

06ww19
59

06ww22
56

06ww25
53

06ww28
50

06ww31
47

06ww34
44

06ww37
41

06ww40
38

06ww43
35

06ww46
32

06ww49
29

06ww52
26

07ww03
23

07ww06
20

07ww09
17

07ww12
14

07ww15
11

07ww18
8

07ww21
5

07ww24
2

Sc
or

e

-- NHM VTM B

DASS 200913

Nehalem RTL model build methodology

• Normal process was to code RTL and turn it in to a cluster model first
– Microcode was treated as its own cluster for this purpose
– Special handling/synchronization was needed for cross-cluster features

• As much validation as possible was done at the cluster level, using a
Cluster Test Environment (CTE)
– Tried to flush out as many bugs as possible at this level
– When the cluster appeared to be healthy then the code was promoted to

full-chip
• RTL model turnin/release methodology based on “Gatekeeper” (GK)

– Automated system for processing code turnins in parallel
– Nightly automatic release of fully approved code for each cluster and full-

chip model
• Issues

– High turnin reject rate caused computing thrash - addressed by “Mock
Turnin”

– Queues defaulted to FIFO processing - no automatic priorititization of
critical turnins

– Single GK guardian for queue exception handling and issue resolution
– Increased turnin latency at critical points of the project

DASS 200914

Turnin process

• GK processed a huge volume of turnins
– There were ~33K cluster turnins that were accepted
– Many more full-chip turnins, plus turnins that GK rejected

• At times the GK pipeline needed to be “actively managed”
(read: unclogged)
– GK by default provides equal opportunity for any turnin
– At times, human intervention is needed

• Cluster->FC turnins were sometimes very painful
– Not a big surprise given the volume of turnins
– Required active management and prioritization for periods of time
– Needed one person who made the calls for FC pipeline

• Uncore consistently had difficulty getting to FC (and/or pulling
back down to cluster)
– Should have split the Uncore into smaller pieces
– Subsequent projects have taken this approach

DASS 200915

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0

100

200

300

400

500

600

700
05

w
w

27
05

w
w

29
05

w
w

31
05

w
w

33
05

w
w

35
05

w
w

37
05

w
w

39
05

w
w

41
05

w
w

43
05

w
w

45
05

w
w

47
05

w
w

49
05

w
w

51
05

w
w

53
06

w
w

02
06

w
w

04
06

w
w

06
06

w
w

08
06

w
w

10
06

w
w

12
06

w
w

14
06

w
w

16
06

w
w

18
06

w
w

20
06

w
w

22
06

w
w

24
06

w
w

26
06

w
w

28
06

w
w

30
06

w
w

32
06

w
w

34
06

w
w

36
06

w
w

38
06

w
w

40
06

w
w

42
06

w
w

44
06

w
w

46
06

w
w

48
06

w
w

50
06

w
w

52
07

w
w

01
07

w
w

03
07

w
w

05
07

w
w

07
07

w
w

09
07

w
w

11
07

w
w

13
07

w
w

15
07

w
w

17
07

w
w

19
07

w
w

21
07

w
w

23
07

w
w

25
07

w
w

27
07

w
w

29
07

w
w

31
07

w
w

33
07

w
w

35
07

w
w

37
07

w
w

39
07

w
w

41
07

w
w

43
07

w
w

45
07

w
w

47
07

w
w

49
07

w
w

51
07

w
w

53
08

w
w

02
08

w
w

04
08

w
w

06
08

w
w

08
08

w
w

10
08

w
w

12
08

w
w

14
08

w
w

16
08

w
w

18
08

w
w

20
08

w
w

22
08

w
w

24
08

w
w

26
08

w
w

28
08

w
w

30
08

w
w

32
08

w
w

34
08

w
w

36
08

w
w

38
08

w
w

40
08

w
w

42

GateKeeper - Weekly Turnins Processed

deleted rejected released success % trend % Poly. (success %)

ECO Control

A0 tapein

DASS 200916

Microprocessor Validation &
Verification

• “Verification is a quality process used to evaluate whether
or not a product, service, or system complies with a
regulation, specification, or conditions imposed at the start of
a development phase”*

• “Validation is the process of establishing documented
evidence that provides a high degree of assurance that a
product, service, or system accomplishes its intended
requirements”*

• Successful microprocessor verification needs three things:
1. A way to stimulate the device under test (testing)
2. A way to determine if the device produced the intended results

(checking)
3. A way to determine how much of the design has been tested

(coverage)
* Wikipedia

DASS 200917

Nehalem verification environment
• RTL model was MUCH slower than real silicon

– A full-chip simulation with checkers runs at O(Hz) on a ‘best of
breed’ Intel Xeon® compute server

– We used a distributed network of thousands of compute servers to
get tens of billions of simulation cycles per week

– As much dynamic verification as possible was done at cluster
rather than full-chip

• Code churn was a major challenge
– Constant stream of changes due to feature changes/additions, bug

fixes, physical design feedback
– Every model needs to be regressed to prevent changes from

cratering model health
– Automated process developed for continuous model build and

regression

• Automation was applied wherever possible
– Pre- and post-processing for test generation and debug traces
– ‘Triage’ tools to bucket failures based on similar signatures
– Visualization tools to drive coverage analysis and identify holes

DASS 200918

Nehalem RTL code change

DASS 200919

Nehalem weekly simulation
jobs

DASS 200920

Nehalem weekly simulation
cycles

DASS 200921

Nehalem Weekly Bugs

0

20

40

60

80

100

120

140

12
9

12
4

11
9

11
4

10
9

10
4 99 94 89 84 79 74 69 64 59 54 49 44 39 34 29 24 19 14 9 4

Weeks before tapeout

Core Bugs Uncore Bugs

DASS 200922

Cluster-Level Coverage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
06

w
w

52

07
w

w
01

07
w

w
02

07
w

w
03

07
w

w
04

07
w

w
05

07
w

w
06

07
w

w
07

07
w

w
08

07
w

w
09

07
w

w
10

07
w

w
11

07
w

w
12

07
w

w
13

07
w

w
14

07
w

w
15

07
w

w
16

07
w

w
17

07
w

w
18

07
w

w
19

07
w

w
20

07
w

w
21

07
w

w
22

07
w

w
23

07
w

w
24

07
w

w
25

07
w

w
26

07
w

w
27

07
w

w
28

IC
M

%
 (s

ol
id

 d
on

e
/ d

ot
te

d
no

t d
on

e)

FE OOO MEU FULLCHIP FE OOO MEU FULLCHIP Cov % (Core) Goal
-- NHM VTM B

DASS 200923

Verification results

From Jim Brayton, Nehalem Design Manager, at 6:53 a.m. on 9/1/2007:

“I am thrilled to announce that the Nehalem/Tylersburg Platform has
successfully booted DOS, Windows, and Linux on A-0 silicon!

First silicon arrived Monday WW35.1 @ 2:57 p.m., with this significant
milestone completed Saturday WW35.6 @ 2:10 a.m.

This marks a historic moment in the history of Intel: a brand new native
quad-core CPU, chipset, QPI Interconnect and an integrated DDR3

memory controller, all working together in concert, 4 days and 13 hours
from receiving first silicon.

Congratulations to all the teams who have helped us reach this
monumental milestone! Take a moment to cherish this proud moment.

Onward to PRQ!”

	Simulation-driven verification�Design Automation Summer School, 2009�
	Agenda
	Microprocessor Design Scope
	What is Nehalem?
	Intel® Core™2 Duo, a.k.a. “Merom”
	Intel® Core™ i7, a.k.a. “Nehalem”
	NHM Core Clusters
	Nehalem RTL - High Level Timeline
	SystemVerilog Motivation
	Nehalem RTL coding strategy
	Sample RTL Dashboard
	RTL Model Health Indicator
	Nehalem RTL model build methodology
	Turnin process
	Slide Number 15
	Microprocessor Validation & Verification
	Nehalem verification environment
	Nehalem RTL code change
	Nehalem weekly simulation jobs
	Nehalem weekly simulation cycles
	Nehalem Weekly Bugs
	Cluster-Level Coverage
	Verification results
	Slide Number 24
	Slide Number 25

