
WIRELESS DISTRIBUTED microsensor net-

works have gained importance in a wide spec-

trum of civil and military applications.1 Advances

in MEMS (microelectromechanical systems)

technology, combined with low-power, low-cost

digital signal processors (DSPs) and radio fre-

quency (RF) circuits have resulted in the feasi-

bility of inexpensive and wireless microsensor

networks. A distributed, self-configuring network

of adaptive sensors has significant benefits. They

can be used to remotely monitor inhospitable

and toxic environments. A large class of benign

environments also requires the deployment of a

large number of sensors such as for intelligent

patient monitoring, object tracking, and assem-

bly line sensing. These networks’ massively dis-

tributed nature provides increased resolution

and fault tolerance compared to a single sensor

node. Several projects that demonstrate the fea-

sibility of sensor networks are underway.2

A wireless microsensor node is typically bat-

tery operated and therefore energy constrained.

To maximize the sensor node’s lifetime after its

deployment, other aspects—including circuits,

architecture, algorithms, and protocols—have

to be energy efficient. Once the system has been

designed, additional energy savings can be

attained by using dynamic power management

(DMP) where the sensor node is shut down if no

events occur.3 Such event-driven power con-

sumption is critical to maximum battery life. In

addition, the node should have a graceful ener-

gy-quality scalability so that the mission lifetime

can be extended if the application demands, at

the cost of sensing accuracy.4 Energy-scalable

algorithms and protocols have been proposed

for these energy-constrained situations.

Sensing applications present a wide range of

requirements in terms of data rates, computa-

tion, and average transmission distance. Proto-

cols and algorithms have to be tuned for each

application. Therefore embedded operating sys-

tems (OSs) and software will be critical for such

microsensor networks because programmabil-

ity will be a necessary requirement. 

We propose an OS-directed power manage-

ment technique to improve the energy effi-

ciency of sensor nodes. DPM is an effective tool

in reducing system power consumption with-

out significantly degrading performance. The

basic idea is to shut down devices when not

needed and wake them up when necessary.

DPM, in general, is not a trivial problem. If the

energy and performance overheads in sleep-

state transition were negligible, then a simple

greedy algorithm that makes the system enter

the deepest sleep state when idling would be

perfect. However, in reality, sleep-state transi-

tioning has the overhead of storing processor

state and turning off power. Waking up also
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takes a finite amount of time. Therefore, imple-

menting the correct policy for sleep-state tran-

sitioning is critical for DPM success.

While shutdown techniques can yield sub-

stantial energy savings in idle system states,

additional energy savings are possible by opti-

mizing the sensor node performance in the

active state. Dynamic voltage scaling (DVS) is

an effective technique for reducing CPU (cen-

tral processing unit) energy.5 Most micro-

processor systems are characterized by a

time-varying computational load. Simply

reducing the operating frequency during peri-

ods of reduced activity results in linear

decreases in power consumption but does not

affect the total energy consumed per task.

Reducing the operating voltage implies greater

critical path delays, which in turn compromis-

es peak performance. 

Significant energy benefits can be achieved

by recognizing that peak performance is not

always required and therefore the processor’s

operating voltage and frequency can be dynam-

ically adapted based on instantaneous pro-

cessing requirement. The goal of DVS is to adapt

the power supply and operating frequency to

match the workload so the visible performance

loss is negligible. The crux of the problem is that

future workloads are often nondeterministic. 

The rate at which DVS is done also has a sig-

nificant bearing on performance and energy. A

low update rate implies greater workload aver-

aging, which results in lower energy. The

update energy and performance cost is also

amortized over a longer time frame. On the

other hand, a low update rate also implies a

greater performance hit since the system will

not respond to a sudden increase in workload. 

We propose a workload prediction strategy

based on adaptive filtering of the past workload

profile and analyze several filtering schemes.

We also define a performance-hit metric, which

we use to judge the efficacy of these schemes.

Previous work evaluated some DVS algorithms

on portable benchmarks.6

System models
The following describes the models and

policies, derived from actual hardware

implementation.

Sensor network and node model
The fundamental idea in distributed-sensor

applications is to incorporate sufficient pro-

cessing power in each node so that they are

self-configuring and adaptive. Figure 1 illus-

trates the basic sensor node architecture. Each

node consists of the embedded sensor, analog-

digital converter, a processor with memory

(which, in our case, is the StrongARM SA-1100

processor), and the RF circuits. Each compo-

nent is controlled by the microoperating system

(µOS) through microdevice drivers. An impor-

tant function of the µOS is to enable power

management. Based on event statistics, the

µOS decides which devices to turn off and on.

Our network essentially consists of η homo-

geneous sensor nodes distributed over rectan-

gular region ρ with dimensions W ×L. Each node

has visibility radius r. Three different communi-

cation models can be used for such a network:

■ direct transmission (every node transmits

directly to the base station),

■ multihop (data is routed through the indi-

vidual nodes toward the base station), and 

■ clustering.
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If the distance between the neighboring sen-

sors is less than the average distance between the

sensors and the user or the base station, trans-

mission power can be saved if the sensors col-

laborate locally. Further, it’s likely that sensors in

local clusters share highly correlated data. Some

of the nodes elect themselves as cluster heads

and the remaining nodes join one of the clusters

based on minimum transmission power criteria.

The cluster head then aggregates and transmits

the data from other cluster nodes. Such applica-

tion-specific network protocols for wireless

microsensor networks have been developed.

They demonstrate that a clustering scheme is an

order of magnitude more energy efficient than a

simple direct transmission scheme.

Power-aware sensor node model
A power-aware sensor node model essen-

tially describes the power consumption in dif-

ferent levels of node sleep state. Every

component in the node can have different

power modes. The StrongARM can be in active,

idle, or sleep mode; the radio can be in trans-

mit, receive, standby, or off mode. Each node

sleep state corresponds to a particular combi-

nation of component power modes. In gener-

al, if there are N components labeled (1, 2, …,

N) each with ki sleep states, the total number of

node sleep states is ∏ki. Every component

power mode has a latency overhead associat-

ed with transitioning to that mode. Therefore

each node sleep mode is characterized by

power consumption and latency overhead.

However, from a practical point of view not all

sleep states are useful.

Table 1 enumerates the component power

modes corresponding to five different useful

sleep states for the sensor node. Each of these

node sleep modes corresponds to an increas-

ingly deeper sleep state and is therefore char-

acterized by an increasing latency and

decreasing power consumption. 

These sleep states are chosen based on actu-

al working conditions of the sensor node; for

example, it does not make sense to have mem-

ory active and everything else completely off.

The design problem is to formulate a policy for

transitioning between states based on observed

events so as to maximize energy efficiency. 

The power-aware sensor model is similar to

the system power model in the Advanced

Configuration and Power Interface (ACPI) stan-

dard.7 An ACPI-compliant system has five global

states. SystemStateS0 (corresponding to the work-

ing state), and SystemStateS1 to SystemStateS4

(corresponding to four different sleep-state lev-

els). The sleep states are differentiated by power

consumed, the overhead required in going to

sleep and the wake-up time. In general, a deeper

sleep state consumes less power and has a longer

wake-up time. Another similar aspect is that in

ACPI the power manager is an OS module.

Event generation model
An event occurs when a sensor node picks

up a signal with power above a predetermined

threshold. For analytical tractability, we assume

that every node has a uniform radius of visibili-

ty, r. In real applications, the terrain might influ-

ence the visible radius. An event can be static

(such as a localized change in temperature/pres-

sure in an environment monitoring application)

or can propagate (such as signals generated by a

moving object in a tracking application). 

In general, events have a characterizable

(possibly nonstationary) distribution in space

and time. We will assume that the temporal
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Table 1. Useful sleep states for the sensor node.

Sleep state StrongARM Memory Sensor, analog-digital converter Radio

s0 Active Active On Tx, Rx

s1 Idle Sleep On Rx

s2 Sleep Sleep On Rx

s3 Sleep Sleep On Off

s4 Sleep Sleep Off Off

Tx=transmit, Rx=receive.



event behavior over the entire sensing region,

R, is a Poisson process with an average event

rate given by λ tot. In addition, we assume that

the spatial distribution of events is character-

ized by an independent probability distribution

given by pXY(x,y). Let pek denote the probabili-

ty that an event is detected by nodek, given the

fact that it occurred in R.

(1)

Let pk(t,n) denote the probability that n

events occur in time t at nodek. Therefore, the

probability of no events occurring in Ck over

threshold interval Tth is given by

(2)

Let Pth,k(t) be the probability that at least one

event occurs in time t at nodek.

(3)

That is, the probability of at least one event

occurring is an exponential distribution char-

acterized by a spatially weighted event arrival

rate λk = λ tot × pek.

In addition, to capture the possibility that an

event might propagate in space, we describe

each event by position vector p =  p0 + ∫ (t)dt.In

this equation, p0 is the coordinates of the event’s

point of origin and v(t) characterizes the

event’s propagation velocity. The point of origin

has a spatial and temporal distribution described

by Equations 1, 2, and 3. We have analyzed three

distinct classes of events: 

■  v(t)=0, the events occur as stationary

points; 

■  v(t) = constant, the event propagates with

fixed velocity (such as a moving vehicle);

and 

■ | v(t)| = constant, the event propagates with

fixed speed but random direction (such as

a random walk).

Sleep-state transition policy
Assume an event is detected by nodek at

some time. The node finishes processing the

event at t1 and the next event occurs at time t2

= t1 + ti. At time t1, nodek decides to transition to

sleep state sk from the active state s0, as shown

in Figure 2. Each state sk has power consump-

tion Pk, and the transition times to it from the

active state and back are given by τd,k and τu,k.

By our definition of node sleep states, Pj > Pi, τd,i

> τd,j, and τu,i > τu,j for any i > j.

We now derive a set of sleep time thresholds

{Tth,k} corresponding to states {sk}, 0 ≤ k ≤ N, for

N sleep states. Transitioning to sleep state sk

from state s0 will result in a net energy loss if idle

time ti < Tth,k because of the transition energy

overhead. This assumes that no productive

work can be done in the transition period,

which is invariably true. For example, when a

processor wakes up, it spends the transition

time waiting for the phase-locked loops to lock,

the clock to stabilize, and the processor context

to be restored. The energy saving from a state

transition to a sleep state is given by

(4)

Such a transition is only justified when Esave,k >
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0. This leads us to the threshold

(5)

This equation implies that the longer the delay

overhead of the transition s0 → sk, the higher

the energy-gain threshold; and the more the dif-

ference between P0 and Pk, the smaller the

threshold. These observations are intuitively

appealing, too.

Table 2 lists the power consumption of the

sensor node described in Figure 1 in its differ-

ent power modes. Since the node consists of

off-the-shelf components, it’s not optimized for

power consumption. However, we will use the

threshold and power consumption numbers

detailed in Table 2 to illustrate the basic idea.

The steady state shutdown algorithm is 

If (eventOccurred() = true) {

processEvent();

++eventCount;

lambda_k =

eventCount/getTimeElapsed();

for( k = 4; k>0; k— ) 

if( computePth( Tth(k) ) <

pth0 ) 

sleepState(k);

}

When nodek detects an event, it awakes and

processes the event (this might involve classifi-

cation, beam forming, transmission, and so

forth). It then updates a global (eventCount)

counter that stores the total number of events

registered by nodek. Average arrival rate λk for

nodek is then updated. This requires use of a

µOS-timer-based system function call,

getTimeElapsed(), which returns the time

elapsed since the node was turned on. The µOS

then tries to put the node into sleep state sk

(starting from deepest state s4 through s1) by

testing the probability of an event occurring in

corresponding sleep time threshold Tth,k against

system defined constant pth,0.

Missed events
All the sleep states except state s4 have the

actual sensor and analog-digital conversion cir-

cuit on. Therefore, if an event is detected (that

is the signal power is above a threshold level)

the node transitions to state s0 and processes

the event. The only overhead involved is laten-

cy (worst-case being about 25 ms). However,

in state s4, the node is almost completely off

and it must decide on its own when to wake up.

In sparse-event sensing systems (for example

vehicle tracking, seismic detection, and so

forth) the interarrival time for events is much

greater than sleep time thresholds Tth,k.

Therefore, the sensor node will invariably enter

the deepest sleep state, s4. 

The processor must watch for prepro-

grammed wake-up signals. The CPU programs

these signal conditions prior to entering the

sleep state. To wake up on its own, the node

must be able to predict the next event’s arrival.

An optimistic prediction might result in the

node waking up unnecessarily; a pessimistic

strategy will result in some events being missed.

Being in state s4 results in missed events, as

the node isn’t alerted. What strategy is used is a

design concern based on the criticalness of the

sensing task. We discuss two possible

approaches:

■ Completely disallow s4. If the sensing task is

critical and events cannot be missed this

state must be disabled.

■ Selectively disallow s4. This technique can

be used if events are spatially distributed

and not all critical. Both random and deter-

ministic approaches can be used. In the

clustering protocol, the cluster heads can

have a disallowed s4 state while normal

nodes can transition to s4. Alternatively, the

scheme that we propose is more homoge-

neous. Every nodek that satisfies the sleep

threshold condition for s4 enters sleep with
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Table 2. Sleep state power, latency, and threshold.

State Pk (mW) tk (ms) Tth,k

s0 1,040 Not applicable Not applicable

s1 400 5 8

s2 270 15 20

s3 200 20 25

s4 10 50 50



a system-defined probability ps4 for a time

duration given by

(6)

Equation 6 describes the steady-state node

behavior. The sleep time is computed so the

probability that no events occur in ts4,k that is

pk(ts4,k,0) = ps4. However, when the sensor net-

work is switched on and no events occur for a

while, λk is zero. To account for this, we dis-

allow transition to state s4 until at least one

event is detected. We can also have an adap-

tive transition probability, ps4, which is zero ini-

tially and increases as events are detected.

The probabilistic state transition is described

in Figure 3.

The advantage of the algorithm is that effi-

cient energy trade-offs can be made with event

detection probability. By increasing ps4, the sys-

tem energy consumption can be reduced while

the probability of missed events will increase

and vice versa. Therefore, our overall shutdown

policy is governed by two implementation-spe-

cific probability parameters, pth,0 and ps4.

Results
We have simulated a η = 1,000 node system

distributed uniformly and randomly over a 100-

m × 100-m area. The visibility radius of each

sensor was assumed to be ρ = 10 m. The sleep

state thresholds and power consumption are

shown in Table 2. Figure 4 shows the overall

spatial node energy consumption over for an

event with a Gaussian spatial distribution cen-

tered around (25, 75). The interarrival process

follows Poisson distribution with λ tot equal 500

per second. It can be seen that node energy

consumption tracks event probability. In the

scenario without power management, there is

uniform energy consumption at all the nodes.

One drawback to the whole scheme is that

is has a finite and small window of interarrival

rates λ tot over which the fine-grained sleep

states can be used. In general, the more differ-

entiated the power states (that is, the greater the

difference in their energy and latency over-

heads) the wider the interarrival time range in

which all sleep states can be used. 

t n ps k
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s4 4

1
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λ
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Figure 5 shows the range of event arrival

rates at a node (λk) over which the states s1 to

s3 are used significantly. If λk < 13.9 sν1, transi-

tion to state s4 is always possible. (That is, the

threshold condition is met. Actual transition, of

course, occurs with probability ps4.) Similarly,

if λk > 86.9 s−1, the node must always be in the

most active state. These limits have been com-

puted using nominal pth,0 = 0.5. Using a higher

value of pth,0 would result in frequent transitions

to the sleep states. If events occur fast enough,

this would result in increased energy dissipa-

tion associated with wake-up energy cost. A

smaller value of pth,0 would result in a pes-

simistic scheme for sleep-state transition and

therefore lesser energy savings.

Figure 6 illustrates the energy-quality trade-

off of our shutdown algorithm. Increasing the

probability of transition to state s4 (that is,

increasing ps4), saves energy at the cost of the

increased possibility of missing an event. Such

a graceful degradation of quality with energy is

highly desirable in energy-constrained systems.

Variable-voltage processing
Different sensing applications will have dif-

ferent processing requirements in the active

state. Having a processor with a fixed through-

put (equal to the worst-case workload) is nec-

essarily power inefficient. Having a custom

digital signal processor for every sensing appli-

cation is not feasible both in terms of cost and

time overhead. However, energy savings can

still be obtained by tuning the processor to

deliver just the required throughput. 

Let’s consider a case where a fixed task has

to be done by a processor every T0 time units.

If the processor can accomplish the task in T <

T0 time units, it will basically be idling for the

remaining T0 − T time units. 

However, if we reduce the operation fre-

quency so the computation can be stretched

over entire time frame T0, we can get linear

energy savings. Additional quadratic energy

savings can be obtained if we reduce the power

supply voltage to the minimum required for

that particular frequency. First-order CMOS

(complimentary metal-oxide semiconductor)

delay models show that gate delays increase

with decreasing supply voltage, while switch-

ing energy decreases quadratically.

(7)

In these equations, VDD is the supply voltage,

and Vt is the gate threshold voltage. 

The time-energy trade-off involved in this

technique is best illustrated by a simple exam-

ple. Suppose a particular task has 75% proces-
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sor utilization when the processor runs at 200

MHz and 1.5 V. By reducing clock frequency to

150 MHz and voltage to 1.2 V (the minimum

required for that frequency), the program’s ener-

gy consumption decreases by approximately

52% without any performance degradation.

Energy workload model
Using simple first-order CMOS delay models,

it has been shown that the energy consumption

per sample is 

(8)

where C is the average switched capacitance

per cycle; Ts is the sample period; fref is the oper-

ating frequency at Vref; r is the normalized pro-

cessing rate, that is, r = f / fref; and V0 = (Vref −
Vt)2/Vref with Vt being the threshold voltage.5 The

normalized workload in a system is equivalent

to the processor utilization. 

The OS scheduler allocates a time slice and

resources to various processes based on their

priorities and state. Often, no process is ready

to run, and the processor simply idles.

Normalized workload w over an interval is sim-

ply the ratio of the non-idle cycles to the total

cycles, that is w = (total_cycles − idle_cycles) /

total_cycles. The workload is always in refer-

ence to the fixed maximum supply and maxi-

mum processing rate. 

In an ideal DVS system, the processing rate

is matched to the workload so there are no idle

cycles, and utilization is maximized. Figure 7

shows the plot of normalized energy compared

with workload (as described by Equation 8) for

an ideal DVS system. The graph’s important

conclusions are that averaging the workload

and processing at the mean workload is more

energy efficient because of the convexity of the

E(r) graph and Jensen’s inequality:E (r) ≥ E( r ).

System model
Figure 8 shows a generic block diagram of the

variable voltage processing system. The task

queue models the various events sources for the

processor. Each of the n sources produces

events at an average rate of λk, (k = 1, 2, … , n).

An OS scheduler manages all these tasks and

decides which process will run. The average rate

at which events arrive at the processor is λ = ∑λk. 

The processor in turn offers a time-varying

processing rate µ(r). The OS kernel measures

the idle cycles and computes normalized work-

load w over some observation frame. The work-

load monitor sets processing rate r based on

current workload w and a history or workloads

from previous observation frames. This rate r in

turn decides the operating voltage V(r) and

operating frequency f(r), which are set for the

next observation slot. The problems addressed

are twofold: What kind of future workload pre-

diction strategy should be used? What is the

duration of the observation slot—that is how

frequently should the processing rate be updat-

ed? The overall objective of a DVS system is to
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minimize energy consumption under a given

performance requirement constraint.

Prediction algorithm
Let the observation period be T. Let w(n)

denote the average normalized workload in the

interval(n−1)T ≤ t ≤ nT. At time t = nT, we must

decide what processing rate to set for the next

slot, that is r(n+1), based on the workload pro-

file history. Our workload prediction for the

(n+1)th interval is 

(9)

where hn(k) is an N-tap, adaptable finite-length

impulse response filter. This FIR filter’s coeffi-

cients are updated in every observation inter-

val based on the error between the processing

rate (which is set using the workload predic-

tion) and the workload’s actual value.

Most processor systems will have a discrete

set of operating frequencies, which implies that

the processing rate levels are quantized. The

StrongARM SA-1100 microprocessor, for

instance, can run at 11 discrete frequencies in

the range of 59 to 206 MHz.8 Discretization of

the processing rate does not significantly

degrade the energy savings from DVS. 

Let us assume that there are L discrete pro-

cessing levels available so

r ∈ RL, RL = (1/L, 2/L, ..., 1) (10)

where we assume uniform quantization inter-

val ∆ = 1/L. We also assume that the minimum

processing rate is 1/L since r = 0 corresponds to

the complete off state. Based on workload pre-

diction wp(n + 1), processing rate r(n + 1) is set

r(n+1) =  w × (n + 1)/∆ × ∆ (11)

is the processing rate set to a level just above

the predicted workload.

Filter type
We have explored four types of filters. We

present the basic motivation behind each filter

and prediction performance of each filter.

Moving average workload (MAW). The sim-

plest filter is a time-invariant moving average fil-

ter, hn(k) = 1/N for all n and k. This filter predicts

the workload in the next slot as the average of

the workload in the previous N slots. The basic

motivation is if the workload is truly an Nth-order

Markov process, averaging will result in work-

load noise being removed by low-pass filtering.

However, this scheme might be too simplistic

and may not work with time-varying workload

statistics. Also, averaging results in high-fre-

quency workload changes are removed and as

a result instantaneous performance hits are high.

Exponential weighted averaging (EWA). This

filter is based on the idea that the effect of a

workload k slots before the current slot lessens

as k increases. That is, this filter gives maximum

weight to the previous slot, lesser weight to the

one before, and so on. The filter coefficients are

hn(k) = a−k, for all n, with a chosen so ∑hn(k) = 1

and is positive. The idea of exponential weight-

ed averaging has been used in the prediction

of idle times for DPM using shutdown tech-

niques in event-driven computation. There, too,

the idea is to assign progressively decreasing

importance to historical data.

Least mean square (LMS). It makes more

sense to have an adaptive filter whose coeffi-

cients are modified based on the prediction

error. Two popular adaptive filtering algorithms

are the LMS and the recursive-least-squares

(RLS) algorithms.9 The LMS adaptive filter is

based on a stochastic gradient algorithm. 

Let the prediction error be we(n) = w(n) −
wp(n), where we(n) denotes the error, and

w(n) denotes the actual workload as opposed

to predicted workload wp(n) from the previous

slot. The filter coefficients are updated accord-

ing to the following rule

hn+1(k) = hn(k) + µwe(n) w(n − k) (12)

where µ is the step size. 

Use of adaptive filters has its advantages and

disadvantages. On the one hand, since they are

self-designing, we do not have to worry about

individual traces. The filters can learn from the

workload history. The obvious problems

involve convergence and stability. Choosing
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the wrong number of coefficients or an inap-

propriate step size can have very undesirable

consequences. RLS adaptive filters differ from

LMS adaptive filters in that they do not employ

gradient descent. Instead, they employ a clever

result from linear algebra. In practice they tend

to converge much faster but they have higher

computational complexity.

Expected workload state (EWS). The last

technique is based on a pure probabilistic for-

mulation and does not involve any filtering. Let

the workload be discrete and quantized like the

processing rate, as shown in Equation 10, with

state 0 also included. The error can be made

arbitrarily small by increasing the number of

levels, L. Let P = [pij], 0 ≤ i ≤ L and 0 ≤ j ≤ L,

denote a square matrix with elements pij such

that pij = Probability{w(r + 1) = wj | w(r) = wi},

where wk represents the kth workload level out

of L + 1 discrete levels. P, therefore, is the state

transition matrix with the property that Σj Pij =

1. The workload is then predicted as

(13)

where w(n) = wi and E[w(n+1)] denotes the

expected value. The probability matrix is updat-

ed in every slot by incorporating the actual

state transition. In general the (r+1)th state can

depend on the previous N states (as in a Nth

order Markov process) and the probabilistic for-

mulation is more elaborate.

Figure 9 shows the prediction performance

in terms of root-mean-square error for the four

different schemes. If the number of taps is small,

the prediction is too noisy. With too many taps,

there is excessive low-pass filtering. Both situa-

tions result in poor prediction. In general, we

found that the LMS adaptive filter outperforms

other techniques and produces the best results

with three taps. Figure 10 shows the adaptive

prediction of the filter for a workload snapshot.

Performance hit function
Performance hit φ(∆t) over time frame ∆t is

defined as the extra time (expressed as a frac-

tion of ∆t) required to process the workload

over time ∆t at the processing rate available in

that time frame.

Let w∆t and  r∆t denote the average work-

load and processing rates over the time frame

of interest ∆t. The extra number of cycles

required (assuming w∆t > r∆t) to process the

entire workload is (w∆t fmax ∆t − r∆t fmax ∆t) where

fmax is the maximum operating frequency.

Therefore the extra amount of time required is

simply (w∆t fmax∆t − r∆t fmax∆t) / r∆t fmax. Therefore,

(14)

Ifw∆t < r ∆t, the performance penalty is nega-

tive. The way to interpret this is that it is a slack
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or idle time. Using this basic definition of per-

formance penalty we define two different met-

rics: φmax
T (∆t) and φavg

T (∆t), the maximum and

average performance hits measured over ∆t

time slots spread over observation period T.

Figure 11 shows the average and maximum

performance hit as a function of update time T

for a moving average prediction using two, six,

and 10 taps. The time slots used were ∆t = 1 s,

and the workload trace was that of the dial-up

server. The results have been averaged over

one hour. While the maximum performance hit

increases as T increases, the average perfor-

mance hit decreases. This is because as T

increases the excess cycles from one time slot

spills over to the next one. If the slot has a neg-

ative performance penalty (that is slack/idle

cycles), then the average performance hit over

the two slots decreases and so on. On the other

hand, as T increases, the chances of an

increased disparity between the workload and

processing rate in a time slot is more and the

maximum performance hit increases.

This leads to a fundamental energy-perfor-

mance trade-off in DVS. Because of the con-

vexity of the E(r) relationship and Jensen’s

inequality, we would always like to work at the

overall average workload. Therefore, over one-

hour, for example, the most energy efficient

DVS solution is one where we set the process-

ing rate equal to the overall average workload.

In other words, increasing T leads to increased

energy efficiency. 

On the other hand, increasing T also increases

the maximum performance hit. In other words,

the system might be sluggish in moments of high

workload. Maximum energy savings for a given

performance hit involves choosing maximum

update time T so the maximum performance hit

is within bounds, as shown in Figure 11.

Optimizing update time and taps
The conclusion that increasing update time

T results in the most energy savings is not com-

pletely true. This would be the case with a per-

fect prediction strategy. In reality, if the update

time is large, the cost of an overestimated rate

is more substantial and the energy savings

decrease. Since we are using discrete process-

ing rates (in all our simulations the number of

processing rate levels is set to 10 unless other-

wise stated), and we round off the rate to the

next higher quantity, using larger update times

results in higher overestimation cost.

A similar argument holds for number of taps

N. A very small N implies that the workload pre-

diction is very noisy, and the energy cost high

because of widely fluctuating processing rates. A

very large N, on the other hand, implies that the

prediction is heavily low-pass filtered and there-

fore sluggish in responding to rapid workload

changes. This leads to a higher performance

penalty. Figure 12 shows the relative energy plot

(normalized to the no-DVS case) for the dial-up

server trace. The period of observation was one

hour. The energy savings showed a 13% variation

based on which N and T were chosen. Again, the

filter was the average moving type.

Results
Table 3 summarizes our key results. We have

used one-hour workload traces from three dif-

ferent processors over different times of day.

The energy savings ratio (ESR) is defined as the

ratio of the energy consumption with no DVS

to the energy consumption with DVS. Maxi-

mum savings occur when we set the processing

rate equal to the average workload over the

entire period. This is shown in the maximum

ESR column and we can see that energy sav-

ings from a factor of two to a few 100 s is possi-
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ble depending on workload statistics. Maxi-

mum savings is not possible for two reasons:

The maximum performance hit increases as the

average duration is increased, and it is impos-

sible to know the average workload over the

stipulated period beforehand. The filters have

N = 3 taps and update time T = 5 s, based on our

previous discussion and experiments. 

The perfect column shows the ESR for the

case where we had a perfect predictor for the

next observation slot. ESR maximum / ESR per-

fect reflects the factor by which energy savings

is reduced because of update every T seconds. 

The actual column shows the ESR obtained

by the various filters. In almost all our experi-

ments the LMS filter gave the best energy sav-

ings. The last two columns are the average and

maximum performance hits. The average per-

formance hit is around 10% while the maxi-

mum performance hit is about 40%.

Finally, the effect of processing-level quanti-

zation is shown in Figure 13. As the number of
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Table 3. DVS energy savings ratio (Eno DVS/EDVS), for N = 3 and T = 5 s.

   Energy savings ratio (ESR)                    ESR comparison               φavg φmax

Trace Filter Maximum Perfect Actual Maximum/perfect Perfect/actual (%) (%)

Dial-up 

server MAW 2.9 2.4 2.2 1.2 1.10 10.6 34.8

EWS 2.1 1.11 10.8 36.3

EWA 2.2 1.09 10.6 35.4

LMS 2.3 1.03 14.7 43.1

File 

server MAW 76.7 23.5 16.7 3.3 1.41 12.6 42.8

EWS 15.7 1.50 7.4 33.8

EWA 16.7 1.41 9.2 37.4

LMS 19.6 1.20 14.1 47.7

User 

workstation MAW 445.9 275.2 52.7 1.6 5.22 3.6 35.3

EWS 59.5 4.63 3.8 35.1

EWA 52.1 5.28 3.7 35.6

LMS 53.0 5.19 3.9 36.0
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Figure 12. Average and maximum performance hits.
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discrete levels, L, increases, the ESR gets closer

to the perfect-prediction case. For L = 10 (as avail-

able in the StrongARM SA-1100) the ESR degra-

dation due to quantization noise is less than 10%.

AT PRESENT version II of the µAMPS sensor

node has been implemented. We have ported

a real-time operating system, eCOS, to run on

the StrongARM processor. The OS supports

dynamic voltage and frequency scaling and we

are working on drivers that will allow hierar-

chical shutdown. The node has a very compact

form factor.

Subsequent versions of the µAMPS sensor

node will use a system-on-ship approach with an

RF front end also built on the chip. Based on

experiments with version II, we will add or

remove functionality as needed. The StrongARM

processor will be replaced with a dedicated DSP

type architecture tuned for programmable sens-

ing applications. The power consumption of

such a node will be at least 3-4 orders of magni-

ture lower than the current version and will have

the capability to run from ambient energy har-

vested from the sensing environment itself. ■
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