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Abstract We provide an in-depth study of applying wireless sensor networks (WSNs) to
real-world habitat monitoring. A set of system design requirements were devel-
oped that cover the hardware design of the nodes, the sensor network software,
protective enclosures, and system architecture to meet the requirements of biol-
ogists. In the summer of 2002, 43 nodes were deployed on a small island off the
coast of Maine streaming useful live data onto the web. Although researchers
anticipate some challenges arising in real-world deployments of WSNs, many
problems can only be discovered through experience. We present a set of ex-
periences from a four month long deployment on a remote island. We analyze
the environmental and node health data to evaluate system performance. The
close integration of WSNs with their environment provides environmental data
at densities previously impossible. We show that the sensor data is also useful
for predicting system operation and network failures. Based on over one million
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data readings, we analyze the node and network design and develop network
reliability profiles and failure models.

Keywords: Wireless Sensor Networks, Habitat Monitoring, Microclimate Monitoring, Net-
work Architecture, Long-Lived Systems

18.1 Introduction
The emergence of wireless sensor networks has enabled new classes of ap-

plications that benefit a large number of fields. Wireless sensor networks have
been used for fine-grain distributed control [27], inventory and supply-chain
management [25], and environmental and habitat monitoring [22].

Habitat and environmental monitoring represent a class of sensor network
applications with enormous potential benefits for scientific communities. In-
strumenting the environment with numerous networked sensors can enable
long-term data collection at scales and resolutions that are difficult, if not
impossible, to obtain otherwise. A sensor’s intimate connection with its im-
mediate physical environment allows each sensor to provide localized mea-
surements and detailed information that is hard to obtain through traditional
instrumentation. The integration of local processing and storage allows sensor
nodes to perform complex filtering and triggering functions, as well as to apply
application-specific or sensor-specific aggregation, filtering, and compression
algorithms. The ability to communicate not only allows sensor data and con-
trol information to be communicated across the network of nodes, but nodes to
cooperate in performing more complex tasks. Many sensor network services
are useful for habitat monitoring: localization [4], tracking [7, 18, 20], data
aggregation [13, 19, 21], and, of course, energy-efficient multihop routing [9,
17, 32]. Ultimately the data collected needs to be meaningful to disciplinary
scientists, so sensor design [24] and in-the-field calibration systems are cru-
cial [5, 31]. Since such applications need to run unattended, diagnostic and
monitoring tools are essential [33].

In order to deploy dense wireless sensor networks capable of recording, stor-
ing, and transmitting microhabitat data, a complete system composed of com-
munication protocols, sampling mechanisms, and power management must be
developed. We let the application drive the system design agenda. Taking this
approach separates actual problems from potential ones, and relevant issues
from irrelevant ones from a biological perspective. The application-driven con-
text helps to differentiate problems with simple, concrete solutions from open
research areas.

Our goal is to develop an effective sensor network architecture for the do-
main of monitoring applications, not just one particular instance. Collaboration
with scientists in other fields helps to define the broader application space, as
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well as specific application requirements, allows field testing of experimental
systems, and offers objective evaluations of sensor network technologies. The
impact of sensor networks for habitat and environmental monitoring will be
measured by their ability to enable new applications and produce new, other-
wise unattainable, results.

Few studies have been performed using wireless sensor networks in long-
term field applications. During the summer of 2002, we deployed an outdoor
habitat monitoring application that ran unattended for four months. Outdoor
applications present an additional set of challenges not seen in indoor experi-
ments. While we made many simplifying assumptions and engineered out the
need for many complex services, we were able to collect a large set of environ-
mental and node diagnostic data. Even though the collected data was not high
enough quality to make scientific conclusions, the fidelity of the sensor data
yields important observations about sensor network behavior. The data anal-
ysis discussed in this paper yields many insights applicable to most wireless
sensor deployments. We examine traditional quality of service metrics such as
packet loss; however, the sensor data combined with network metrics provide
a deeper understanding of failure modes including those caused by the sensor
node’s close integration with its environment. We anticipate that with system
evolution comes higher fidelity sensor readings that will give researchers an
even better better understanding of sensor network behavior.

In the following sections, we explain the need for wireless sensor networks
for habitat monitoring in Section 18.2. The network architecture for data flow
in a habitat monitoring deployment is presented in Section 18.3. We describe
the WSN application in Section 18.4 and analyze the network behaviors de-
duced from sensor data on a network and per-node level in Section 18.5. Sec-
tion 18.6 contains related work and Section 18.7 concludes.

18.2 Habitat Monitoring
Many research groups have proposed using WSNs for habitat and micro-

climate monitoring. Although there are many interesting research problems
in sensor networks, computer scientists must work closely with biologists to
create a system that produces useful data while leveraging sensor network re-
search for robustness and predictable operation. In this section, we examine the
biological need for sensor networks and the requirements that sensor networks
must meet to collect useful data for life scientists.

18.2.1 The Case For Wireless Sensor Networks
Life scientists are interested in attaining data about an environment with

high fidelity. They typically use sensors on probes and instrument as much
of the area of interest as possible; however, densely instrumenting any area
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is expensive and involves a maze of cables. Examples of areas life scientists
currently monitor are redwood canopies in forests, vineyard microclimates,
climate and occupancy patterns of seabirds, and animal tracking. With these
applications in mind, we examine the current modes of sensing and introduce
wireless sensor networks as a new method for obtaining environmental and
habitat data at scales and resolutions that were previously impractical.

Traditional data loggers for habitat monitoring are typically large in size
and expensive. They require that intrusive probes be placed in the area of
interest and the corresponding recording and analysis equipment immediately
adjacent. Life scientists typically use these data loggers since they are commer-
cially available, supported, and provide a variety of sensors. Probes included
with data loggers may create a “shadow effect”–a situation that occurs when an
organism alters its behavioral patterns due to an interference in their space or
lifestyle [23]. Instead, biologists argue for the miniaturization of devices that
may be deployed on the surface, in burrows, or in trees. Since interference is
such a large concern, the sensors must be inconspicuous. They should not dis-
rupt the natural processes or behaviors under study [6]. One such data logger
is the Hobo Data Logger [24] from Onset Corporation. Due to size, price, and
organism disturbance, using these systems for fine-grained habitat monitoring
is inappropriate.

Other habitat monitoring studies install one or a few sophisticated weather
stations an “insignificant distance” (as much as tens of meters) from the area
of interest. A major concern with this method is that biologists cannot gauge
whether the weather station actually monitors a different microclimate due to
its distance from the organism under study [12]. Using these readings, bi-
ologists make generalizations through coarse measurements and sparsely de-
ployed weather stations. A revolution for biologists would be the ability to
monitor the environment on the scale of the organism, not on the scale of the
biologist [28].

Life scientists are increasingly concerned about the potential impacts of di-
rect human interaction in monitoring plants and animals in field studies. Dis-
turbance effects are of particular concern in a small island situation where it
may be physically impossible for researchers to avoid impacting an entire pop-
ulation. Islands often serve as refugia for species that cannot adapt to the pres-
ence of terrestrial mammals. In Maine, biologists have shown that even a 15
minute visit to a seabird colony can result in up to 20% mortality among eggs
and chicks in a given breeding year [2]. If the disturbance is repeated, the
entire colony may abandon their breeding site. On Kent Island, Nova Scotia,
researchers found that nesting Leach’s Storm Petrels are likely to abandon their
burrows if disturbed during their first 2 weeks of incubation. Additionally, the
hatching success of petrel eggs was reduced by 56% due to investigator distur-
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bance compared to a control group that was not disturbed for the duration of
their breeding cycle [3].

Sensor networks represent a significant advance over traditional, invasive
methods of monitoring. Small nodes can be deployed prior to the sensitive
period (e.g.,breeding season for animals, plant dormancy period, or when the
ground is frozen for botanical studies). WSNs may be deployed on small islets
where it would be unsafe or unwise to repeatedly attempt field studies. A
key difference between wireless sensor networks and traditional probes or data
loggers is that WSNs permit real-time data access without repeated visits to
sensitive habitats. Probes provide real-time data, but require the researcher to
be present on-site, while data in data loggers is not accessible until the logger
is collected at a point in the future.

Deploying sensor networks is a substantially more economical method for
conducting long-term studies than traditional, personnel-rich methods. It is
also more economical than installing many large data loggers. Currently, field
studies require substantial maintenance in terms of logistics and infrastruc-
ture. Since sensors can be deployed and left, the logistics are reduced to initial
placement and occasional servicing. Wireless sensor network may organize
themselves, store data that may be later retrieved, and notify operates that the
network needs servicing. Sensor networks may greatly increase access to a
wider array of study sites that are often limited by concerns about disturbance
or lack easy access for researchers.

18.2.2 Great Duck Island
Great Duck Island (GDI), located at (44.09N, 68.15W), is a 237 acre island

located 15 km south of Mount Desert Island, Maine. The Nature Conservancy,
the State of Maine, and the College of the Atlantic (COA) hold much of the is-
land in joint tenancy. Great Duck contains approximately 5000 pairs of Leach’s
Storm Petrels, nesting in discrete “patches” within the three major habitat types
(spruce forest, meadow, and mixed forest edge) found on the island [1]. COA
has ongoing field research programs on several remote islands with well es-
tablished on-site infrastructure and logistical support. Seabird researchers at
COA study the Leach’s Storm Petrel on GDI. They are interested in four major
questions [26]:

1 What is the usage pattern of nesting burrows over the 24-72 hour cycle
when one or both members of a breeding pair may alternate incubation
duties with feeding at sea?

2 What environmental changes occur inside the burrow and on the surface
during the course of the seven month breeding season (April-October)?
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3 What is the variation across petrel breeding sites? Which of these condi-
tions yield an optimal microclimate for breeding, incubation, and hatch-
ing?

4 What are the differences in the micro-environments between areas that
contain large numbers of nesting petrels and those areas that do not?

Petrels nest in underground burrows that provide relatively constant condi-
tions in terms of temperature and humidity. Burrows are usually within 2–6 cm
of the surface and range from 40 cm to over one meter in length with an inter-
nal diameter of approximately 6 cm. One sensor node per burrow is sufficient
for data sampling but it must be small enough in size such that the sensor and
petrel can coexist without interfering with the petrel’s activities and does not
obstruct the passage. Burrows occur in discrete “patches” around the island
that may be hundreds of meters from locations that can support network and
power infrastructure. Each patch may contain over 50 burrows; a large number
of these burrows should be populated with sensors. Some should be left unpop-
ulated to evaluate if there are disturbance effects caused by wireless sensors.
Sensors should cover as many petrel burrows as possible.

Above ground, the environmental conditions vary widely, depending on
vegetation type, density, exposure, and location. Humidity readings at a given
point in time will vary with vegetation type; a forested area will have higher
humidity due to moisture retained by trees and an open meadow will have
lower humidity due to direct sunlight and evaporation. Monitoring the envi-
ronment above each burrow, biologists can examine differences between the
above-ground and in-burrow microclimates. Variations in local microclimates
may provide clues to nest site selection and overall fitness.

Overall, the petrel cycle lasts approximately 5 months [16]. The deployed
system must efficiently manage its power consumption through low duty cycle
operation in order to operate for an entire field season. In order to adequately
monitor the habitat, it must be monitored on the spatial scale of the organism
at frequencies that match environmental changes and organism behavior. By
increasing the size of the area monitored and the number of sampling locations,
we can obtain data at resolutions and densities not possible using traditional
methods. Temporally, sensors should collect data at a rate equal or greater
to changing environmental conditions that the organism experiences (on the
order of 5-10 times per hour). Traditional data collection systems calculate
the average, minimum, and maximum over 24 hour periods as well as time
series data. This methodology runs the risk of missing significant but short-
term variations in conditions and presents an overly uniform view of micro-
environmental conditions. Data analysis must be able to capture duration of
events in addition to environmental changes.
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It is unlikely that any one parameter or sensor reading could determine why
petrels choose a specific nesting site. Predictive models will require multiple
measurements of many variables or sensors. These models can then be used
to determine which conditions seabirds prefer. To link organism behavior with
environmental conditions, sensors may monitor micro-environmental condi-
tions (temperature, humidity, pressure, and light levels) and burrow occupancy
(by detecting infrared radiation) [22].

Finally, sensor networks should be run alongside traditional methods to val-
idate and build confidence in the data. The sensors should operate reliably and
predictably.

18.3 Network Architecture
In order to deploy a network that satisfies the requirements of Section 18.2,

we developed a system architecture for habitat monitoring applications. Here,
we describe the architecture, the functionality of individual components, and
the interoperability between components.

The system architecture for habitat monitoring applications is a tiered ar-
chitecture. Samples originate at the lowest level that consists ofsensor nodes.
These nodes perform general purpose computing and networking in addition to
application-specific sensing. Sensor nodes will typically be deployed in dense
sensor patchesthat are widely separated. Each patch encompasses a particular
geographic region of interest. The sensor nodes transmit their data through the
sensor patch to the sensor networkgateway. The gateway is responsible for
transmitting sensor data from thesensor patchthrough a local transit network
to the remotebase stationthat provides WAN connectivity and data logging.
The base station connects to database replicas across the Internet. Finally, the
data is displayed to scientists through any number of user interfaces. Mobile
devices may interact with any of the networks–whether it is used in the field
or across the world connected to a database replica. The full architecture is
depicted in Figure 18.1.

Sensor nodes are small, battery-powered devices are placed in areas of in-
terest. Each sensor node collects environmental data about its immediate sur-
roundings. The sensor node computational module is a programmable unit that
provides computation, storage, and bidirectional communication with other
nodes in the system. It interfaces with analog and digital sensors on the sensor
module, performs basic signal processing (e.g.,simple translations based on
calibration data or threshold filters), and dispatches the data according to the
application’s needs. Compared with traditional data logging systems, it offers
two major advantages: it cancommunicatewith the rest of the system in real
time and can beretaskedin the field. WSNs may coordinate to deliver data and
be reprogrammed with new functionality.
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Figure 18.1. System architecture for habitat monitoring

Individual sensor nodes communicate and coordinate with one another in
the same geographic region. These nodes make up asensor patch. The sensor
patches are typically small in size (tens of meters in diameter); in our applica-
tion they correspond to petrel nesting patches.

Using a multi-tiered network is particularly advantageous since each habi-
tat involves monitoring several particularly interesting areas, each with its own
dedicated sensor patch. Each sensor patch is equipped with agateway. The
gateway provides a bridge that connects the sensor network to the base station
through a transit network. Since each gateway may include more infrastructure
(e.g.,solar panels, energy harvesting, and large capacity batteries), it enables
deployment of small devices with low capacity batteries. By relying on the
gateway, sensor nodes may extend their lifetime through extremely low duty
cycles. In addition to providing connectivity to the base station, the gateway
may coordinate the activity within the sensor patch or provide additional com-
putation and storage. In our application, a single repeater node served as the
transit network gateway. It retransmitted messages to the base station using a
high gain Yagi antenna over a 350 meter link. The repeater node ran at a 100%
duty cycle powered by a solar cell and rechargeable battery.
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Ultimately, data from each sensor needs to be propagated to the Internet.
The propagated data may be raw, filtered, or processed. Bringing direct wide
area connectivity to each sensor patch is not feasible–the equipment is too
costly, it requires too much power and the installation of all required equipment
is quite intrusive to the habitat. Instead, the wide area connectivity is brought
to abase station, where adequate power and housing for the equipment is pro-
vided. The base station communicates with the sensor patches using the transit
network. To provide data to remote end-users, thebase stationincludes wide
area network (WAN) connectivity and persistent data storage for the collection
of sensor patches. Since many habitats of interest are quite remote, we chose
to use a two-way satellite connection to connect to the Internet.

Data reporting in our architecture may occur both spatially and temporally.
In order to meet the network lifetime requirements, nodes may operate in a
phased manner. Nodes primarily sleep; periodically, they wake, sample, per-
form necessary calculations, and send readings through the network Data may
travel spatially through various routes in the sensor patch, transit network, or
wide area network; it is then routed over long distances to the wide area infras-
tructure.

Users interact with the sensor network data in two ways. Remote users ac-
cess the replica of the base station database (in the degenerate case they interact
with the database directly). This approach allows for easy integration with data
analysis and mining tools, while masking the potential wide area disconnec-
tions with the base stations. Remote control of the network is also provided
through the database interface. Although this control interface is is sufficient
for remote users, on-site users may often require a more direct interaction with
the network. Small, PDA-sized devices enables such interaction. The data
store replicates content across the WAN and its efficiency is integral to live
data streams and large analyses.

18.4 Application Implementation
In the summer of 2002, we deployed a 43 node sensor network for habi-

tat monitoring on Great Duck Island. Implementation and deployment of an
experimental wireless sensor network platform requires engineering the ap-
plication software, hardware, and electromechanical design. We anticipated
contingencies and feasible remedies for the electromechanical, system, and
networking issues in the design of the application that are discussed in this
section.

18.4.1 Application Software
Our approach was to simplify the system design wherever possible, to mini-

mize engineering and development efforts, to leverage existing sensor network
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Figure 18.2 Mica mote
(left) with Mica Weather
Board sensor board for habitat
monitoring includes sensors
for light, temperature, hu-
midity, pressure, and infrared
radiation.

platforms and components, and to use off-the-shelf products where appropri-
ate to focus attention upon the sensor network itself. We chose to use the
Mica mote developed by UC Berkeley [14] running the TinyOS operating sys-
tem [15].

In order to evaluate a long term deployment of a wireless sensor network,
we installed each node with a simple periodic application that meets the bi-
ologists requirements defined in Section 18.2. Every 70 seconds, each node
sampled each of its sensors and transmitted the data in a single 36 byte data
packet. Packets were timestamped with 32-bit sequence numbers kept in flash
memory. All motes with sensor boards were transmit-only devices that pe-
riodically sampled their sensors, transmitted their readings, and entered their
lowest-power state for 70 seconds. We relied on the underlying carrier sense
MAC layer protocol in TinyOS to prevent against packet collisions.

18.4.2 Sensor board design
To monitor petrel burrows below ground and the microclimate above the

burrow, we designed a specialized sensor board called the Mica Weather Board.
Environmental conditions are measured with a photoresistive sensor, digital
temperature sensor, capacitive humidity sensor, and digital pressure sensor. To
monitor burrow occupancy, we chose a passive infrared detector (thermopile)
because of its low power requirements. Since it is passive, it does not inter-
fere with the burrow environment. Although a variety of surface mount and
probe-based sensors were available, we decided to use surface mount compo-
nents because they were smaller and operated at lower voltages. Although a
probe-based approach has the potential to allow precise co-location of a sensor
with its phenomenon, the probes typically operated at higher voltages and cur-
rents than equivalent surface mount parts. Probes are more invasive since they
puncture the walls of a burrow. We designed and deployed a sensor board with
all of the sensors integrated into a single package. A single package permitted
miniaturization of the node to fit in the size-constrained petrel burrow.
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Even if this initial generation of devices were larger than a highly engi-
neered, application-specific platform would be, we wanted to push in the di-
rection of miniaturized wireless sensors. All sensors resided on a single sensor
board, one per mote. This preserved the form factor of the underlying mote
platform and limited the circuit board design and simplified manufacturing.
The board includes a separate 12-bit ADC to maximize sensor resolution iso-
late analog noise, and allow concurrent sensor processing and node operation.
One consequence of a single integrated design is the amount of shared fate be-
tween sensors; a failure of one sensor is likely affects all other sensors. The
design did not consider fault isolation among independent sensors or control-
ling the effects of malfunctioning sensors on shared hardware resources.

18.4.3 Packaging strategy
The environmental conditions on offshore islands are diverse. In-situ instru-

mentation experiences rain, often with pH readings of less than 3, dew, dense
fog, and flooding. They could experience direct sunlight and extremes of warm
and cold temperatures. Waterproofing was a primary packaging concern.

Sealing electronics from the environment could be done with conformal
coating, packaging, or combinations of the two. Since our sensors were surface
mounted and needed to be exposed to the environment, we sealed the entire
mote with a parylene sealant. Through successful tests in our lab, we con-
cluded the mote’s electronics could be protected from the environment with
sealant. A case provides mechanical protection but would not be required for
waterproofing. Our survey of off-the-shelf enclosures found many that were
slightly too small for the mote or too large for tunnels. Custom enclosures
were too costly. Above ground motes were placed in ventilated acrylic enclo-
sures. In burrows, motes were deployed without enclosures.

Of primary concern for the packaging was the effect it has on RF propaga-
tion. We decided to use board-mounted miniature whip antennas. There were
significant questions about RF propagation from motes inside burrows, above
ground on the surface, within inches of granite rocks, tree roots and low, dense
vegetation. When we deployed the motes we noted the ground substrate, dis-
tance into the burrow, and geographic location of each mote to assist in the
analysis of the RF propagation for each mote.

18.4.4 Experiment goals
Since our deployment was the first long term use of the mote platform, we

were interested in how the system would perform. Specifically, this deploy-
ment served to prove the feasibility of using a miniature low-power wireless
sensor network for long term deployments where robustness and predictable
operation are essential. We set out to evaluate the efficacy of the sealant, the
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Figure 18.3. Acrylic enclosures used at different outdoor applications.

radio performance in and out of burrows, the usefulness of the data for biolo-
gists including the occupancy detector, and the system and network longevity.
Since each hardware and software component was relatively simple, our goal
was to draw significant conclusions about the behavior of wireless sensor net-
works from the resulting data.

After 123 days of the experiment, we logged over 1.1 million readings. Dur-
ing this period, we noticed abnormal operation among the node population.
Some nodes produced sensor readings out of their operating range, others had
erratic packet delivery, and some failed. We sought to understand why these
events had occurred. By evaluating these abnormalities, future applications
may be designed to isolate problems and provide notifications or perform self-
healing. The next section analyzes node operation and identifies the causes of
abnormal behavior.

18.5 System Analysis
Before the disciplinary scientists perform the analysis of the sensor data, we

need convincing evidence that the sensor network is functioning correctly. We
look at the performance of the network as a whole in Section 18.5.1 as well as
the failures experienced by individual nodes in Section 18.5.2.

In order to look more closely at the network and node operation, we would
like to introduce you to the node community that operated on Great Duck Is-
land. Shown in Table 18.1, each of the nodes is presented with their node ID
and lifetime in days. Some of the nodes had their batteries replaced and ran for
a second “life”. Of importance is that some of the nodes fell victim to raw hu-
midity readings of zero or significant clock skew. The number of days after the
first sign of either abnormality is referred to as the amount of time on “death
row”. We discuss individual nodes highlighted in Table 18.1 throughout our
analysis in this section and explain their behavior.
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Table 18.1. The node population and their properties. RH indicates whether the node expe-
rienced raw relative humidity readings of zero during its lifetime (if RH=1). CS indicates that
the node experienced excessive clock skew (if CS=1). After the first sign of abnormal humidity
readings or clock skew, the node’s remaining lifetime (in days) is given in the “death row” (DR)
column. The lifetime (in days) of each node on their first and second set of batteries is listed.
The total RH and CS counts how many nodes exhibited those properties. The total DR and life-
time is the average time on “death row” and average lifetime over the entire population. Shaded
nodes appear in our analysis and graphs.

Node RH CS DR Life 1 Life 2

2 1 1 4 14 -
3 1 1 12 14 -
4 1 1 2 2 -
5 1 0 1 13 -
9 1 1 12 12 -
10 1 0 1 1 -
12 0 0 0 25 -
13 0 0 0 31 40
15 0 0 0 31 40
16 1 0 1 1 -
17 0 1 1 27 -
18 0 1 6 44 -
19 1 1 6 2 -
22 1 0 1 1 -
24 1 0 1 14 35
25 1 1 1 1 -
26 0 0 6 6 -
29 0 1 0 56 66
30 0 1 0 51 28
32 1 1 1 44 -
35 0 0 0 54 33
38 0 0 0 35 -

Node RH CS DR Life 1 Life 2

39 0 0 41 44 -
40 1 0 6 6 -
41 1 1 60 67 -
42 0 1 1 6 -
43 1 1 11 12 -
44 1 1 1 1 -
45 0 0 11 13 -
46 1 1 7 67 -
47 0 0 0 16 -
48 1 1 12 16 -
49 1 1 1 1 -
50 1 1 8 8 -
51 1 1 2 2 -
52 1 1 5 6 -
53 0 0 2 8 -
54 1 1 2 4 -
55 0 0 1 54 -
57 0 1 0 67 -
58 1 1 6 6 -
59 1 1 2 2 -
90 1 1 1 1 -

Total 26 26 5.5 20.7 -

18.5.1 Network Analysis
We need evaluate the behavior of the sensor network to establish convinc-

ing evidence that the system is operating correctly. Our application was im-
plemented as a single hop network, however the behavior in a single hop is
equivalent to what occurs in any WSN radio cell. We begin by examining
WSN operation and its performance over time in order to evaluate network
cell characteristics.

Packet loss. A primary metric of network performance is packet loss in
the network over time. Packet loss is a quality-of-service metric that indicates
the effective end-to-end application throughput [8]. The average daily packet
delivery is shown in Figure 18.4. Two features of the packet delivery plot de-



14 Polastre et. al.

Jul Aug Sep Oct Nov Dec
0

10
20
30
40
50
60
70
80
90

100

M
ea

n 
pa

ck
et

 d
el

iv
er

y 
ra

te
 (%

)
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0 5 10 15 20 25
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

Missing packets per time slot

Actual packet loss
I.I.D. packet loss

Figure 18.5. Distribution of packet
losses in a time slot. Statistically, the
losses are not independently distributed.

mand explanation: (1) why was the initial loss rate high and (2) why does the
network improve with time? Note that the size of the sensor network is declin-
ing over time due to node failures. Either motes with poor packet reception die
quicker or the radio channel experiences less contention and packet collisions
as the number of nodes decreases. To identify the cause, we examine whether
a packet loss at a particular node is dependent on losses from other nodes.

The periodic nature of the application allows us to assign virtual time slots
to each data packet corresponding with a particular sequence number from
each node. After splitting the data into time slices, we can analyze patterns of
loss within each time slot. Figure 18.6 shows packet loss patterns within the
network during the first week of August 2002. A black line in a slot indicates
that a packet expected to arrive was lost, a white line means a packet was suc-
cessfully received. If all packet loss was distributed independently, the graph
would contain a random placement of black and white bars appearing as a gray
square. We note that 23 nodes do not start to transmit until the morning of Au-
gust 6; that reflects the additional mote deployment that day. Visual inspection
reveals patterns of loss: several black horizontal lines emerge, spanning almost
all nodes,e.g.,midday on August 6, 7, and 8. Looking closer at the packet loss
on August 7, we note it is the only time in the sample window when motes
45 and 49 transmit packets successfully; however, heavy packet loss occurs at
most other nodes. Sequence numbers received from these sensors reveal they
transmitted data during every sample period since they were deployed even
though those packets were not received.

More systematically, Figure 18.5 compares the empirical distribution of
packet loss in a slot to an independent distribution. The hypothesis that the
two distributions are the same is rejected by both parametric (χ2 test yields
108) and non-parametric techniques (rank test rejects it with 99% confidence).
The empirical distribution appears a superposition of two Gaussian functions:
this is not particularly surprising, since we record packet loss at the end of the
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path (recall network architecture, Section 18.4). This loss is a combination of
potential losses along two hops in the network. Additionally, packets share the
channel that varies with the environmental conditions, and sensor nodes are
likely to have similar battery levels. Finally, there is a possibility of packet
collisions at the relay nodes.

Network dynamics. Given that the expected network utilization is
very low (less than 5%) we would not expect collisions to play a significant
role. Conversely, the behavior of motes 45 and 49 implies otherwise: their
packets are only received when most packets from other nodes are lost. Such
behavior is possible in a periodic application: in the absence of any backoff,
the nodes will collide repeatedly. In our application, the backoff was provided
by the CSMA MAC layer. If the MAC worked as expected, each node would
backoff until it found a clear slot; at that point, we would expect the channel
to be clear. Clock skew and channel variations might force a slot reallocation,
but such behavior should be infrequent.

Looking at the timestamps of the received packets, we can compute the
phase of each node, relative to the 70 second sampling period. Figure 18.7
plots the phase of selected nodes from Figure 18.6. The slope of the phase
corresponds to a drift as a percentage of the 70-second cycle. In the absence
of clock drift and MAC delays, each mote would always occupy the same time
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Figure 18.7. Packet phase as a function of time; the right figure shows the detail of the region
between the lines in the left figure.

slot cycle and would appear as a horizontal line in the graph. A 5 ppm oscillator
drift would result in gently sloped lines, advancing or retreating by 1 second
every 2.3 days. In this representation, the potential for collisions exists only at
the intersections of the lines.

Several nodes display the expected characteristics: motes 13, 18, and 55
hold their phase fairly constant for different periods, ranging from a few hours
to a few days. Other nodes,e.g.,15 and 17 appear to delay the phase, losing
70 seconds every 2 days. The delay can come only from the MAC layer; on
average they lose 28 msec, which corresponds to a single packet MAC backoff.
We hypothesize that this is a result of the RF automatic gain control circuits:
in the RF silence of the island, the node may adjust the gain such that it detects
radio noise and interprets it as a packet. Correcting this problem may be done
by incorporating a signal strength meter into the MAC that uses a combina-
tion of digital radio output and analog signal strength. This additional backoff
seems to capture otherwise stable nodes:e.g.,mote 55 on August 9 transmits
in a fixed phase until it comes close to the phase of 15 and 17. At that point,
mote 55 starts backing off before every transmission. This may be caused by
implicit synchronization between nodes caused by the transit network.

We note that potential for collisions does exist: the phases of different nodes
do cross on several occasions. When the phases collide, the nodes back off as
expected,e.g.,mote 55 on August 9 backs off to allow 17 to transmit. Next
we turn to motes 45 and 49 from Figure 18.6. Mote 45 can collide with motes
13 and 15; collisions with other nodes, on the other hand, seem impossible. In
contrast, mote 49, does not display any potential for collisions; instead it shows
a very rapid phase change. Such behavior can be explained either though a
clock drift, or through the misinterpretation of the carrier sense (e.g.,a mote
determines it needs to wait a few seconds to acquire a channel). We associate
such behavior with faulty nodes, and return to it in Section 18.5.2.



Analysis of Wireless Sensor Networks for Habitat Monitoring 17

18.5.2 Node Analysis
Nodes in outdoor WSNs are exposed to closely monitor and sense their en-

vironment. Their performance and reliability depend on a number of environ-
mental factors. Fortunately, the nodes have a local knowledge of these factors,
and they may exploit that knowledge to adjust their operation. Appropriate
notifications from the system would allow the end user to pro-actively fix the
WSN. Ideally, the network could request proactive maintenance, or self-heal.
We examine the link between sensor and node performance. Although the par-
ticular analysis is specific to this deployment, we believe that other systems
will be benefit from similar analyses: identifying outliers or loss of expected
sensing patterns, across time, space or sensing modality. Additionally, since
battery state is an important part of a node’s self-monitoring capability [33],
we also examine battery voltage readings to analyze the performance of our
power management implementation.

Sensor analysis. The suite of sensors on each node provided analog
light, humidity, digital temperature, pressure, and passive infrared readings.
The sensor board used a separate 12-bit ADC to maximize the resolution and
minimize analog noise. We examine the readings from each sensor.

Light readings. The light sensor used for this application was a photore-
sistor that we had significant experience with in the past. It served as a con-
fidence building tool and ADC test. In an outdoor setting during the day, the
light value saturated at the maximum ADC value, and at night the values were
zero. Knowing the saturation characteristics, not much work was invested in
characterizing its response to known intensities of light. The simplicity of this
sensor combined with ana priori knowledge of the expected response provided
a valuable baseline for establishing the proper functioning of the sensor board.
As expected, the sensors deployed above ground showed periodic patterns of
day and night and burrows showed near to total darkness. Figure 18.8 shows
light and temperature readings and average light and temperature readings dur-
ing the experiment.

The light sensor operated most reliably of the sensors. The only behavior
identifiable as failure was disappearance of diurnal patterns replaced by high
value readings. Such behavior is observed in 7 nodes out of 43, and in 6 cases
it is accompanied by anomalous readings from other sensors, such as a 0oC
temperature or analog humidity values of zero.

Temperature readings. A Maxim 6633 digital temperature sensor pro-
vided the temperature measurements While the sensor’s resolution is 0.0625oC,
in our deployment it only provided a 2oC resolution: the hardware always
supplied readings with the low-order bits zeroed out. The enclosure was IR
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Figure 18.8. Light and temperature time series from the network. From left: outside, inside,
and daily average outside burrows.

transparent to assist the thermopile sensor; consequently, the IR radiation from
direct sunlight would enter the enclosure and heat up the mote. As a result,
temperatures measured inside the enclosures were significantly higher than the
ambient temperatures measured by traditional weather stations. On cloudy
days the temperature readings corresponded closely with the data from nearby
weather buoys operated by NOAA.

Even though motes were coated with parylene, sensor elements were left
exposed to the environment to preserve their sensing ability. In the case of
the temperature sensor, a layer of parylene was permissible. Nevertheless the
sensor failed when it came in direct contact with water. The failure manifested
itself in a persistent reading of 0oC. Of 43 nodes, 22 recorded a faulty tem-
perature reading and 14 of those recorded their first bad reading during storms
on August 6. The failure of temperature sensor is highly correlated with the
failure of the humidity sensor: of 22 failure events, in two cases the humidity
sensor failed first and in two cases the temperature sensor failed first. In re-
maining 18 cases, the two sensors failed simultaneously. In all but two cases,
the sensor did not recover.

Humidity readings. The relative humidity sensor was a capacitive sen-
sor: its capacitance was proportional to the humidity. In the packaging process,
the sensor needed to be exposed; it was masked out during the parylene seal-
ing process, and we relied on the enclosure to provide adequate air circulation
while keeping the sensor dry. Our measurements have shown up to 15% error
in the interchangeability of this sensor across sensor boards. Tests in a con-
trolled environment have shown the sensor produces readings with 5% varia-
tion due to analog noise. Prior to deployment, we did not perform individual
calibration; instead we applied the reference conversion function to convert the
readings into SI units.

In the field, the protection afforded by our enclosure proved to be inade-
quate. When wet, the sensor would create a low-resistance path between the
power supply terminals. Such behavior would manifest itself in either abnor-
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Figure 18.9. Sensor behavior during the rain. Nodes 17 and 29 experience substantial drop
in voltage, while node 55 crashes. When the humidity sensor recovers, the nodes recover.

mally large (more than 150%) or very small humidity readings (raw readings
of 0V). Figure 18.9 shows the humidity and voltage readings as well as the
packet reception rates of selected nodes during both rainy and dry days in
early August. Nodes 17 and 29 experienced a large drop in voltage while
recording an abnormally high humidity readings on Aug 5 and 6. We attribute
the voltage drop to excessive load on the batteries caused by the wet sensor.
Node 18 shows an more severe effect of rain: on Aug 5, it crashes just as the
other sensors register a rise in the humidity readings. Node 18, on the other
hand, seems to be well protected: it registers high humidity readings on Aug 6,
and its voltage and packet delivery rates are not correlated with the humidity
readings. Nodes that experienced the high humidity readings typically recover
when they dried up; nodes with the unusually low readings would fail quickly.
While we do not have a definite explanation for such behavior, we evaluate that
characteristics of the sensor board as a failure indicator below.

Thermopile readings. The data from the thermopile sensor proved diffi-
cult to analyze. The sensor measures two quantities: the ambient temperature
and the infrared radiation incident on the element. The sum of thermopile
and thermistor readings yields the object surface temperature,e.g.,a bird. We
would expect that the temperature readings from the thermistor and from the
infrared temperature sensor would closely track each other most of the time.
By analyzing spikes in the IR readings, we should be able to deduce the bird
activity.

The readings from the thermistor do, in fact, track closely with the temper-
ature readings. Figure 18.10 compares the analog thermistor with the digital
maxim temperature sensor. The readings are closely correlated although dif-
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Figure 18.11. Voltage readings from
node 57. Node 57 operates until the volt-
age falls below 2.3V; at this point the alka-
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ferent on an absolute scale. A best linear fit of the temperature data to the
thermistor readings on a per sensor per day basis yields a mean error of less
than 0.9oC, within the half step resolution of the digital sensor. The best fit
coefficient varies substantially across the nodes.

Assigning biological significance to the infrared data is a difficult task. The
absolute readings often do not fall in the expected range. The data exhibits
a lack of any periodic daily patterns (assuming that burrow occupancy would
exhibit them), and the sensor output appears to settle quickly in one of the
two extreme readings. In the absence of any ground truth information,e.g.,
infrared camera images corresponding to the changes in the IR reading, the
data is inconclusive.

Power Management. As mentioned in Section 18.4, one of the main
challenges was sensor node power management. We evaluate the power man-
agement in the context of the few nodes that did not exhibit other failures.
Motes do not have a direct way of measuring the energy they consumed, in-
stead we use battery voltage as an indirect measure. The analysis of the aggre-
gate population is somewhat complicated by in-the-field battery replacements,
failed voltage indicators, failed sensors and gaps in the data caused by the
database crashes. Only 5 nodes out of 43 have clearly exhausted their orig-
inal battery supply. This limited sample makes it difficult to perform a thor-
ough statistical analysis. Instead we examine the battery voltage of a single
node without other failures. Figure 18.11 shows the battery voltage of a node
as a function of time. The batteries are unable to supply enough current to
power the node once the voltage drops below 2.30V. The boost converter on
the Mica mote is able to extract only 15% more energy from the battery once
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the voltage drops below 2.5V (the lowest operating voltage for the platform
without the voltage regulation). This fell far short of our expectations of be-
ing able to drain the batteries down to 1.6V, which represents an extra 40%
of energy stored in a cell [10]. The periodic, constant power load presented
to the batteries is ill suited to extract the maximum capacity. For this class of
devices, a better solution would use batteries with stable voltage,e.g.,some of
the lithium-based chemistries. We advocate future platforms eliminate the use
of a boost converter.

Node failure indicators. In the course of data analysis we have
identified a number of anomalous behaviors: erroneous sensor readings and
application phase skew. The humidity sensor seemed to be a good indicator of
node health. It exhibited 2 kinds of erroneous behaviors: very high and very
low readings. The high humidity spikes, even though they drained the mote’s
batteries, correlated with recoverable mote crashes. The humidity readings
corresponding to a raw voltage of 0V correlated with permanent mote outage:
55% of the nodes with excessively low humidity readings failed within two
days. In the course of packet phase analysis we noted some motes with slower
than usual clocks. This behavior also correlates well with the node failure:
52% of nodes with such behavior fail within two days.

These behaviors have a very low false positive detection rate: only a single
node exhibiting the low humidity and two nodes exhibiting clock skew (out of
43) exhausted their battery supply instead of failing prematurely. Figure 18.12
compares the longevity of motes that have exhibited either the clock skew or
a faulty humidity sensor against the survival curve of mote population as a
whole. We note that 50% of motes with these behaviors become inoperable
within 4 days.

18.6 Related Work
As described in Section 18.2, traditional data loggers are typically large

and expensive or use intrusive probes. Other habitat monitoring studies install
weather stations an “insignificant distance” from the area of interest and make
coarse generalizations about the environment. Instead, biologists argue for the
miniaturization of devices that may be deployed on the surface, in burrows, or
in trees.

Habitat monitoring for WSNs has been studied by a variety of other re-
search groups. Cerpa et. al. [7] propose a multi-tiered architecture for habitat
monitoring. The architecture focuses primarily on wildlife tracking instead of
habitat monitoring. A PC104 hardware platform was used for the implementa-
tion with future work involving porting the software to motes. Experimentation
using a hybrid PC104 and mote network has been done to analyze acoustic sig-
nals [30], but no long term results or reliability data has been published. Wang



22 Polastre et. al.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (days)

P
ro

ba
bi

lit
y 

of
 fa

ilu
re

Relative humidity
Clock skew
Combination
Total population

Figure 18.12. Cumulative probability of node failure in the presence of clock skew and
anomalous humidity readings compared with the entire population of nodes.

et. al. [29] implement a method to acoustically identify animals using a hybrid
iPaq and mote network.

ZebraNet [18] is a wireless sensor network design for monitoring and track-
ing wildlife. ZebraNet uses nodes significantly larger and heavier than motes.
The architecture is designed for an always mobile, multi-hop wireless network.
In many respects, this design does not fit with monitoring the Leach’s Storm
Petrel at static positions (burrows). ZebraNet, at the time of this writing, has
not yet had a full long-term deployment so there is currently no thorough anal-
ysis of the reliability of their sensor network algorithms and design.

The number of deployed wireless sensor network systems is extremely low.
There is very little data about long term behavior of sensor networks, let alone
wireless networks used for habitat monitoring. The Center for Embedded Net-
work Sensing (CENS) has deployed their Extensible Sensing System [11] at
the James Mountain Reserve in California. Their architecture is similar to ours
with a variety of sensor patches connected via a transit network that is tiered.
Intel Research has recently deployed a network to monitor Redwood canopies
in Northern California and a second network to monitor vineyards in Oregon.
Additionally, we have deployed a second generation multihop habitat monitor-
ing network on Great Duck Island, ME. As of this writing, these systems are
still in their infancy and data is not yet available for analysis.

18.7 Conclusion
We have presented the need for wireless sensor networks for habitat mon-

itoring, the network architecture for realizing the application, and the sensor
network application implementation. We have shown that much care must be
taken when deploying a wireless sensor network for prolonged outdoor oper-
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ation keeping in mind the sensors, packaging, network infrastructure, appli-
cation software. We have analyzed environmental data from one of the first
outdoor deployments of WSNs. While the deployment exhibited very high
node failure rates and failed to produce meaningful data for the disciplinary
sciences, it yielded valuable insight into WSN operation that could not have
been obtained in simulation or in an indoor deployment. We have identified
sensor features that predict a 50% node failure within 4 days. We analyzed the
application-level data to show complex behaviors in low levels of the system,
such as MAC-layer synchronization of nodes.

Sensor networks do not exist in isolation from their environment; they are
embedded within it and greatly affected by it. This work shows that the anoma-
lies in sensor readings can be used to predict node failures with high confi-
dence. Prediction enables pro-active maintenance and node self-maintenance.
This insight will be very important in the development of self-organizing and
self-healing WSNs.

Notes
Data from the wireless sensor network deployment on Great Duck Island

can be view graphically athttp://www.greatduckisland.net . Our
website also includes the raw data for researchers in both computer science
and the biological sciences to download and analyze.

This work was supported by the Intel Research Laboratory at Berkeley,
DARPA grant F33615-01-C1895 (Network Embedded Systems Technology
“NEST”), the National Science Foundation, and the Center for Information
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