
ALP: Efficient Support for All Levels of Parallelism for
Complex Media Applications ∗

Man-Lap Li Ruchira Sasanka Sarita V. Adve Yen-Kuang Chen Eric Debes
University of Illinois at Urbana-Champaign Architecture Research Labs

Department of Computer Science Intel Corporation
{manlapli, sasanka, sadve}@cs.uiuc.edu {yen-kuang.chen, eric.debes}@intel.com

UIUC CS Technical Report UIUCDCS-R-2005-2605, July 2005
(Submitted for Publication)

ABSTRACT
The real-time execution of contemporary complex media
applications requires energy-efficient processing capabili-
ties beyond those of current superscalars. We observe that
the complexity of contemporary media applications requires
support for multiple forms of parallelism, including ILP,
TLP, and various forms of DLP such as sub-word SIMD,
short vectors, and streams. Based on our observations, we
propose an architecture, called ALP, that efficiently inte-
grates all of these forms of parallelism with evolutionary
changes to the programming model and hardware. The
novel part of ALP is a DLP technique calledSIMD vec-
tors and streams (SVectors/SStreams), which is integrated
within a conventional superscalar based CMP/SMT archi-
tecture with sub-word SIMD. This technique lies between
sub-word SIMD and vectors, providing significant benefits
over the former at a lower cost than the latter. Our evalua-
tions show that each form of parallelism supported by ALP
is important. Specifically, SVectors/SStreams are effective –
compared to a system with the other enhancements in ALP,
they give speedups of 1.1X to 3.4X and energy-delay prod-
uct improvements of 1.1X to 5.1X for applications with DLP.
Keywords: SIMD, multimedia, data-level parallelism

1. INTRODUCTION
Real-time complex media applications such as high qual-

ity and high resolution video encoding/conferencing/editing,
face/image/speech recognition, and image synthesis like
ray-tracing are becoming increasingly common on general-
purpose systems such as desktop, laptop, and handheld com-
puters. General-purpose processors (GPPs) are becoming
more popular for these applications because of the growing
realization that programmability is important for this appli-
cation domain as well, due to a wide range of multimedia
standards and proprietary solutions [10]. However, real-time

∗This work is supported in part byw an equipment donation fromAMD,
a gift from Intel Corp., and the National Science Foundationunder Grant
No. CCR-0209198 and EIA-0224453. Ruchira Sasanka was supported by
an Intel graduate fellowship.

execution of such complex media applications needs a con-
siderable amount of processing power that often surpasses
the capabilities of current superscalars. Further, high per-
formance processors are often constrained by power/energy
consumption, especially in the mobile systems where media
applications have become popular.

This paper seeks to develop general-purpose processors
that can meet the performance demands of future media ap-
plications in an energy-efficient way, while also continuing
to work well on other common workloads for desktop, lap-
top, and handheld systems.

Fortunately, most media applications have a lot of par-
allelism that can be exploited for energy-efficient high-
performance designs. The conventional wisdom has been
that this parallelism is in the form of large amounts of data-
level parallelism (DLP). Therefore, many recent architec-
tures have targeted such DLP in various ways; e.g., Imag-
ine [1], SCALE [25], VIRAM [23], and CODE [24]. Most
evaluations of these architectures, however, are based on
small kernels; e.g., speech codecs such as adpcm, color con-
version such as rgb2cmyk, and filters such as fir.

This paper differs from the above works in one or both of
the following important ways. First, we use more complex
applications from our recently released ALPBench bench-
mark suite [27]. These applications are face recognition,
speech recognition, ray tracing, and video encoding and de-
coding. They cover a wide spectrum of media processing, in-
cluding image, speech, graphics, and video processing. Sec-
ond, due to our focus on GPPs, we impose the following
constraints/assumptions on our work: (i) GPPs already ex-
ploit some DLP through sub-word SIMD instructions such
as MMX/SSE (subsequently referred to as SIMD), (ii) GPPs
already exploit instruction- and thread-level parallelism (ILP
and TLP) respectively through superscalar cores and through
chip-multiprocessing (CMP) and simultaneous multithread-
ing (SMT), and (iii) radical changes in the hardware and
programming model are not acceptable for well established
GPPs. Motivated by the properties our applications and the
above constraints/assumptions, we propose a complete ar-
chitecture called ALP.

1

Specifically, we make the following five observations
through our study of complex applications.

All levels of parallelism.As reported by others, we also
find DLP in the kernels of our applications. However, as
also discussed in [27], many large portions of our applica-
tions lack DLP and only exhibit ILP and TLP (e.g., Huffman
coding in MPEG encode and ray-tracing).

Small-grain DLP. Many applications have small-grain
DLP (short vectors) due to the use of packed (SIMD) data
and new intelligent algorithms used to reduce computation.
Packed data reduces the number of elements (words) to
be processed. New intelligent algorithms introduce data-
dependent control, again reducing the granularity of DLP.
For example, older MPEG encoders performed a full mo-
tion search comparing each macroblock from a reference
frame to all macroblocks within a surrounding region in a
previous frame, exposing a large amount of DLP. Recent ad-
vanced algorithms significantly reduce the number of mac-
roblock comparisons by predicting the “best” macroblocks
to compare. This prediction is based on the results of prior
searches, introducing data-dependent control between mac-
roblock computations and reducing the granularity of DLP.

Dense representation and regular access patterns within
vectors. Our applications use dense data structures such
as arrays, which are traversed sequentially or with constant
strides in most cases.

Reductions.DLP computations are often followed by re-
ductions, which are less amenable to conventional DLP tech-
niques (e.g., vectorization) but become significant with the
reduced granularity of DLP. For example, when processing
blocks (macroblocks) in MPEG using 16B packed words,
reductions occur every 8 (16) words of DLP computation.

High memory to computation ratio.DLP loops are often
short with little computation per memory access.

Multiple forms of DLP.Our applications exhibit DLP in
the form of SIMD, short vectors, long streams, and vec-
tors/streams of SIMD.

The above observations motivate supporting many forms
of parallelism including ILP, TLP, and various forms of DLP.
For DLP, they imply that conventional solutions such as ded-
icated multi-lane vector units may be over-kill. For exam-
ple, the Tarantula vector unit has the same area as its scalar
core [12], but will likely be under-utilized for our appli-
cations due to the significant non-DLP parts, short vector
lengths, and frequent reductions. We therefore take an al-
ternative approach in this paper that aims to improve upon
SIMD, but without the addition of a dedicated vector unit.

To effectively supportall levels ofparallelism exhibited by
our applications in the context of current GPP trends, ALP is
based on a GPP with CMP, SMT, and SIMD. The most novel
part of ALP is a technique calledSIMD vectors (SVectors)
andSIMD streams (SStreams)that support larger amounts
of DLP than possible with SIMD. SVectors/SStreams use an
evolutionary programming model and can be implemented
with modest additional hardware support that is tightly inte-

grated within a modern superscalar pipeline.
The programming model for SVectors lies between SIMD

and conventional vectors. SVectors exploit the regular data
access patterns that are the hallmark of DLP by providing
support for conventional vectormemoryinstructions. They
differ from conventional vectors in that computation on vec-
tor data is performed by existing SIMD instructions. Each
architectural SVector register is associated with an internal
hardware register that indicates the “current” element of the
SVector. A SIMD instruction specifying an SVector regis-
ter as an operand accesses and auto-increments the current
element of that register. Thus, a loop containing a SIMD
instruction accessing SVector register V0 marches through
V0, much like a vector instruction. SStreams are similar to
SVectors except that they may have unbounded length.

Our choice of supporting vector/streamdatabut not vec-
tor/streamcomputationexploits a significant part of the ben-
efits of vectors/streams for our applications, but without
need for dedicated vector/stream compute units. Specifi-
cally, ALP largely exploits existing storage and data paths
in conventional superscalar systems and does not need any
new special-purpose structures. ALP reconfigures part of the
L1 data cache to provide a vector register file when needed
(e.g., using reconfigurable cache techniques [2, 30]). Data
paths between this reconfigured register file and SIMD units
already exist, since they are needed to forward data from
cache loads into the computation units. These attributes are
important given our target is GPPs that have traditionally re-
sisted application-specific special-purpose support.

Our evaluations show that our design decisions in ALP
are effective. Relative to a single-thread superscalar with-
out SIMD, for our application suite, ALP achieves aggre-
gate speedups from 5X to 56X, energy reduction from 1.7X
to 17.2X, and energy-delay product (EDP) reduction of 8.4X
to 970.4X. These results include benefits from a 4-way CMP,
2-way SMT, SIMD, and SVectors/SStreams. Our detailed
results show significant benefits from each of these mecha-
nisms. Specifically, for applications with DLP, adding SVec-
tor/SStream support to a system with all the other enhance-
ments in ALP achieves speedups of 1.1X to 3.4X, energy
savings of 1.1X to 1.5X, and an EDP improvement of 1.1X
to 5.1X (harmonic mean of 1.7X). These benefits are par-
ticularly significant given that the system compared already
supports ILP, SIMD, and TLP; SVectors/SStreams require
a relatively small amount of hardware; and the evaluations
consider complete applications.

More broadly, our results show that conventional architec-
tures augmented with evolutionary mechanisms can provide
high performance and energy savings for complex media ap-
plications without resorting to radically different architec-
tures and programming paradigms (e.g., Imagine, SCALE).

2. THE ALP PROGRAMMING MODEL
ALP supports conventional threads for TLP. ILP is not ex-

posed to the programmer since ALP uses an out-of-order su-

2

perscalar core as in current GPPs. The SIMD programming
model roughly emulates Intel’s MMX/SSE2 with multiple
8, 16, 32, or 64 bit sub-words within a 128 bit word and
with eight SIMD logical registers. Most common opcodes
are supported; e.g., packed addition, subtraction, multiplica-
tion, absolute difference, average, logical, and pack/unpack
operations. SIMD operations use the FP register file and FP
units. We next describe the novel SVectors and SStreams
programming model.

2.1 SIMD Vectors (SVectors)

Sub−wrod

Record (128b)

Record 0

Record N

: : : : : : : :

Packed−Word Packed−Word

SVR

Figure 1: An SVR consists of records, a record consists of packed-

words, and a packed-word consists of sub-words.

SVectors are built on three key enhancements to SIMD
support:
1. SIMD Vector Registers (SVRs)hold a sequence of
records, where each record itself is a sequence of (possi-
bly strided)packed-wordsand each packed-word may con-
tain multiple (contiguous) sub-words (see Figure 1). Unlike
a conventional vector, the records of an SVR can be indi-
vidually accessed with an index, called theCurrent Record
Pointer (CRP). An SVR is allocated on demand and can have
a variable length up to a given maximum.

2. SVector allocate (VALLOC) and SVector load (VLD)
instructions. VALLOC and VLD allocate an SVR. VLD
additionally loads a (possibly strided) sequence of packed-
words into the SVR from memory. A slight variation
of VALLOC, called VALLOCst, allocates an SVR whose
records are flushed to memory as they are written. All of
these instructions reset the CRP of the SVR. These are the
only special SVector instructions in the ALP ISA.

3. SIMD instructions capable of accessing SVRs.All
computation on SVRs is performed using SIMD instruc-
tions which can directly access an individual record of an
SVR. Such an instruction specifies an SVR as an operand,
which implicitly accesses the record of the SVR pointed to
by its CRPand also increments the CRP. Thus, a dynamic
sequence of SIMD instructions specifying a given SVR will
access successive records of the SVR.

The ALP ISA supports 8logical SVRs, V0 to V7, with
a record size of 128 bits and sub-word sizes of 8, 16, 32,
and 64 bits. Associated with each logical SVR is an inter-
nal SVR descriptor register. This descriptor register stores
pertinent information about the SVR, including the CRP. A
VLD, VALLOC, or VALLOCst instruction must be used to
explicitly allocate an SVR before any SIMD instruction can
access it. These vector instructions specify the length of the

(1) VLD addr:stride:length ==> V0
(2) VLD addr:stride:length ==> V1
(3) VALLOCst addr:stride:length ==> V2

do for all records in SVector
(4) simd_add V0, V1 ==> simd_reg0
(5) simd_mul simd_reg0, simd_reg1 ==> simd_reg2
(6) simd_sub simd_reg2, #16 ==> V2

Figure 2: SVector code forV 2 = k ∗ (V 0 + V 1) − 16

SVector. The VLD and VALLOCst instructions also spec-
ify the organization of the SVector in memory, including
the base memory address of the SVector, the stride between
two packed-words in the SVector, and the number of packed-
words per 128b record. All of this information is stored in
the associated SVR descriptor.

As an example, Figures 2 gives SVector code for the com-
putationV 2 = k∗(V 0+V 1)−16, where V0, V1, and V2 are
SVRs, andk is a constant, stored in simdreg1. The first two
instructions load the two source SVectors from memory. The
next instruction, VALLOCst, allocates a new SVR for writ-
ing V2. All of these instructions implicitly reset the CRP of
V0, V1, and V2. Next, a loop called aSIMD loop is used
to traverse the records of the SVectors. This loop contains
SIMD instructions that directly read/write the SVRs, access-
ing the record currently pointed by the corresponding CRP
and incrementing this CRP. Each occurrence of instruction
(4), therefore, reads from the next record of V0 and V1 and
each occurrence of instruction (6) writes to the next record
of V2 (and also stores that record to memory, since V2 is
allocated with a VALLOCst).

ALP also provides an instruction, ClearCRP, to reset the
CRP of the specified SVR, and an instruction, MoveRec, to
read a specific SVR record into a SIMD register. ClearCRP
is used if an SVR needs to be read again after it has already
been traversed once with SIMD instructions; e.g., to reuse
a quantization table in MPEG. MoveRec is used to provide
random read access into records; e.g., MoveRec V0, #4⇒
simd reg4 moves record V0[CRP+4] to simdreg4.

ALP requires that an SVector/SStream be traversed se-
quentially. If a record needs to be skipped, it must be read
and discarded to increment the CRP. Alternatively, it is pos-
sible to provide an instruction to increment the CRP by a
given number of records; however, our applications do not
exhibit such a requirement.

ALP does not support scatter/gather operations on SVec-
tors since our applications do not exhibit memory access pat-
terns that would benefit from such operations.

ALP imposes three implementation-driven ISA restric-
tions. The first two arise because ALP implements SVRs
by reconfiguring part of the L1 data cache to allocate SVR
space on demand (Section 3). First, the maximum SVector
length allowed in ALP is related to the L1 size and the num-
ber of SVRs supported. An SVector length of 32 records
(512B) sufficed for our applications and fit comfortably in
our L1 cache (except for FaceRec that uses SStreams). Sec-
ond, because SVRs are allocated on demand, clearly, an

3

SVR cannot be read unless it is explicitly allocated using
a VLD, VALLOC or VALLOCst. Third, the out-of-order
ALP implementation uses conventional renaming to avoid
stalls due to WAR and WAW hazards even for SVectors. A
problem with this is that the renaming occurs at the granu-
larity of the full SVR, at the vector load and allocate instruc-
tions. However, the SIMD writes occur at the granularity of
individual records. We therefore impose a programming re-
striction that requires a VALLOC instruction before a vector
record is overwritten by a SIMD instruction. This instruc-
tion indicates to the hardware that a new renamed copy of
the vector must be allocated for subsequent SIMD writes of
this logical vector. In our applications, writing to SVRs is
infrequent, so this restriction has little impact.

2.2 SIMD Stream (SStreams)
An SStream is essentially a long SVector that (i) exceeds

the maximum length of an SVR, and (ii) must be accessed
strictly sequentially. Conventional vector processors would
require strip-mining for loops containing such long vec-
tors. Instead, we support two special stream load (SLD) and
stream allocate (SALLOC) instructions. These instructions
are similar to VLD and VALLOCst respectively in that they
both allocate the specified SVR. Transparent to the program-
mer, however, the underlying hardware allocates an SVR
size that is smaller than the stream size, and manages it like
a FIFO queue – when the program reads a record from the
head, it is discarded and a new record is automatically ap-
pended to the tail (Section 3.3). An exception incurred by
the load of such a record is handled at the instruction that
will consume the record (Section 3.3).

Like SVectors, computation on SStreams occurs with
SIMD instructions. For instance, to perform the compu-
tation in Figure 2 on two streams and produce a resulting
stream, we need only change VLD to SLD and VALLOCst
to SALLOC. Unlike SVectors, ClearCRP and MoveRec are
not supported for streams since streams are accessed sequen-
tially (to simplify hardware management of the SVR space).

Note that it is possible to replace SStreams with SVectors
by strip mining long loops. However, SVectors may not be as
effective as SStreams for hiding memory latency (Section 6).
This is because SVector loads have to be explicitly scheduled
for maximal latency hiding whereas hardware automatically
schedules record loads well in advance for SStreams.

2.3 SVectors/SStreams vs. SIMD
This section qualitatively describes the performance and

energy benefits of SVectors and SStreams over a pure SIMD
ISA (e.g., MMX or SSE2). Differences from conventional
vectors are discussed in Section 7. Not surprisingly, some
of these benefits are similar to those from conventional vec-
tors [3, 7, 15]. Section 7 elaborates on the differences be-
tween SVectors and conventional vectors.

Performance benefits.
1. Reduced load/store and overhead instructions:SVec-

tors/SStreams reduce instruction count in two ways. First,
VLD/SLD and VALLOCst/SALLOC reduce instruction
count by replacing multiple loads and stores with one in-
struction and eliminating the corresponding address arith-
metic overhead instructions.

Second, SVRs reduce loads/stores and associated over-
head instructions due to increased register locality. The
SVRs increase the register space available that can
be directly accessed by compute instructions, reducing
loads/stores due to register spills. For instance, MPGenc
and MPGdec repeatedly use quantization/coefficient tables–
each table in DCT/IDCT has 32 records. A pure SIMD sys-
tem repeatedly spills and loads entries of these tables from
and into the small number of SIMD registers. With SVRs,
these tables are loaded only once and then directly accessed
by the SIMD compute instructions for as long as they are
needed.

A simple expansion of the SIMD register file is not as ef-
fective because (i) it would need a larger instruction width
to encode the larger register space and (ii) a single large reg-
ister file is energy inefficient and this price would be paid
for all SIMD instructions. SVectors mitigate problem (i) by
exploiting the regular nature of vector data to access them
through an implicit index (the CRP) – this requires encod-
ing only the SVR in the instruction since the CRP is im-
plicit. They mitigate problem (ii) by splitting the register
space into the smaller (and so more energy efficient) SIMD
register file and the larger (less energy efficient) SVR. The
more efficient SIMD file stores temporary values from inter-
mediate computation, making the most effective use of that
space. The less efficient, larger SVR file primarily stores the
large amounts of SVector data directly loaded from memory,
reducing pollution of the SIMD file.

2. Increased exposed parallelism and decreased contention
from reduced instruction count:The reduction of mem-
ory/overhead instruction count in frequently used loops al-
lows more loop iterations to fit in the processor’s instruction
window. This allows hardware to extract more parallelism
and hide latencies of compute instructions. In short loops,
instruction count reduction can be as high as 50% allow-
ing twice as many compute instructions in flight (e.g., in our
face recognition application). Further, the reduction of mem-
ory/overhead instructions also reduces contention to critical
resources like register files and issue ports.

3. Load latency tolerance:SVectors/SStreams allow more
aggressive use of pipelined loads, without limits of regis-
ter pressure. On an SVector/SStream load, the constituent
loads of individual records are pipelined with each other and
with the iterations of the corresponding SIMD computation
loop. Further, SVector/SStream loads that can be predicted
in advance can also be hoisted well before the corresponding
SIMD computation loops.

The above benefit from SVector/SStream loads is similar
to that from using (hardware or software) prefetching, but is

4

more effective than the latter for the following reasons. First,
SVector/SStream loads eliminate many load instructions;
prefetching does not have this benefit and software prefetch-
ing requires additional instructions for the prefetches and
address calculation. Second, SVector/SStream loads only
bring the data required, whereas prefetchers bring entire
cache lines, potentially polluting the cache. Third, prefetch-
ing needs to be carefully scheduled; otherwise, it can evict
useful data. Prefetches into separate buffers have been rec-
ommended to avoid this problem, but such buffers must be
exposed to the cache coherence protocol. Finally, for short
vectors such as 16x16 or 8x8 blocks seen in MPEG, there
may not be enough time for a hardware prefetcher to effec-
tively learn the pattern [16]. Section 6 discusses experimen-
tal results that show that ALP’s benefits exceed well beyond
those for prefetching.

4. L1 cache space and bandwidth savings due to packed
data: SVRs contain packed and aligned data. In contrast,
a cache line loaded to L1 using a SIMD load may contain
useless data.

5. Eliminating record alignment in L1:In many cases, 16-
byte SIMD records are not aligned at 16-byte boundaries in
memory. SIMD instruction sets like MMX/SSE provide spe-
cial unaligned load instructions to load SIMD data startingat
unaligned addresses. Such instructions have higher latency
than normal loads. This latency has to be paid each time
data is loaded from L1. With SVectors/SStreams, the extra
latency for alignment has to be paid only at the time of load-
ing an SVector from L2. Accesses to SVRs do not require
any alignment. Further, since this alignment is done in L2
as part of a vector load that is performed in parallel with the
computation, it is often possible to remove this additional
latency from the critical path.

Energy benefits: SVectors/SStreams provide energy bene-
fits over pure SIMD in the following ways. First, the per-
formance benefits above reduce execution time without a
commensurate increase in power, thereby reducing energy.
Second, an SVR access is more energy efficient than a usual
cache access that it replaces. This is because a load/store
requires accessing the TLB and all tag and data arrays in a
bank. SVR accesses do not perform TLB and tag accesses
at all and access only the cache way where the SVR re-
sides. Finally, it is possible to use the performance benefits
of SVectors/SStreams to save even more energy by running
at a lower frequency and voltage, but we do not exploit this
benefit here.

3. ALP IMPLEMENTATION

3.1 Support for ILP, TLP, and SIMD
ALP’s support for ILP, TLP, and SIMD is conventional.

As in Section 2, the SIMD implementation is roughly based
on that of Intel’s MMX/SSE2. Based on a previous study
on the best combination of ILP and TLP for multimedia ap-

plications [36] and current GPP trends, ALP implements a
CMP with four 4-wide out-of-order cores with two SMT
threads per core. Each core has a private L1 instruction
cache and a private writethrough L1 data cache. All cores
logically share a unified writeback L2 cache. The L1 caches
are kept coherent with a writethrough invalidate protocol.

Upper
FP/SIMD
Partition

Lower
FP/SIMD
Partition

128b 32b

Bank 2 Bank 3

Bank 0

RegFile1

LD

RegFile0

Add/Logic/Mem

Mult/Div

LD

Add/Logic/Mem

Add/Logic

Bank 1
Upper
Integer
Partition

Lower
Integer
Partition

(b)

SQRT

RegFile0

Add/Logic

Mult/Div

Mult

Add/Logic

RegFile1

Add/Logic

Upper FP/SIMD Partition

(c)

Lower Int Partition Lower FP/SIMD Partition

Upper Int Partition

(a)

Figure 3: Integer, FP/SIMD, and L1 partitions/banks. (a)
Overview. The integer and FP/SIMD execution units and regis-
ter files consist of two partitions (upper and lower int or FP/SIMD
execution partitions). The L1 cache consists of four banks.Each
execution partition connects to all the four L1 banks – two 16B
busses connect the upper partitions and another two connectthe
lower ones. This enables each of the two SMT threads to per-
form up to two memory operations per cycle. The shaded regions
in the cache banks show SVRs.(b) Integer execution partitions
(32b wide). Integer units in the upper (lower) partition can only
read/write the upper (lower) partition of the register file,except for
the shaded units which can access both partitions.(c) FP/SIMD ex-
ecution partitions (128b wide).Similar to int, only the shaded units
can access both register file partitions.

To ensure that the baseline core is energy efficient, al-
most all processor resources are partitioned and caches are
banked. Figure 3 illustrates the partitioning/banking for
some resources. When both SMT threads run, each thread
has exclusive access to half the partitions for most resources
(e.g., reorder buffer/retirement logic, load/store queue). No-
table exceptions are the caches, TLBs, and a few execution
units (Figure 3) – these are physically partitioned, but logi-
cally shared among both threads as in a typical SMT design.

The L2 cache is logically shared among all four cores. It
is physically divided into four banks (each with four sub-
banks) connected with a crossbar. Each processor has one L2
bank closest to it called itshome bank. There is a dedicated
connection between a processor’s L1 and its home L2 bank.

Table 1 provides the specific parameters used in our ex-
periments. These choices were made to provide reason-
able size/ports and reduced energy/cycle time for each struc-
ture. The processor frequency is a relatively low 500MHz
(in 90nm technology) since ALP is targeted towards energy
efficiency. We can also interpret this frequency as a low
frequency setting for a higher frequency processor with dy-
namic voltage/frequency scaling. We expect our qualitative
results to hold with a wide range of parameter choices rep-
resentative of modern superscalar GPPs. Section 6.1 reports

5

Parameter Value PER # of
PARTITION Partitions

Phy Int Reg File (32b) 64 regs, 5R/4W 2
Phy FP/SIMD Reg File (128b) 32 regs, 4R/4W 2
Int Issue Queue 2

-# of Entries 24
-# of R/W Ports 3R/4W
-# of Tag R/W Ports 6R/3W
-Max Issue Width 3

FP/SIMD Issue Queue 2
-# of Entries 24
-# of R/W Ports 3R/4W
-# of Tag R/W Ports 5R/3W
-Max Issue Width 3

Load/Store Queue 2
-# of Entries 16
-# of R/W Ports 2R/2W
-Max Issue Width 2

Branch Predictor (gselect) 2KB 2
SVector Descriptors 12 2
Integer ALUs (32b) see Fig. 3 2
FP SIMD Units (128b) see Fig. 3 2
Int SIMD Units (128b) see Fig. 3 2
Reorder Buffer 32 ent, 2R/2W 4

-Retire Width 2
Rename Width 4 per thread 2
Max. Fetch/Decode Width 6 (max 4 per thread)

Parameter Value PER BANK # Banks
L1 I-Cache 8K, 4 Way, 32B line, 1 Port 2
L1 D-Cache 8K, 2 Way, 32B line, 1 Port 4
(Writethrough)
L2 Cache 256K, 16 Way, 64B line, 1 Port 4
(Writeback, unified)

Bandwidth and Contentionless Latencies @ 500MHz
Parameter Value (cycles @ 500MHz)
ALU/Int SIMD Latency 8 (Div-32b), 2 (Mult-32b), 1 (Other)
FP/FP SIMD Latency 12 (Div), 4 (Other)
L1 I-Cache Hit Latency 1
L1 D-Cache/SVR Hit Latency 1
L2 Cache Latency 10 (hit), 42 (miss)
Memory Bandwidth 16 GB/s

Table 1: Base architecture parameters.Note that several parameter

values areper partition or bank.Section 6.1 reports some sensitivity results.

some sensitivity results (limited for space reasons).

3.2 Support for SIMD Vectors

3.2.1 Modifications to the Caches

SVRs are allocated in the L1 data cache (Figure 3 and Fig-
ure 4). Thread 0 allocates even numbered SVectors in bank
0 and odd numbered SVectors in bank 2 of the L1. Thread
1 allocates odd and even SVectors in banks 1 and 3 respec-
tively. This allows each thread to access one record from
each of two SVectors in a cycle. Although each cache bank
has multiple ways, we currently allocate SVRs only in way
0. Reconfiguring lines of a cache bank into an SVR is quite
simple [2, 30]. One additional bit (SVR bit) per cache line
is needed to indicate that it is part of an SVR. Since the L1
cache is writethrough, reconfiguration of a cache line into
part of an SVR simply requires the above bit to be set; no
cache scrubbing is required. An additional decoder to de-
code the SVR location is also not necessary since caches al-
ready have such a decoder to decode the cache line address.

A multiplexer (or an additional input to an existing one) is
necessary to drive the input of the cache line decoder since
now there is one additional input (the CRP of a SIMD in-
struction). The SVector records traveling from an SVR to
execution units use the existing forwarding paths used by
usual SIMD loads. Thus, the L1 cache requires only minor
modifications to support SVRs.

We note that since results of intermediate computations
are stored in SIMD registers, SIMD instructions typically do
not access SVectors for all three operands. This reduces the
L1 cache bandwidth required to support multiple SIMD in-
structions per cycle. The two L1 busses per partition already
provided (Figure 3) are sufficient to feed two SIMD instruc-
tions accessing two SVectors each in a cycle. It should be
noted that the use of SIMD registers for temporaries makes
it practically possible to allocate SVRs in the L1 cache. A
traditional vector ISA requiring all vector instructions to use
the vector register file will make it difficult to allocate the
vector registers in the L1 cache due to the higher number of
register ports required.

The L2 cache requires more support than the L1. SVector
loads are sent to the requesting processor’s home L2 cache
bank. This bank then sends requests for the packed-words
constituting the SVector to other banks as needed (recall that
an SVector load may specify a stride between packed words).
Each bank inserts such requests in its wait queue and ser-
vices the requests in order (in parallel with the other banks).
When the data is available, the bank sends it to the home
bank (across the crossbar). It should be possible for individ-
ual banks to access words starting at any byte location (i.e.,
to perform un-aligned loads). This capability is generally
found in caches to access individual words for writing. The
home bank assembles two 16B records into a 32B L1 cache
line and sends these to the SVR in the L1. Each L2 bank
contains separate buffers for packing records to cache lines.
Note that entire L2 cache lines are not transmitted to L1 and
only the records required are assembled and sent, thereby
saving bandwidth and energy. The connection between the
L1 and L2 can support one 32B cache line (two 16B records)
per cycle.

3.2.2 Modifications to the Rest of the Core

We model an out-of-order pipeline with eight stages:
fetch, decode, rename, issue, operand-read, execute, write-
back, and retirement. Fetch and execute do not need
any modification; decode needs small modifications to de-
code a handful of new instructions; and operand-read and
retire stages need straightforward enhancements to read
from/write to SVRs. The following discusses the modifi-
cations to rename, issue/scheduling, and retirement, and the
handling of speculation, and precise exceptions.

Rename stage:The rename stage of an SVector load or al-
locate instruction allocates an SVR and an SVector descrip-
tor corresponding to the destination logical SVR. The logical
SVector to physical descriptor mapping is stored in a rename

6

V1

V0

Start
Line

:
:

0
0 8

8
Length

: : : : : :: : : : : :

V0

Rec 0 Rec 1
Rec 3

32 Bytes 32 Bytes

Rec 2

3
7

Record
Available

Last

L1 Cache Bank 2L1 Cache Bank 0

Rec 4 Rec 5
Rec 7Rec 6

Rec 0 Rec 1
Rec 2

3
2

CRP
xxxx
Addr
Base

16
16

Stride

yyyy

Record

Packed

1
1

Words/

SVector Descriptors

Rec 3 V1

Figure 4: SVRs and SVector descriptor registers.Shaded cache lines

contain SVRs whereas unshaded ones comprise normal cache data. Start

Line, CRP, and Last Available Record are relative to the start of the cache.

table. The SVector descriptor register (see Figure 4) contains
two fields (not programmer visible) in addition to the CRP
and those initialized from the SVector instruction discussed
in Section 2: (i) Start Line specifies the cache index address
of the first record of the SVR, and (ii) Last Available Record
specifies the absolute record number of the last record that
has been produced (loaded/written) so far. The Last Avail-
able Record and CRP fields store the absolute record number
relative to the start of the cache bank.

The allocation process for an SVR is analogous to that for
a scalar register, requiring maintaining a free list of available
space. However, an SVR requires allocation of a sequence
of cache lines. One simple way to achieve this is to logically
divide a cache bank into N equal sized segments, where N is
determined by the number of physical registers that can be
allocated in that bank. This fixes the number of SVRs and
the StartLine of each SVR in a cache bank. Now a free bit
can be maintained for each such logical segment to indicate
whether it is free or allocated.

When a SIMD instruction with an SVector operand is re-
named, the CRP field from the corresponding SVector de-
scriptor is read to provide the location of the operand. The
CRP is then incremented for the next SIMD instruction to
the same SVector. Thus, the CRP is accessed and updated
only in the in-order part of the pipeline, avoiding any RAW,
WAW, or WAR hazards on it. Similarly, the ClearCRP in-
struction also performs its CRP update in the rename stage.

Issue and scheduling:Only minor changes are necessary
for the issue and scheduling logic. For a SIMD instruction
that reads an SVR record, the availability of the record is
marked in a ready bit as done for a normal register source
operand. An SVR record is known to be available if the
CRP of the SVector descriptor is less than or equal to the
Last Available Record of the same descriptor.

If the required record is not yet available, the SIMD in-
struction awaits its availability in the issue queue just like
other instructions waiting for their operands. When the re-
quired record arrives in the SVR, the cache sends a mes-

sage to the rename stage to update the Last Available Record
Field for that SVR. At the same time, the cache index plus
bank number is passed as an 8-bit tag along a wakeup tag
port of the issue queue (along the same tag ports used for
passing an 8-bit register identifier when a normal load com-
pletes) and compared against the same information carried in
the decoded instruction. On the tag match, the waiting SIMD
instruction sets its operand ready bit, and is ready for issue if
both its operands are ready. If an instruction reads from two
vectors mapped to the same L1 bank, the instruction has to
be stalled in the read-operand stage until both operands are
read. However, this condition can be often avoided in the
code itself by using vectors that map to different banks (i.e.,
odd and even vectors map to different banks).

For memory disambiguation and conflict resolution, the
load/store queue receives VLD instructions and SIMD in-
structions that write to an SVector allocated with VAL-
LOCst. Such an instruction may access several possibly
strided packed-words – we conservatively assume that it
accesses the entire memory range from the address of the
first to the last packed-word for resolving conflicts. Sup-
port for detecting conflicts among accesses with different
address ranges already exists; e.g., conflicts between regular
SIMD loads/stores spanning 16 consecutive bytes and other
FP/integer loads spanning fewer bytes.

Retirement: For SVector load and allocate instructions,
the retirement stage frees SVRs similar to the freeing of re-
named registers for ordinary instructions; i.e., the physical
register that used to map to the destination logical register of
the retired instruction is freed. Additionally, the SVR bits of
the corresponding L1 cache lines are reset. Since the start
lines and the maximum number of cache lines for SVRs are
predetermined, simple circuitry can be used to reset all SVR
bits of an SVR in a cycle. An SVR is also freed when the
thread that created it is killed. ALP also provides a special
instruction to explicitly free all SVRs, which can be used
when the subsequent code does not use SVectors. As for
ordinary stores, storing records of a vector to memory also
happens at retirement.

Speculation:To rollback modifications to SVR related re-
sources by mispredicted instructions, ALP uses the conven-
tional combination of renaming and checkpointing. Specif-
ically, on a branch, ALP checkpoints the rename map table
for SVectors and the CRP values (analogous to checkpoint-
ing integer/FP rename tables).

Precise exceptions:Precise exceptions are largely han-
dled through register renaming and in-order retirement as
with current GPPs, with three additions. First, on an excep-
tion, the (currently allocated) SVRs need to be saved. Sec-
ond, exceptions within VLD can be handled as in CODE
by allowing the VLD to be restarted with partial comple-
tion [24]. Third, as discussed for retirement, for SIMD in-
structions that write to memory, the memory update is done
only at retirement, after examining for exceptions. In case
a memory write due to such an instruction needs to modify

7

multiple packed words and there is a TLB miss/page fault
on one of them, again, partial completion as in [24] can be
used.

3.3 Support for SIMD Streams
SStreams are implemented similar to SVectors, with the

following additional support. For an SStream, an SVR is
managed as a FIFO circular buffer with a head and a tail
(LastAvailRec). When a SIMD instruction reading from (or
writing to) the head of an SStream retires, the retirement
logic checks if the record involved is at the end of an L1
cache line. In that case, the cache line is evicted from the
SVR and a load request is sent to the L2 to bring in the next
records that need to be appended to the tail (or a store re-
quest is sent to write the records at the head). Since an SVR
cannot hold an entire SStream, an SStream load (SLD) is al-
lowed to retire before the entire SStream is loaded. If the
load of a subsequent record later incurs an exception, the
record number is stored in a special exception field in the
corresponding SVector descriptor. The exception is taken at
the next instruction that refers to the record.

4. APPLICATIONS AND PARALLELISM
We used five complex media applications available in

the ALPBench benchmark suite [27]: MSSG MPEG-2 en-
coder and decoder [29] (MPGenc and MPGdec), Tachyon
ray tracer [38] (RayTrace), Sphinx-3 speech recognizer [32]
(SpeechRec), and CSU face recognizer [4] (FaceRec). The
applications are modified by hand to extract TLP and DLP.
TLP is exploited using POSIX threads. The threads usu-
ally share read-only data, requiring little additional synchro-
nization. For DLP, the applications include ALP’s SIMD
instructions. We additionally extended this SIMD support
with SVector/SStream instructions. MMX style hand-coding
is prevalent practice for these applications and the maxi-
mum number of static assembly instructions inserted (for
MPGenc) is about 400. All applications exploit TLP and
ILP. All applications except for RayTrace exploit SIMD
and SVectors; only FaceRec exploits SStreams. A detailed
description and characterization of the applications appear
in [27].

MPGenc MPGdec SpeechRec FaceRec
Sub-word size 1B,2B 1B,2B 4B (float) 8B (double)
% SIMD instr. 24 24 17 66
Computation/Memory 1.70 1.84 1.43 1.00
DLP Granularity 1,8,16 1,4,8 10 9750
(in 128b words) (stream)
% Reductions 36 10 28 50

Table 2: DLP characteristics of applications.

Table 2 summarizes the DLP characteristics of our appli-
cations, except for RayTrace, which has only TLP and ILP.

The first row summarizes the sub-word sizes used by each
application. MPGenc and MPGdec use smaller integer sub-

words whereas SpeechRec and FaceRec use larger FP sub-
words.

The % SIMD instr. row gives the percentage of total dy-
namic instructions that are SIMD in the version of the code
with ALP SIMD. The relatively small percentage shows the
importance of supporting ILP and TLP for these complex
applications.

The Computation/Memoryrow of Table 2 gives the ratio
of SIMD computation to memory operations (and instruc-
tions) in the version of the code with ALP SIMD. All our
applications show low computation to memory ratios. This
indicates that efficient support for memory operations could
lead to significant performance and energy improvements for
these applications.

The DLP Granularity row shows the DLP granularity
in 128b SIMD words (i.e., the iteration count of SIMD
loops). All our applications except FaceRec exhibit small-
grain DLP (i.e., small vector lengths), while FaceRec ex-
hibits very large grain DLP (i.e., streams). It may (or may
not) be possible to increase the vector lengths with much ef-
fort using substantially different algorithms. However, such
changes were not obvious to us and, we believe, are beyond
the scope of this work. (Some obvious changes substantially
increase the amount of work to be done and significantly
reduce performance; e.g., using a full-search instead of an
intelligent search in MPGenc, using matrix multiplication
based DCT/IDCT in MPGenc/MPGdec instead of an opti-
mized Chen-Wang butterfly algorithm [40].)

The% Reductionsrow shows the dynamic number of DLP
operations that are part of a reduction, as a percentage of
the total dynamic DLP compute operations in the version
of the code with ALP SIMD. This relatively high percent-
age combined with the small DLP granularity underscores
the importance of supporting efficient reductions for these
applications. Some implementations are not efficient in sup-
porting reductions when the DLP granularity is small (e.g.,
multi-laned vector units). This property indicates that such
implementations may be a poor match for these applications.

5. SIMULATION METHODOLOGY
We simulate the following systems based on Section 3:

• 1T: The base system with only one thread and no
SIMD or SVectors/SStreams (Figure 3 and Table 1).

• 1T+S: 1T system with SIMD instructions.

• 1T+SV: 1T+S system with SVectors/SStreams.

• 4T, 4T+S, 4T+SV:. Analogous to the above three sys-
tems, respectively, but with four cores in each system
(4 way CMP) and each core running one thread.

• 4x2T, 4x2T+S, 4x2T+SV. Analogous to 4T, 4T+S,
4T+SV respectively, but each core is a 2-thread SMT.

We refer to the 1T system as thebaseand to the others as
enhanced. ALP is 4x2T+SV. Note that we keep the total L2

8

1.
0 1.
7

4.
9

4.
0

7.
0

18
.3

4.
1

7.
0

24
.0

0

5

10

15

20

25

30

1T

1T
+S

1T
+S

V 4T

4T
+S

4T
+S

V
4x

2T

4x
2T

+S
4x

2T
+S

V

1.
0

8.
2 11

.3

3.
5

29
.6

41
.1

6.
0

42
.5

56
.4

0

10

20

30

40

50

60

1T

1T
+S

1T
+S

V 4T

4T
+S

4T
+S

V

4x
2T

4x
2T

+S

4x
2T

+S
V

Sp
ee

du
p

1.
0

3.
8 4.
1

3.
5

11
.6 12

.6
5.

3
15

.4 16
.4

1.
0

3.
9 5.

0

1.
0 1.

8 2.
5 3.

2
5.

4
6.

9
4.

0
6.

8
8.

9

0

5

10

15

1T
1T

+S
1T

+S
V 4T

4T
+S

4T
+S

V
4x

2T
4x

2T
+S

4x
2T

+S
V 1T 4T

4x
2T 1T

1T
+S

1T
+S

V 4T
4T

+S
4T

+S
V

4x
2T

4x
2T

+S
4x

2T
+S

V

 MPGenc MPGdec RayTrace SpeechRec FaceRec

Figure 5: Speedup of enhanced systems over the base 1T system for each complete application (ExecutionTimeBase/ExecutionTimeEnhanced).

30
45

60
32

46
62

39
68

3032
62

3437
69

45
54

10
0

10
0

59
67

10
0

1718
50

1820
59

2830
10

0

68

48
79

61
1014

10
0

0

10

20

30

40

50

60

70

80

90

100

1T
1T

+S
1T

+S
V 4T

4T
+S

4T
+S

V
4x

2T
4x

2T
+S

4x
2T

+S
V 1T

1T
+S

1T
+S

V 4T
4T

+S
4T

+S
V

4x
2T

4x
2T

+S
4x

2T
+S

V 1T 4T
4x

2T 1T
1T

+S
1T

+S
V 4T

4T
+S

4T
+S

V
4x

2T
4x

2T
+S

4x
2T

+S
V 1T

1T
+S

1T
+S

V 4T
4T

+S
4T

+S
V

4x
2T

4x
2T

+S
4x

2T
+S

V

%
 E

n
er

g
y

(1
00

%
 =

 E
n

er
g

y
o

f
1T

)

Clock

L2

L1D

FU+ResBus

RegFiles

IQ/ROB

FrontEnd

 MPGenc MPGdec RayTrace SpeechRec FaceRec

Figure 6: Energy consumption and distribution of enhanced systems asa percentage of the energy consumption of the base system.

cache size the same in 1T and 4T systems to ensure that the
CMP benefits do not come simply from a larger cache size.

To model the above systems, we use an execution-driven
cycle-level simulator derived from RSIM [17], and model
wrong path instructions and contention at all resources. We
only emulate operating system calls.

Pthread-based C code is translated into binary using
the Sun cc 4.2 compiler with options -xO4 -xunroll=4 -
xarch=v8plusa. DLP code resides in a separate assembly
file, organized as blocks of instructions and simulated using
hooks placed in the binary. When the simulator reaches such
a hook, it switches to the proper block of DLP instructions
in the assembly file.

We integrate Wattch [5] for dynamic power and HotLeak-
age [43] with temperature models from [37] for static power.
We assume aggressive clock gating. Most components have
10% ungated circuitry [5]. To favor the base system, we
model only 2% ungated power for caches and functional
units. Since the base system takes longer to execute a given
application, having more ungated circuitry would make it
consume more power. Since the exact amount of clock
gating is highly implementation dependent, we made the
choices to favor the base system. We model energy for sup-
porting SVectors/SStreams (e.g., for SVRs, vector rename-
map tables/descriptors, extra bits in caches).

6. RESULTS

6.1 Overall Results
Figures 5 and 6 and Table 3 present our high-level results.

For each application, they respectively provide the execution
time speedupachieved over the base system (single-thread
superscalar), the energy consumed normalized to the base,
and theimprovementin energy-delay product (EDP) over
the base, for each system. Each energy bar also shows the
distribution of energy among different components. Table 5
summarizes the above data by reporting theharmonicmeans
of the speedup, energyimprovement, and EDP improvement
for key pairs of systems. For the DLP enhancements (+S and
+SV), the means are computed across the applications that
use those enhancements (i.e., all except RayTrace); for the
others, the means are computed across all applications. For
reference, Table 4 gives the instructions and operations per
cycle (IPC and OPC) for each application and system.

Our data validates our claims that complex media applica-
tions demand support for a wide spectrum of parallelism and
ALP effectively provides such support. Specifically, all the
techniques in ALP are important and effective.

Across all our applications, compared with the base 1T
system, ALP with all the enhancements (i.e., 4x2T+SV)
shows a speedup of 5X to 56X (harmonic mean 9.2X),
energy improvement of 1.7X to 17.2X (harmonic mean
2.8X), and EDP improvement of 8.4X to 970X (harmonic
mean 22.7X). All comparisons are made at the same volt-
age/frequency for all systems – ALP’s energy savings could
be further improved by using dynamic voltage scaling, at the

9

cost of some reduction in its performance speedups.
Table 5 clearly shows each technique in ALP contributes

significantly to the above benefits, especially when consid-
ering the relative complexity/area overhead of the technique.
Specifically, comparing the effect of an enhancement over
a system with all the other enhancements, we see that the
mean improvement in EDP from adding SIMD instructions
to 4x2T is 4.5X, from adding SVector/SStreams to 4x2T+S
is 1.7X, from adding 4-way CMP to 1T+SV is 4.5X, and
from adding SMT to 4T+SV is 1.4X. The means for the
DLP enhancements (SIMD and SVector/SStream) are over
the DLP applications (i.e., except for RayTrace).

We also performed experiments with the 4x2T+SV system
restricted to 2-wide fetch/decode/retirement (but same issue
width and functional units). Compared to this system, the 4-
wide system reduced execution time from 5% to 22% (mean
12%), validating the need for the ILP support in ALP.

We also increased the L1/SVR hit time from 1 to 4 cy-
cles. The speedup of SVectors/SStreams over SIMD re-
mained within 6% except that FaceRec saw a 15-20% in-
crease (due to the use of SStreams that successfully hide the
higher latency). Similarly, we also experimented with higher
processor frequency (i.e., longer memory latencies) and gen-
erally found increased benefits for SVectors/SStreams over
SIMD (since SVRs reduce the impact of the higher latency).

Since it is possible to emulate SStreams using SVectors by
strip mining long loops, we also performed experiments us-
ing SVectors instead of SStreams for FaceRec, the only ap-
plication that uses SStreams. However, SVectors are not as
effective as SStreams for hiding memory latency. This is be-
cause SVector loads have to be explicitly scheduled for max-
imal latency hiding whereas hardware automatically sched-
ules record loads well in advance for SStreams. As a result,
we found that there is a 17% performance degradation with
SVectors with respect to SStreams for FaceRec. This bene-
fit from SStreams may appear modest but comes at a small
additional hardware cost.

Finally, as an indication of application-level real-time per-
formance, for each second, ALP supports MPEG2 encod-
ing of 73 DVD resolution frames, MPEG2 decoding of 374
DVD frames, ray tracing of 5 512x512 frames (a scene
of a room with 20 objects), recognizing 30 words using a
130 word vocabulary/dictionary (SpeechRec), and recogniz-
ing 1,451 130x150 images in a 173-image database (Fac-
eRec). Although the above application performance may
seem more than currently required in some cases, it is ex-
pected that these applications will be run with larger inputs
in the future, requiring higher performance (except perhaps
for MPEG decode which shows ample performance even for
future larger inputs).

6.2 Analysis of SIMD Vectors/Streams
Section 2.3 qualitatively described the benefits of SVec-

tors/SStreams over SIMD. We next relate our quantitative
data to those benefits. We only consider the DLP applica-

App 1T 1T 4T 4T 4T 4x2T 4x2T 4x2T
+S +SV +S +SV +S +SV

MPGenc 58.8 110.4 5.8 328.8 612.1 12.6 550.5 970.4
MPGdec 12.8 14.9 5.9 59.1 68.1 10.6 87.3 97.8
RayTrace N/A N/A 5.5 N/A N/A 8.6 N/A N/A
SpeechRec 3.3 5.6 4.7 14.7 20.5 6.4 20.9 29.4
FaceRec 2.6 12.7 6.4 15.3 57.5 6.7 15.5 79.2

Table 3: Energy Delay Product (EDP) improvement over the base

(1T) system (EDPbase/EDPenhanced).Higher values are better.

tions here (i.e., all except RayTrace).
To aid our analysis, Table 6 gives the total instructions and

operations retired for the 1T+S and 1T+SV systems as a per-
centage of the base 1T system. (The numbers for the other
+S (+SV) systems are the same as for the 1T+S (1T+SV)
systems.) Further, Figure 7 shows the different components
of execution time in these systems, normalized to the total
time of 1T+S. For an out-of-order processor, it is generally
difficult to attribute execution time to different components.
Following prior work [33], we follow a retirement-centric
approach. Letr be the maximum number of instructions
that can be retired in a cycle. For a cycle that retiresa in-
structions, we attributea/r fraction of that cycle as busy, at-
tributing 1/r cycle of busy time to each retiring instruction.
We charge the remaining 1 -a/r cycle as stalled, and charge
this time to the instruction at the top of the reorder buffer
(i.e., the first instruction that could not retire). This tech-
nique may appear simplistic, but it provides insight into the
reasons for the benefits seen.

We categorize instructions as: Vector memory (VecMem)
(only for 1T+SV), SIMD memory (SimdMem), SIMD ALU
(SimdALU), and all others. In Figure 7, the lower part of the
bars shows the busy time divided into the above categories,
while the upper part shows the stall components. The busy
time for a category is directly proportional to the number
of instructions retired in that category. We also note that
the “other” category includes overhead instructions for ad-
dress generation for SimdMem instructions and SIMD loop
branches; therefore, the time spent in the DLP part of the
application exceeds that shown by the Simd category of
instructions. The figure shows that the benefits of SVec-
tors/SStreams arise from the following:

Reduction in busy timeoccurs due to the reduction in in-
struction count from SimdMem and related overhead (Other)
instructions (Table 6 and benefit 1 in Section 2.3).

Eliminating SIMD loads should eliminate a significant
fraction of the total SIMD and associated overhead instruc-
tions for our applications due to the low SIMD computation
to memory ratio (Table 2). This effect can be clearly seen in
MPGenc and FaceRec.

In SpeechRec, as a fraction of total instructions, the SIMD
instructions are small. Nevertheless, the benefit of reduc-
ing SimdMem/overhead instructions (and associated stalls)
is large enough that it allows skipping of a pre-computation

10

App 1T 1T+S 1T+SV 4T 4T+S 4T+SV
MPGenc 1.8 (1.8) 2.5 (8.5) 2.3 (10.3) 6.3 (6.3) 9 (30.9) 8.3 (37.5)
MPGdec 2.1 (2.1) 2.3 (6.4) 2.4 (6.6) 7.4 (7.4) 6.9 (19.5) 7.2 (20.1)
RayTrace 1.9 (1.9) N/A N/A 7.1 (7.1) N/A N/A
SpeechRec 1.6 (1.6) 1.5 (2.2) 1.8 (2.9) 5.3 (5.3) 4.5 (6.8) 5.1 (8)
FaceRec 1.3 (1.3) 1.3 (2.2) 2.2 (3.4) 5.2 (5.2) 5.3 (8.7) 8.1 (12.8)

App 4x2T 4x2T+S 4x2T+SV
MPGenc 10.7 (10.7) 12.8 (44.4) 11.4 (51.5)
MPGdec 11.3 (11.3) 9.2 (25.9) 9.4 (26.2)
RayTrace 9.8 (9.8) N/A N/A
SpeechRec 6.6 (6.6) 5.7 (8.6) 6.6 (10.3)
FaceRec 5.3 (5.3) 5.3 (8.7) 10.7 (16.9)

Table 4: Instructions-per-cycle (operations-per-cycle) achieved by all systems.

Benefits of SIMD SVectors/SStreams
Systems 1T+S/ 4T+S/ 4x2T+S/ 1T+SV/ 4T+SV/ 4x2T+SV/
compared 1T 4T 4x2T 1T+S 4T+S 4x2T+S
Speedup 2.63 2.52 2.41 1.48 1.43 1.46
Energy 2.41 2.29 2.25 1.3 1.21 1.21
EDP 5.06 4.69 4.52 1.83 1.67 1.69

Benefits of CMP SMT ALP
Systems 4T/ 4T+S/ 4T+SV/ 4x2T/ 4x2T+S/ 4x2T+SV/ 4x2T+SV/
compared 1T 1T+S 1T+SV 4T 4T+S 4T+SV 1T

Speedup 2.88 3.38 3.24 1.05 1.23 1.32 9.24
Energy 1.26 1.5 1.38 0.91 1.1 1.11 2.81
EDP 4.52 5.08 4.48 1.18 1.35 1.45 22.69

Table 5: Mean speedup, energy improvement, and EDP improvement.All means areharmonicmeans of the ratio of the less enhanced to the more

enhanced system. The means for the DLP enhancements (SIMD and SVectors/SStreams) are over the DLP applications (i.e., all except RayTrace).

phase.1 This results in a further reduction of the “other” in-
structions.

For MPGdec, SVectors could not remove many of the
SIMD loads because it uses an optimized IDCT algorithm
with random memory access patterns [27]). Consequently,
SVectors see a limited benefit from the reduction of instruc-
tion count. This in turn lowers the execution time benefit for
SVectors.

In general, we do not expect the SimdALU instruction
count to change since +SV performs the same computations.
However, there is a slight increase in SpeechRec because
skipping the pre-computation phase results in more SIMD
computation.

Reduction in SimdMem stallsis given by the difference
between SimdMem stalls in +S and VecMem stalls (plus
SimdMem stalls, if any) in +SV. The benefit occurs because
of the reduction in SimdMem instructions and increased load
latency tolerance (benefits 1 and 3 in Section 2.3). However,
the magnitude of this benefit is quite small for all applica-
tions. This is because (1) most memory accesses either hit
in the L1 cache or the L2 cache and the out-of-order proces-
sor can tolerate these latencies, and (2) the L2 misses that do
occur see a relatively low miss penalty since we model a low
frequency processor.

Reduction in SimdALU stalls is significant specially in

1The original version of SpeechRec has a pre-computation phase
to reduce the amount of work done in later phases. This pre-
computation is omitted for +SV due to lack of any benefit.

FaceRec because (1) a larger number of independent Sim-
dALU instructions fit in the instruction window due to the
elimination of intervening SimdMem and overhead instruc-
tions (benefit 2 of Section 2.3) and (2) better load latency
tolerance results in the ALU instructions obtaining their
operands sooner (benefit 3 in Section 2.3). FaceRec in par-
ticular has two dependent 4 cycle FP SimdALU instruc-
tions within a SIMD loop iteration, which feed into an FP
reduction running through the loop iterations. This incurs
a relatively large stall time in 1T+S. In 1T+SV, more of
the (mostly independent) iterations fit in the reorder buffer
(since about 50% of the instructions per iteration are elimi-
nated), and so more parallelism can be exploited. SpeechRec
sees a slight decrease in SimdALU stall time due to the same
reasons.

MPGdec and MPGenc do not have much of a SimdALU
stall time to start with because they use integer instructions
and also have independent instructions within iterations.

To confirm that not all of the benefits in SimdALU stall
time came from load latency tolerance in FaceRec and
SpeechRec, we also ran both 1T+S and 1T+SV versions of
all applications with a perfect cache where all memory ac-
cesses take 1 cycle. We continued to see benefits in Sim-
dALU stalls (for FaceRec and SpeechRec) and total execu-
tion time from +SV (e.g., for FaceRec, 1T+SV showed a
speedup of 1.8X over 1T+S with a perfect cache). These
experiments also show that techniques such as prefetching
cannot capture all the benefits of SVectors/SStreams.

11

It is possible to obtain more exposed parallelism for
SIMD (+S) systems using larger resources. Although we al-
ready simulate an aggressive processor, we also conducted
experiments where we doubled the sizes of the physical
SIMD register file, FP/SIMD issue queue, and the reorder
buffer. Of all our applications, FaceRec showed the largest
speedup with increased resources - 1.67X for the SIMD ver-
sion. However, SVectors/SStreams (+SV) continued to show
significant benefits over SIMD even with larger resources
(1.63X over SIMD for FaceRec) due to other sources such
as the reduction of SIMD load instructions and overhead.
Thus, SVectors/SStreams can be viewed as a way to achieve
the benefits of much larger resources and more, without
the higher power consumption and slower processor clock
speeds associated with larger resources.

It may be possible to further improve SIMD performance
by providing more SIMD logical registers. However, all the
loop bodies in our applications, except the large tables, can
comfortably fit in the logical SIMD registers provided. Fit-
ting the larger tables would require a much larger register file
(e.g., 32 additional SIMD registers for DCT/IDCT coeffi-
cient tables). We also note that our out-of-order core already
performs dynamic unrolling effectively to use the much
larger physical register file, and ALP SIMD already achieves
much better performance compared with SSE2 [27].

Reduction in other stallsresults directly from the reduc-
tion in overhead instructions described above (most signifi-
cantly in MPGenc and SpeechRec).

Energy benefitsdue to SVectors/SStreams come largely
from the reduction of instruction count. Comparing corre-
sponding +S and +SV systems in Figure 6, we can see en-
ergy reduction in almost every component.

0

10

20

30

40

50

60

70

80

90

100

1
T

+
S

1
T

+
S

V

1
T

+
S

1
T

+
S

V

1
T

+
S

1
T

+
S

V

1
T

+
S

1
T

+
S

V

E
xe

cu
tio

n
 T

im
e

 (
1

0
0

%
 =

 1
T

+
S

) OtherStall
SimdALUStall
SimdMemStall
VecMemStall
OtherBusy
SimdALUBusy
SimdMemBusy
VecMemBusy

 MPGenc MPGdec SpeechRec FaceRec

Figure 7: Execution time distribution for 1T+S and 1T+SV.

MPGenc MPGdec RayTrace SpeechRec FaceRec

1T+S 17 (59) 28 (80) N/A 51 (77) 58 (95)
1T+SV 11 (52) 27 (75) N/A 45 (70) 34 (53)

Table 6: # of instructions (operations) retired for 1T+S and 1T+SV

systems as a percentage of instructions (operations) retired by 1T.The

numbers for other +S (+SV) systems are the same as for 1T+S (1T+SV).

7. RELATED WORK
There is a vast amount of literature on conventional vec-

tor architectures and their recent uniprocessor and multipro-
cessor variations; e.g., VIRAM [23], CODE [24], Taran-
tula [12], T0 [3], out-of-order vectors [14], MOM [7],
SMT Vectors [13], NEC SX [22], Cray X1 [8], and Hi-
tachi SR [41]. Such systems require investment in a rela-
tively large special-purpose dedicated vector unit (e.g.,the
Tarantula vector unit is the same size as the 4-thread scalar
core [12]). In return, they provide excellent performance
and energy efficiency for medium-grain regular DLP; e.g.,
through multi-laned implementations.

However, our applications mostly exhibit small-grain DLP
interspersed with control and reductions, and have parts
that do not exhibit any DLP at all (Section 1 and 4). We
therefore chose to explore a lighter weight DLP mechanism,
SVectors/SStreams, that could be tightly integrated into ex-
pected GPP designs that already have superscalar cores,
CMP, SMT, and SIMD. Our results show that the resulting
architecture, ALP, is effective in exploiting the different lev-
els of parallelism in complex media applications, and SVec-
tors/SStreams in particular show significant benefits over
ALP’s other enhancements. Further, ALP does so primar-
ily using existing data paths and storage with only modest
modifications to a conventional superscalar core. Thus, we
believe that this paper has demonstrated a valuable design
point between pure SIMD and conventional vectors.

Nevertheless, conventional vectors would have the advan-
tage of reduced dynamic compute instructions (ALP uses
SIMD compute instructions, which encode only 2-16 oper-
ations in each instruction). Further, it may (or may not) be
possible that significant algorithmic changes to our applica-
tions can expose larger grain DLP for which conventional
vectors would be well suited. We are currently performing a
detailed quantitative comparison between ALP and a repre-
sentative vector machine (Tarantula) – reporting the results
of such a study is outside the scope of this paper.

The Imagine architecture [1] (and its multiprocessor ver-
sion, Merrimac [9]) are also motivated by support for large
amounts of DLP, specifically streams. ALP’s focus on small-
grain DLP and the constraint of integration within a GPP re-
sults in significant design differences. Specifically, (i) for
computation, Imagine provides ALU clusters that work in
lockstep while ALP uses independent SIMD units to exploit
ILP and TLP along with fine-grain DLP; (ii) Imagine is de-
signed as a co-processor that depends on a scalar host for
irregular scalar computation while ALP’s DLP support is
tightly integrated into the superscalar core; and (iii) unlike
ALP, Imagine needs a substantially new programming model
to manipulate streams. ALP and Imagine share similarities
in the handling of data – ALP’s combination of the SIMD
register file and SVRs is analogous to Imagine’s storage hi-
erarchy with a local register file for intermediate computa-
tion and a stream register file for stream data. At the same
frequency, we found ALP’s performance on MPEG2 encod-

12

ing comparable to that reported for Imagine (138 360x288
frames per second at 200 MHz but without B frames, half-
pixel motion estimation, and Huffman VLC [1]). The details
are omitted for lack of space.

A few architectures like SCALE [25], Pseudo Vector Ma-
chine (PVM) [26], conditional streams [21] of Imagine, and
Titan [20] cater to fine-grain DLP. SCALE combines TLP
and vectors in a concept called vector-thread architectures,
which uses a control processor along with a vector of vir-
tual processors. It can exploit DLP interspersed with con-
trol; however, it uses a new programming model while ALP
extends the established GPP programming model. So far,
SCALE has been evaluated primarily for kernels; a compar-
ison with ALP on complex applications is therefore difficult.

PVM provides support for vector/stream-like processing
of loops that are difficult to vectorize. Two source vectors
are associated with two registers. A compute instruction ac-
cessing such a register implicitly accesses the next element
of the associated vector. The PVM implementation does
not support a cache hierarchy, and all vector data accessed
by compute instructions is transferred from memory space.
This shares similarity with SVectors/SStreams, but has some
key differences. Our SVectors use vector load instructions
to bring data into the SVR in a pipelined way, and enable
preloading of data. Any data that is spilled from the SVRs is
held in the L2 cache for some time. In contrast, PVM sup-
ports a fast scratchpad memory space, somewhat analogous
to our SVR. However, there are no vector load instructions to
bring data into this space; data can be moved to scratchpad
only through functional units using explicit instructions.

Conditional streams provide limited fine grain DLP sup-
port for Imagine – they allow different operations on dif-
ferent records on a stream. However, conditional streams
change the order of the resulting records.

Titan uses a different approach to cater to DLP inter-
spersed with control. It uses successivescalarFP registers
to store a vector allowing individual vector elements to be
accessed. All compute instructions are vector instructions
and scalar operations have a length of 1. It is difficult to map
such a design on to current renamed/out-of-order cores.

At a high level, SVectors exploit two dimensional DLP as
done by traditional SIMD array processors [18], MOM [7,
34], and CSI [6]. This is because SVectors are in turn com-
posed of small vectors (SIMD). However, unlike ALP, MOM
uses vector/matrix instructions for computation and uses a
large matrix register file. Similarly, unlike ALP, CSI uses
a memory to memory stream architecture with a seperate
pipeline for streams.

Several architectures like Smart Memories [28],
TRIPS [35], and RAW [39] support all forms of paral-
lelism. Instead of supporting a DLP based programming
model like vectors/streams in the ISA, these architec-
tures support efficient mapping/scheduling of multiple
instructions that work on independent data and schedule
communication among them. For example, TRIPS’ main

support for DLP consists of rescheduling loop iterations
for computation without requiring prefetching and other
repeated front end overhead (called revitalization). RAW
allows direct accessing of operands from the network,
eliminating some explicit loads. SmartMemories can morph
memories into many structures; ALP uses a more restricted
type of morphing cache for SVRs. Unlike ALP, both
Smart Memories and TRIPS require switching to a different
mode to support DLP (resulting in mode changes between
different parts of an application). Unlike ALP, both RAW
and Smart Memories expose underlying hardware details
and communication to the programming model.

Several mechanisms enhance the memory system to sup-
port DLP. Impulse [42] augments the memory controller to
map non-contiguous memory to contiguous locations. Pro-
cessor in memory architectures like DIVA [11] increase
memory bandwidth and decrease memory latency. Some
DSP processors, as well as TRIPS, support software man-
aged caches or scratchpad memories which usually need ex-
plicit loads/stores to be accessed. To reduce loads/stores,
they support memory to memory addressing modes and
DMA. SVRs achieve similar benefits without loads/stores.

To support regular computation, DSP processors include
indexed addressing modes with auto-incrementing, loop rep-
etition, and/or rotating registers. ALP achieves similar ben-
efits with the unified mechanism of SVectors/SStreams.

Itanium [19], Cydra 5 [31], and Hitachi SR-8000 [41] use
rotating registers to hold data elements that are accessed se-
quentially. Rotating registers are used to provide different
registers for different instances (in different loop iterations)
of the same variable. In out-of-order processors, renam-
ing provides the same functionality albeit at a higher hard-
ware cost. Rotating registers, which are usually a part of
the general purpose register file, are loaded with scalar load
instructions. In contrast, SVectors use vector loads to bring
a sequence of data records into the data arrays of reconfig-
ured L1 cache. Further, rotating registers can hold variables
that are accessed only within a given iteration. Therefore,
unlike SVRs, such registers cannot store more permanent
state (e.g., a table that is used many times or a variable used
across iterations). SVectors do not have such limitations –
i.e., SVectors can be loaded in advance and used repeatedly.

Our previous work characterizes the parallelism and per-
formance of the applications used in this paper [27]. How-
ever, that work evaluates only SIMD support for exploiting
the DLP of our applications. This paper presents our novel
DLP support, SVectors and SStreams, in the context of a
complete architecture that targets multiple levels of paral-
lelism for our target applications.

8. CONCLUSIONS
We seek to provide energy efficient performance for con-

temporary media applications in a GPP. We observe that
these applications require efficient support for differenttypes
of parallelism, including ILP, TLP, and multiple forms of

13

DLP. Given existing support for SIMD instructions in GPPs,
the additional DLP in these applications is either fine-
grained or stream-based, and exhibits a relatively high ra-
tio of memory to compute operations. Based on these ob-
servations and current GPP trends, we propose a complete
architecture called ALP. ALP uses a CMP with superscalar
cores with SIMD and SMT, enhanced with a novel mech-
anism of SIMD vectors and streams (SVectors/SStreams).
SVectors/SStreams exploit many advantages of conventional
vectors, without the cost of a dedicated vector unit.

Using several complex media applications, we show that
all the techniques used in ALP are indeed important and
effective and no single type of parallelism alone suffices.
Specifically, SVectors/SStreams give speedups of 1.1X to
3.4X and EDP improvements of 1.1X to 5.1X for the ap-
plications that have DLP, over and above all of the other en-
hancements in ALP. The results of this paper are applicable
to the applications with properties described in Section 1 and
can be extended to other applications with similar properties.

In future work, we will report on a quantitative compari-
son with Tarantula.

9. REFERENCES
[1] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das.

Evaluating the Imagine Stream Architecture. InProc. of the 31th
Annual Intl. Symp. on Comp. Architecture, 2004.

[2] D. H. Albonesi. Selective Cache Ways: On-Demand Cache Resource
Allocation. InProc. of the 32nd Annual Intl. Symp. on
Microarchitecture, 1999.

[3] K. Asanovic.Vector Microprocessors. PhD thesis, Univ. of California
at Berkeley, 1998.

[4] R. Beveridge and B. Draper. Evaluation of Face Recognition
Algorithms.http://www.cs.colostate.edu/evalfacerec/, 2003.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. InProc. of
the 27th Annual Intl. Symp. on Comp. Architecture, 2000.

[6] D. Cheresiz, B. H. H. Juurlink, S. Vassiliadis, and H. A. G. Wijshoff.
The CSI Multimedia Architecture.IEEE Trans. VLSI Syst., 13(1),
2005.

[7] J. Corbal, R. Espasa, and M. Valero. MOM: A Matrix SIMD
Instruction Set Architecture for Multimedia Applications. In Proc. of
the 14th Intl. Conf. on Supercomputing, 1999.

[8] Cray Inc. Cray X1 System Overview.www.cray.com, 2005.
[9] W. J. Dally, P. Hanrahan, M. Erez, et al. Merrimac: Supercomputing

with Streams. InProc. of 2003 ACM/IEEE conference on
Supercomputing, 2003.

[10] K. Diefendorff and P. K. Dubey. How Multimedia Workloads Will
Change Processor Design.IEEE Computer, Sep. 1997.

[11] J. Draper, J. Chame, M. Hall, et al. The architecture of the diva
processing-in-memory chip. InProc. of the 17th Intl. Conf. on
Supercomputing, 2002.

[12] R. Espasa, F. Ardanaz, J. Emer, et al. Tarantula: A Vector Extension
to the Alpha Architecture. InProc. of the 29th Annual Intl. Symp. on
Comp. Architecture, 2002.

[13] R. Espasa and M. Valero. Simultaneous multithreaded vector
architecture. InProc. of the 3rd Intl. Symp. on High-Perf. Comp.
Architecture, 1997.

[14] R. Espasa, M. Valero, and J. E. Smith. Out-of-order vector
architectures. InProc. of the 25th Annual Intl. Symp. on Comp.
Architecture, 1997.

[15] J. L. Hennessy and D. A. Patterson.Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002.

[16] M. Holliman and Y.-K. Chen. MPEG Decoding Workload

Characterization. InProc. of Workshop on Computer Architecture
Evaluation using Commercial Workloads, 2003.

[17] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM:
Simulating Shared-Memory Multiprocessors with ILP Processors.
IEEE Computer, February 2002.

[18] K. Hwang.Advanced Computer Architecture: Parallelism,
Scalability, programmability. McGraw-Hill Inc., 1993.

[19] Intel Corporation.Intel Itanium Architecture Software Developer’s
Manual, 2001.

[20] N. P. Jouppi. A Unified Vector/Scalar Floating-Point Architecture. In
Proc. of the 8th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, 1989.

[21] U. J. Kapsai, W. J. Dally, S. Rixner, et al. Efficient Conditional
Operations for Data-parallel Architectures. InProc. of the 36rd
Annual Intl. Symp. on Microarchitecture, 2003.

[22] K. Kitagawa, S. Tagaya, Y. Hagihara, and Y. Kanoh. A Hardware
Overview of SX-6 and SX-7 Supercomputer.
http://www.nec.co.jp/techrep/en/rand d/r03/r03-no1/rd02.pdf, 2002.

[23] C. Kozyrakis.Scalable Vector Media Processors for Embedded
Systems. PhD thesis, Univ. of California at Berkeley, 2002.

[24] C. Kozyrakis and D. Patterson. Overcoming the Limitations of
Conventional Vector Processors. InProc. of the 30th Annual Intl.
Symp. on Comp. Architecture, 2003.

[25] R. Krashinsky, C. Batten, M. Hampton, et al. The Vector-Thread
Architecture. InProc. of the 31th Annual Intl. Symp. on Comp.
Architecture, 2004.

[26] L. H. Lee.Pseudo-Vector Machine for Embedded Applications. PhD
thesis, University of Michigan, 2000.

[27] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The
ALPBench Benchmark Suite for Multimedia Applications
(Submitted for publication). Technical Report
UIUCDCS-R-2005-2603, Dept. of Computer Science, University of
Illinois, July 2005.

[28] K. Mai, T. Paaske, N. Jayasena, R. Ho, et al. Smart Memories: A
Modular Reconfigurable Architecture. InProc. of the 27th Annual
Intl. Symp. on Comp. Architecture, 2000.

[29] MPEG Software Simulation Group. MSSG MPEG2 encoder and
decoder.http://www.mpeg.org/MPEG/MSSG/, 1994.

[30] P. Ranganathan, S. Adve, and N. P. Jouppi. Reconfigurable Caches
and their Application to Media Processing. InProc. of the 27th
Annual Intl. Symp. on Comp. Architecture, 2000.

[31] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towie. The Cydra 5
Departmental Supercomputer: Design Philosophies, Decisions, and
Trade-Offs. InIEEE Computer, 1989.

[32] R. Reddy et al. CMU SPHINX.
http://www.speech.cs.cmu.edu/sphinx/, 2001.

[33] M. Rosenblum, E. Bugnion, and S. A. Herrod. Vector Vs. Superscalar
and VLIW Architectures for Embedded Multimedia Benchmarks. In
Proc. of 20th ACM Symp. on Operanting Systems Principles, 1995.

[34] F. Sanchez, M. Alvarez, E. Salam, A. Ramirez, and M. Valero. On
the Scalability of 1- and 2-Dimensional SIMD Extensions for
Multimedia Applications. InProc. of IEEE Intl. Symp. on
Performance Analysis of Systems and Software, 2005.

[35] K. Sankaralingam, R. Nagarajan, H. Liu, et al. Exploiting ILP, TLP,
and DLP with the Polymorphous TRIPS Architecture. InProc. of the
30th Annual Intl. Symp. on Comp. Architecture, 2003.

[36] R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The Energy
Efficiency of CMP vs. SMT for Multimedia Workloads. InProc. of
the 20th Intl. Conf. on Supercomputing, 2004.

[37] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-Theoretic
Techniques and Thermal-RC Modeling for Accurate and Localized
Dynamic Thermal Management. InProc. of the 8th Intl. Symp. on
High-Perf. Comp. Architecture, 2002.

[38] J. E. Stone. Taychon Raytracer.
http://jedi.ks.uiuc.edu/ johns/raytracer/, 2003.

[39] M. Taylor, W. Lee, J. Miller, D. Wentzlaff, et al. Evaluation of the
RAW Microprocessor: An Exposed-Wire-Delay Architecture for ILP
and Streams. InProc. of the 31th Annual Intl. Symp. on Comp.
Architecture, 2004.

[40] Z. Wang. Fast Algorithms for the Discrete Cosine Transform and for
the Discrete Fourier Transform. InIEEE Transactions in Acoustics,

14

Speech, and Signal Processing. Vol. ASSP-32, 1984.
[41] Y.Tamaki, N. Sukegawa, M. Ito, et al. Node Architectureand

Performance Evaluation of the Hitachi Super Technical Server
SR8000. InProc. of the 11th Intl. Conf. on Parallel and Distributed
Systems, 1999.

[42] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, et al. The Impulse
Memory Controller. InIEEE Transcations on Computers, 2001.

[43] Y. Zhang, D. Parikh, K. Sankaranarayanan, et al. HotLeakage: A
Temperature-Aware Model of Subthreshold and Gate Leakage for
Architects. Technical Report CS-2003-05, Univ. of Virginia, 2003.

15

