ALP: Efficient Support for All Levels of Parallelism for
Complex Media Applications -

Man-Lap Li Ruchira Sasanka Sarita V. Adve Yen-Kuang Chen Eric Debes
University of lllinois at Urbana-Champaign Architecture Research Labs
Department of Computer Science Intel Corporation
{manlapli, sasanka, sadve}@cs.uiuc.edu {yen-kuang.chen, eric.debes}@intel.com

UIUC CS Technical Report UIUCDCS-R-2005-2605, July 2005
(Submitted for Publication)

ABSTRACT execution of such complex media applications needs a con-
The real-time execution of contemporary complex media Siderable amount of processing power that often surpasses
applications requires energy-efficient processing cdipabi the capabilities of current superscalars_. Further, high pe
ties beyond those of current superscalars. We observe thaformance processors are often constrained by power/energy
the complexity of contemporary media applications reguire congumpnon, especially in the mobile systems where media
support for multiple forms of parallelism, including ILP, ~&Pplications have become popular.

TLP, and various forms of DLP such as sub-word SIMD, _ 'NiS paper seeks to develop general-purpose processors
short vectors, and streams. Based on our observations, wéat can meet the performance demands of future media ap-
propose an architecture, called ALP, that efficiently inte- Plications in an energy-efficient way, while also contirgiin
grates all of these forms of parallelism with evolutionary t© Work well on other common workloads for desktop, lap-
changes to the programming model and hardware. ThelOP@nd handheld systems.

novel part of ALP is a DLP technique calle®IMD vec- qutunately, most media _appllcatlons have g_lot of_par—
tors and streams (SVectors/SStreanvehich is integrated ~ allélism that can be exploited for energy-efficient high-
within a conventional superscalar based CMP/SMT archi- Performance designs. The conventional wisdom has been
tecture with sub-word SIMD. This technique lies between that this parallelism is in the form of large amounts of data-
sub-word SIMD and vectors, providing significant benefits €€l parallelism (DLP). Therefore, many recent architec-
over the former at a lower cost than the latter. Our evalua- tUrés have targeted such DLP in various ways; e.g., Imag-
tions show that each form of parallelism supported by ALP In€ [1], SCALE [25], VIRAM [23], and CODE [24]. Most

is important. Specifically, SVectors/SStreams are effecti evaluations of these architectures, however, are based on
compared to a system with the other enhancements in ALP,Small kernels; e.g., speech codecs such as adpcm, color con-
they give speedups of 1.1X to 3.4X and energy-delay prod- V€rsion such as rgh2cmyk, and filters such as fir.
uctimprovements of 1.1X to 5.1X for applications with DLP. This paper differs from the above works in one or both of

Keywords: SIMD, multimedia, data-level parallelism the following important ways. First, we use more complex
applications from our recently released ALPBench bench-

mark suite [27]. These applications are face recognition,
1. INTRODUCTION speech recognition, ray tracing, and video encoding and de-
Real-time complex media applications such as high qual- coding. They cover a wide spectrum of media processing, in-
ity and high resolution video encoding/conferencingiadit cluding image, speech, graphics, and video processing. Sec
face/image/speech recognition, and image synthesis likeond, due to our focus on GPPs, we impose the following
ray-tracing are becoming increasingly common on general- constraints/assumptions on our work: (i) GPPs already ex-
purpose systems such as desktop, laptop, and handheld conploit some DLP through sub-word SIMD instructions such
puters. General-purpose processors (GPPs) are becomings MMX/SSE (subsequently referred to as SIMD), (ii) GPPs
more popular for these applications because of the growingalready exploit instruction- and thread-level paralleli$LP
realization that programmability is important for this ipp ~ and TLP) respectively through superscalar cores and throug
cation domain as well, due to a wide range of multimedia chip-multiprocessing (CMP) and simultaneous multithread
standards and proprietary solutions [10]. However, reaét ing (SMT), and (iii) radical changes in the hardware and
programming model are not acceptable for well established

"This work is supported in part byw an equipment donation fiSkiD, GPPs. Motivated by the properties our applications and the
a gift from Intel Corp., and the National Science Foundatioder Grant

No. CCR-0209198 and EIA-0224453. Ruchira Sasanka was sigopoy abpve constraints/assumptions, we propose a complete ar-
an Intel graduate fellowship. chitecture called ALP.

Specifically, we make the following five observations grated within a modern superscalar pipeline.
through our study of complex applications. The programming model for SVectors lies between SIMD
All levels of parallelism.As reported by others, we also and conventional vectors. SVectors exploit the regulaa dat
find DLP in the kernels of our applications. However, as access patterns that are the hallmark of DLP by providing
also discussed in [27], many large portions of our applica- support for conventional vectenemoryinstructions. They
tions lack DLP and only exhibit ILP and TLP (e.g., Huffman differ from conventional vectors in that computation on-vec
coding in MPEG encode and ray-tracing). tor data is performed by existing SIMD instructions. Each
Small-grain DLP. Many applications have small-grain architectural SVector register is associated with an fater
DLP (short vectors) due to the use of packed (SIMD) data hardware register that indicates the “current” elemenhef t
and new intelligent algorithms used to reduce computation. SVector. A SIMD instruction specifying an SVector regis-
Packed data reduces the number of elements (words) tater as an operand accesses and auto-increments the current
be processed. New intelligent algorithms introduce data- element of that register. Thus, a loop containing a SIMD
dependent control, again reducing the granularity of DLP. instruction accessing SVector register VO marches through
For example, older MPEG encoders performed a full mo- VO, much like a vector instruction. SStreams are similar to
tion search comparing each macroblock from a reference SVectors except that they may have unbounded length.
frame to all macroblocks within a surrounding region in a Our choice of supporting vector/streatata but not vec-
previous frame, exposing a large amount of DLP. Recent ad-tor/streancomputatiorexploits a significant part of the ben-
vanced algorithms significantly reduce the number of mac- efits of vectors/streams for our applications, but without
roblock comparisons by predicting the “best” macroblocks need for dedicated vector/stream compute units. Specifi-
to compare. This prediction is based on the results of prior cally, ALP largely exploits existing storage and data paths
searches, introducing data-dependent control between macin conventional superscalar systems and does not need any
roblock computations and reducing the granularity of DLP. new special-purpose structures. ALP reconfigures pareof th
Dense representation and regular access patterns within L1 data cache to provide a vector register file when needed
vectors. Our applications use dense data structures such(e.g., using reconfigurable cache techniques [2, 30]). Data
as arrays, which are traversed sequentially or with cohstan paths between this reconfigured register file and SIMD units
strides in most cases. already exist, since they are needed to forward data from
Reductions DLP computations are often followed by re- cache loads into the computation units. These attributes ar
ductions, which are less amenable to conventional DLP tech-important given our target is GPPs that have traditionady r
nigues (e.g., vectorization) but become significant wita th sisted application-specific special-purpose support.
reduced granularity of DLP. For example, when processing Our evaluations show that our design decisions in ALP
blocks (macroblocks) in MPEG using 16B packed words, are effective. Relative to a single-thread superscaldn-wit
reductions occur every 8 (16) words of DLP computation. out SIMD, for our application suite, ALP achieves aggre-
High memory to computation ratidLP loops are often gate speedups from 5X to 56X, energy reduction from 1.7X
short with little computation per memory access. to 17.2X, and energy-delay product (EDP) reduction of 8.4X
Multiple forms of DLP.Our applications exhibit DLP in to 970.4X. These results include benefits from a 4-way CMP,
the form of SIMD, short vectors, long streams, and vec- 2-way SMT, SIMD, and SVectors/SStreams. Our detailed
tors/streams of SIMD. results show significant benefits from each of these mecha-
The above observations motivate supporting many forms nisms. Specifically, for applications with DLP, adding SVec
of parallelism including ILP, TLP, and various forms of DLP. tor/SStream support to a system with all the other enhance-
For DLP, they imply that conventional solutions such as ded- ments in ALP achieves speedups of 1.1X to 3.4X, energy
icated multi-lane vector units may be over-kill. For exam- savings of 1.1X to 1.5X, and an EDP improvement of 1.1X
ple, the Tarantula vector unit has the same area as its scalato 5.1X (harmonic mean of 1.7X). These benefits are par-
core [12], but will likely be under-utilized for our appli- ticularly significant given that the system compared alyead
cations due to the significant non-DLP parts, short vector supports ILP, SIMD, and TLP; SVectors/SStreams require
lengths, and frequent reductions. We therefore take an al-a relatively small amount of hardware; and the evaluations
ternative approach in this paper that aims to improve upon consider complete applications.
SIMD, but without the addition of a dedicated vector unit. More broadly, our results show that conventional architec-
To effectively supporall levels ofparallelism exhibited by ~ tures augmented with evolutionary mechanisms can provide
our applications in the context of current GPP trends, ALP is high performance and energy savings for complex media ap-
based on a GPP with CMP, SMT, and SIMD. The most novel plications without resorting to radically different artd-
part of ALP is a technique calle8BIMD vectors (SVectors) tures and programming paradigms (e.g., Imagine, SCALE).
and SIMD streams (SStream#)at support larger amounts
of DLP than possible with SIMD. SVectors/SStreamsusean 2 THE ALP PROGRAMMING MODEL
evolutionary programming model and can be implemented

with modest additional hardware support that is tightlgint ALP supports conventional threads for TLP. ILP is not ex-
posed to the programmer since ALP uses an out-of-order su-

perscalar core as in current GPPs. The SIMD programming 3} vio addr: ot 1i e | encth == va

model roughly emulates Intel's MMX/SSE2 with multiple (3) VALLOCst addr:stride:length ==> V2

8, 16, 32, or 64 bit sub-words within a 128 bit word and (4 R S P

with eight SIMD logical registers. Most common opcodes (5) simd_nul sinmd_reg0, simd_regl ==> sind_reg2
are supported; e.g., packed addition, subtraction, nligkip simi_sub siim_reg2, #16 ==> V2

tion, absolute difference, average, logical, and packiakp Figure 2: Svector code forV2 = & % (V0 + V1) — 16
operations. SIMD operations use the FP register file and FP

units. We next describe the novel SVectors and SStreams

programming model. . .
SVector. The VLD and VALLOCSst instructions also spec-

2.1 SIMD Vectors (SVectors) ify the organization of the SVector in memory, including
the base memory address of the SVector, the stride between
two packed-words in the SVector, and the number of packed-

T T 1 — Record 0 words per 128b record. All of this information is stored in
SVR : : : : : : Sub-wrod .

the associated SVR descriptor.
LT T T N o

As an example, Figures 2 gives SVector code for the com-

Packed-Word Packed-Word

Record (128h) putationV2 = kx(V0+V1)—16, where VO, V1, and V2 are
Figure 1: An SVR consists of records, a record consists of packed- ~ SVRS, andk is a constant, stored in sintégl. The first two
words, and a packed-word consists of sub-words. instructions load the two source SVectors from memory. The

next instruction, VALLOCSst, allocates a new SVR for writ-
ing V2. All of these instructions implicitly reset the CRP of
SVectors are built on three key enhancements to SIMD VO, V1, and V2. Next, a loop called &IMD loopis used

support: to traverse the records of the SVectors. This loop contains
1. SIMD Vector Registers (SVRs)hold a sequence of SIMD instructions that directly read/write the SVRs, asses
records where each record itself is a sequence of (possi- ing the record currently pointed by the corresponding CRP
bly strided)packed-wordsind each packed-word may con- and incrementing this CRP. Each occurrence of instruction
tain multiple (contiguous) sub-words (see Figure 1). Unlik (4), therefore, reads from the next record of VO and V1 and
a conventional vector, the records of an SVR can be indi- each occurrence of instruction (6) writes to the next record
vidually accessed with an index, called tBarrent Record of V2 (and also stores that record to memory, since V2 is
Pointer (CRP)An SVR is allocated on demand and can have allocated with a VALLOCSt).
a variable length up to a given maximum. ALP also provides an instruction, ClearCRP, to reset the

2. SVector allocate (VALLOC) and SVector load (VLD) gzg gfsth:;cﬁ:eg\f/';drj;% ?r?tg Znslr '\‘;’gurcgloigt’el\r/loglz iféhtg
instructions. VALLOC and VLD allocate an SVR. VLD P 9 :

") . is used if an SVR needs to be read again after it has already
additionally loads a (possibly strided) sequence of packed . . Lo
. . - been traversed once with SIMD instructions; e.g., to reuse
words into the SVR from memory. A slight variation

of VALLOC, called VALLOCst, allocates an SVR whose a quantization table in MPEG. Mc?veRec is used to provide
. random read access into records; e.g., MoveRec VG;#4
records are flushed to memory as they are written. All of

these instructions reset the CRP of the SVR. These are the5|md_reg4 moves record VO[CRP+4] to sintdg4.
. ; . . ALP requires that an SVector/SStream be traversed se-
only special SVector instructions in the ALP ISA. . :)
quentially. If a record needs to be skipped, it must be read
3. SIMD instructions capable of accessing SVRsAIl and discarded to increment the CRP. Alternatively, it is-pos
computation on SVRs is performed using SIMD instruc- sible to provide an instruction to increment the CRP by a
tions which can directly access an individual record of an given number of records; however, our applications do not
SVR. Such an instruction specifies an SVR as an operand,exhibit such a requirement.
which implicitly accesses the record of the SVR pointed to ALP does not support scatter/gather operations on SVec-
by its CRPand also increments the CRPhus, a dynamic tors since our applications do not exhibit memory access pat
sequence of SIMD instructions specifying a given SVR will terns that would benefit from such operations.
access successive records of the SVR. ALP imposes three implementation-driven ISA restric-
The ALP ISA supports 8ogical SVRs, VO to V7, with tions. The first two arise because ALP implements SVRs
a record size of 128 bits and sub-word sizes of 8, 16, 32, by reconfiguring part of the L1 data cache to allocate SVR
and 64 bits. Associated with each logical SVR is an inter- space on demand (Section 3). First, the maximum SVector
nal SVR descriptor register. This descriptor registerestor length allowed in ALP is related to the L1 size and the num-
pertinent information about the SVR, including the CRP. A ber of SVRs supported. An SVector length of 32 records
VLD, VALLOC, or VALLOCS st instruction must be used to (512B) sufficed for our applications and fit comfortably in
explicitly allocate an SVR before any SIMD instruction can our L1 cache (except for FaceRec that uses SStreams). Sec-
access it. These vector instructions specify the lengtheft ond, because SVRs are allocated on demand, clearly, an

SVR cannot be read unless it is explicitly allocated using tors/SStreams reduce instruction count in two ways. First,
a VLD, VALLOC or VALLOCst. Third, the out-of-order =~ VLD/SLD and VALLOCSst/SALLOC reduce instruction
ALP implementation uses conventional renaming to avoid count by replacing multiple loads and stores with one in-
stalls due to WAR and WAW hazards even for SVectors. A struction and eliminating the corresponding address -arith
problem with this is that the renaming occurs at the granu- metic overhead instructions.

larity of the full SVR, at the vector load and allocate instru Second, SVRs reduce loads/stores and associated over-
tions. However, the SIMD writes occur at the granularity of head instructions due to increased register locality. The
individual records. We therefore impose a programming re- SVRs increase the register space available that can
striction that requires a VALLOC instruction before avecto be directly accessed by compute instructions, reducing
record is overwritten by a SIMD instruction. This instruc- loads/stores due to register spills. For instance, MPGenc
tion indicates to the hardware that a new renamed copy of and MPGdec repeatedly use quantization/coefficient tables
the vector must be allocated for subsequent SIMD writes of each table in DCT/IDCT has 32 records. A pure SIMD sys-
this logical vector. In our applications, writing to SVRs is tem repeatedly spills and loads entries of these tables from

infrequent, so this restriction has little impact. and into the small number of SIMD registers. With SVRs,
these tables are loaded only once and then directly accessed
2.2 SIMD Stream (SStreams) by the SIMD compute instructions for as long as they are

An SStream is essentially a long SVector that (i) exceeds needed.
the maximum length of an SVR, and (ii) must be accessed A simple expansion of the SIMD register file is not as ef-
strictly sequentially. Conventional vector processorsido fective because (i) it would need a larger instruction width
require strip-mining for loops containing such long vec- to encode the larger register space and (ii) a single lage re
tors. Instead, we support two special stream load (SLD) andister file is energy inefficient and this price would be paid
stream allocate (SALLOC) instructions. These instruation for all SIMD instructions. SVectors mitigate problem (i) by
are similar to VLD and VALLOCSt respectively in that they —exploiting the regular nature of vector data to access them
both allocate the specified SVR. Transparent to the program-through an implicit index (the CRP) — this requires encod-
mer, however, the underlying hardware allocates an SVR ing only the SVR in the instruction since the CRP is im-
size that is smaller than the stream size, and manages it likeplicit. They mitigate problem (ii) by splitting the registe
a FIFO queue — when the program reads a record from thespace into the smaller (and so more energy efficient) SIMD
head, it is discarded and a new record is automatically ap-register file and the larger (less energy efficient) SVR. The
pended to the tail (Section 3.3). An exception incurred by more efficient SIMD file stores temporary values from inter-
the load of such a record is handled at the instruction that mediate computation, making the most effective use of that
will consume the record (Section 3.3). space. The less efficient, larger SVR file primarily stores th
Like SVectors, computation on SStreams occurs with large amounts of SVector data directly loaded from memory,
SIMD instructions. For instance, to perform the compu- reducing pollution of the SIMD file.
tation in Figure 2 on two streams and produce a resulting , - |ncreased exposed parallelism and decreased contention
stream, we neeq only change VLD to SLD and VALLOCSt ¢, reqyced instruction countThe reduction of mem-
to SALLOC. Unlike SVectors, ClearCRP and MoveRec are
not supported for streams since streams are accessed seque
tially (to simplify hardware management of the SVR space).
Note that it is possible to replace SStreams with SVectors

ory/overhead instruction count in frequently used loops al
fdws more loop iterations to fit in the processor’s instroiti
window. This allows hardware to extract more parallelism

by strio mining | | 4 SV b and hide latencies of compute instructions. In short loops,
y strip mining long loops. However, SVectors may Notbe as ;i ,ction count reduction can be as high as 50% allow-

eff(_ec.tive as SStreams for hiding memory Iaten_cy (Section 6) ing twice as many compute instructions in flight (e.g., in our
This is because SVector loads have to be explicitly schedule ¢, recognition application). Further, the reduction efra

forhmgxllmal Iategcly hcljdmg \Illvher%as hariwa;es?utomatlcally ory/overhead instructions also reduces contention taatit
Schedules record loads well In advance for sstreams. resources like register files and issue ports.

2.3 SVectors/SStreams vs. SIMD 3. Load latency toleranceSVectors/SStreams allow more

This section qualitatively describes the performance and @ggressive use of pipelined loads, without limits of regis-
energy benefits of SVectors and SStreams over a pure SIMDer pressure. On an SVector/SStream load, the constituent
ISA (e.g., MMX or SSE2). Differences from conventional l0ads of individual records are pipelined with each othef an
vectors are discussed in Section 7. Not surprisingly, some With the iterations of the corresponding SIMD computation
of these benefits are similar to those from conventional vec- [00p. Further, SVector/SStream loads that can be predicted
tors [3, 7, 15]. Section 7 elaborates on the differences be-in advance can also be hoisted well before the corresponding

tween SVectors and conventional vectors. SIMD computation loops. o
] The above benefit from SVector/SStream loads is similar
Performance benefits. to that from using (hardware or software) prefetching, but i

1. Reduced load/store and overhead instructio8%ec-

more effective than the latter for the following reasonsstri plications [36] and current GPP trends, ALP implements a
SVector/SStream loads eliminate many load instructions; CMP with four 4-wide out-of-order cores with two SMT

prefetching does not have this benefit and software prefetch threads per core. Each core has a private L1 instruction
ing requires additional instructions for the prefetched an cache and a private writethrough L1 data cache. All cores
address calculation. Second, SVector/SStream loads onlyiogically share a unified writeback L2 cache. The L1 caches
bring the data required, whereas prefetchers bring entireare kept coherent with a writethrough invalidate protocol.

cache lines, potentially polluting the cache. Third, pretie

128b 32b
-

ing needs to be carefully scheduled; otherwise, it can evict — Upper Int Partition Upper FP/SIMD Partifion
useful data. Prefetches into separate buffers have been rec |usmer | upper @MHM Add,L;ziC,Mem Ajf,fgic
ommended to avoid this problem, but such buffers must be |pariton | | proer RegFile0 RegFile0
exposed to the cache coherence protocol. Finally, for short B MultDiv MultDiv
vectors such as 16x16 or 8x8 blocks seen in MPEG, there H Add/Logic/Mem Add/Logic
may not be enough time for a hardware prefetcher to effec- | (g | | meger RegFilel RegFie
tively learn the pattern [16]. Section 6 discusses exparime Partion | | Partition ’W‘ ’m‘ Adi::l;ogic Ad,\j/ul_"oglc

tal results that show that ALP’s benefits exceed well beyond Lower Int Partition Lower FP/SIMD Partitior
those for prefetching. @ () ©

4. L1 cache space and bandwidth savings due to packed
data: SVRs contain packed and aligned data. In contrast
a cache line loaded to L1 using a SIMD load may contain
useless data.

Figure 3: Integer, FP/SIMD, and L1 partitions/banks. (a)
" Overview. The integer and FP/SIMD execution units andise
ter files consist of two partitions (upper and lower int or FRID
execution partitions). The L1 cache consists of four barikach
5. Eliminating record alignment in L1tn many cases, 16- execution partition connects to all the four L1 banks — tw® 16
byte SIMD records are not aligned at 16-byte boundaries in busses connect the upper partitions and another two coitimect
memory. SIMD instruction sets like MMX/SSE provide spe- lower ones. This enables each of the two SMT threads to per-
cial unaligned load instructions to load SIMD data starihg ~ form up to two memory operations per cycle. The shaded region
unaligned addresses. Such instructions have higher fatenc in the cache banks show SVR$b) Integer execution partitions
than normal loads. This latency has to be paid each time (32b wide). Integer units in the upper (lower) partition can only
data is loaded from L1. With SVectors/SStreams, the extra read/write the upper (lower) partition of the register fégcept for
latency for alignment has to be paid only at the time of load- the shaded units which can access both partiti@@)$P/SIMD ex-
ing an SVector from L2. Accesses to SVRs do not require ecution partitions (128b wideBimilar to int, only the shaded units
any alignment. Further, since this alignment is done in L2 can access both register file partitions.
as part of a vector load that is performed in parallel with the
computation, it is often possible to remove this additional
latency from the critical path.

To ensure that the baseline core is energy efficient, al-
most all processor resources are partitioned and caches are
banked. Figure 3 illustrates the partitioning/banking for
Energy benefits: SVectors/SStreams provide energy bene- some resources. When both SMT threads run, each thread
fits over pure SIMD in the following ways. First, the per- has exclusive access to half the partitions for most ressurc
formance benefits above reduce execution time without a(e.g., reorder buffer/retirement logic, load/store queli®-
commensurate increase in power, thereby reducing energyiaple exceptions are the caches, TLBs, and a few execution
Second, an SVR access is more energy efficient than a usuajjnits (Figure 3) — these are physically partitioned, but-log
cache access that it replaces. This is because a Ioad/stor@a”y shared among both threads as in a typical SMT design.
requires accessing the TLB and all tag and data arrays in a The L2 cache is logically shared among all four cores. It
bank. SVR accesses do not perform TLB and tag accessess physically divided into four banks (each with four sub-
at all and access only the cache way where the SVR re-panks) connected with a crossbar. Each processor has one L2
sides. Finally, it is possible to use the performance benefit hank closest to it called itsome bank There is a dedicated
of SVectors/SStreams to save even more energy by runningconnection between a processor’s L1 and its home L2 bank.
at a lower frequency and voltage, but we do not exploit this Taple 1 provides the specific parameters used in our ex-

benefit here. periments. These choices were made to provide reason-
able size/ports and reduced energy/cycle time for eacb-stru

3. ALPIMPLEMENTATION ture. The processor frequency is a relatively low 500MHz
(in 90nm technology) since ALP is targeted towards energy

3.1 Supportfor ILP, TLP, and SIMD efficiency. We can also interpret this frequency as a low

ALP’s support for ILP, TLP, and SIMD is conventional. frequency setting for a higher frequency processor with dy-
As in Section 2, the SIMD implementation is roughly based namic voltage/frequency scaling. We expect our qualiativ
on that of Intel's MMX/SSE2. Based on a previous study results to hold with a wide range of parameter choices rep-
on the best combination of ILP and TLP for multimedia ap- resentative of modern superscalar GPPs. Section 6.1 seport

Parameter \Ffi';%’;'lng ﬁ;’rfmions A multiplexer (or an additional input to an existing one) is
Phy Int Reg File (32b) 64 regs, SRIAW| 2 necessary to drive theT _input .of the cache line decoder s_ince
Phy FP/SIMD Reg File (128b) 32 regs, 4R/4W| 2 now there is one additional input (the CRP of a SIMD in-
Int Issue Queue 2 struction). The SVector records traveling from an SVR to
-# of Entries 24 . . h g f di h d b
of RIW Ports 3R/AW execution units use the existing forwarding paths used by
-# of Tag R/W Ports 6R/3W usual SIMD loads. Thus, the L1 cache requires only minor
FP/S"l\"N?S :Ssue Width 3 . modifications to support SVRs.
it of Eﬁﬁngue“e " We note that since results of intermediate computations
-# of RIW Ports 3R/4W are stored in SIMD registers, SIMD instructions typicalty d
'?:AOf Tlag R/w_;ﬁfts gR/3W not access SVectors for all three operands. This reduces the
-iMlax Issue Wi - . . .
Coad/Store Queue 5 L1 caphe bandwidth required to support multlpIgSIMD in-
-# of Entries 16 structions per cycle. The two L1 busses per partition alread
-ﬁ;of T/W Ps\f;;th gR/ZW provided (Figure 3) are sufficient to feed two SIMD instruc-
-iMlax Issue Wi . . .
Branch Predictor (gselec) | 2KB > tions accessing two SVectors gach in a cycle. It _should be
SVector Descriptors 12 2 noted that the use of SIMD registers for temporaries makes
Integer ALUs (32b) see Fig. 3 2 it practically possible to allocate SVRs in the L1 cache. A
oD e ((llzzgé’)) e E:g' 5 2 traditional vector ISA requiring all vector instructiorsuse
Reorder Buffer 32 et 2RI2W | 4 the vector register file will make it difficult to allocate the
-Retire Width 2 vector registers in the L1 cache due to the higher number of
Rename Width 4 per thread 2 register ports required
Max. Fetch/Decode Width 6 (max 4 per thread) 9 P q)

The L2 cache requires more support than the L1. SVector

Parameter Value PER BANK # Banks .)

[TT-Cache 8K, 4 Way, 328 Ine, TPort | 2 loads are.sent to the requesting processor’'s home L2 cache

L1 D-Cache 8K, 2 Way, 32B line, 1 Port | 4 bank. This bank then sends requests for the packed-words

(va\lréteﬂ;rough) JE6K. 16 Way. 648 line. 1 Porl 4 constituting the SVector to other banks as needed (recll th
acnhe y ay, ne, (0] . .

(Writeback, unified) an SVector load may specify a stride between packed words).

Each bank inserts such requests in its wait queue and ser-
vices the requests in order (in parallel with the other banks
When the data is available, the bank sends it to the home

Bandwidth and Contentionless Latencies @ 500MHz
Parameter Value (cycles @ 500MHz)
ALU/Int SIMD Latency 8 (Div-32b), 2 (Mult-32b), 1 (Other)
FP/FP SIMD Latency

L1 I-Cache Hit Latency
L1 D-Cache/SVR Hit Latency
L2 Cache Latency

Memory Bandwidth

12 (Div), 4 (Other)
1

1
10 (hit), 42 (miss)

16 GB/s

bank (across the crossbar). It should be possible for iddivi

ual banks to access words starting at any byte location (i.e.
to perform un-aligned loads). This capability is generally
found in caches to access individual words for writing. The

home bank assembles two 16B records into a 32B L1 cache
line and sends these to the SVR in the L1. Each L2 bank
contains separate buffers for packing records to cachs.line
Note that entire L2 cache lines are not transmitted to L1 and
only the records required are assembled and sent, thereby
saving bandwidth and energy. The connection between the
L1 and L2 can support one 32B cache line (two 16B records)
per cycle.

Table 1: Base architecture parameters. Note that several parameter
values arger partition or bank.Section 6.1 reports some sensitivity results.

some sensitivity results (limited for space reasons).

3.2 Support for SIMD Vectors

3.2.1 Modifications to the Caches

SVRs are allocated in the L1 data cache (Figure 3 and Fig- .
ure 4). Thread 0 allocates even numbered SVectors in bank3'2'2 Modifications to the Rest of the Core
0 and odd numbered SVectors in bank 2 of the L1. Thread We model an out-of-order pipeline with eight stages:
1 allocates odd and even SVectors in banks 1 and 3 respecfetch, decode, rename, issue, operand-read, execute; writ
tively. This allows each thread to access one record from back, and retirement. Fetch and execute do not need
each of two SVectors in a cycle. Although each cache bank any modification; decode needs small modifications to de-
has multiple ways, we currently allocate SVRs only in way code a handful of new instructions; and operand-read and
0. Reconfiguring lines of a cache bank into an SVR is quite retire stages need straightforward enhancements to read
simple [2, 30]. One additional bit (SVR bit) per cache line from/write to SVRs. The following discusses the modifi-
is needed to indicate that it is part of an SVR. Since the L1 cations to rename, issue/scheduling, and retirement,hend t
cache is writethrough, reconfiguration of a cache line into handling of speculation, and precise exceptions.
part of an SVR simply requires the above bit to be set; no Rename stageThe rename stage of an SVector load or al-
cache scrubbing is required. An additional decoder to de- locate instruction allocates an SVR and an SVector descrip-
code the SVR location is also not necessary since caches altor corresponding to the destination logical SVR. The labic
ready have such a decoder to decode the cache line addres&Vector to physical descriptor mapping is stored in a rename

Packed Last
Base Words/ Available
Addr Stride Record Record

Start
Line Length CRP

VO 0 8 3 XXXX 16 1 7
vil O 8 2 yyyy| 16 1 3
: SVector Descriptors
L1 Cache Bank 0 L1 Cache Bank
Rec 0 Rec 1 \ Rec 0 Rec 1‘V/
VO 222 i 22253 N Rec2 Rec 3 V1
Rec 6 Rec 7
I] I
32 Bytes 32 Bytes

Figure 4: SVRs and SVector descriptor registers Shaded cache lines
contain SVRs whereas unshaded ones comprise normal catzheStart
Line, CRP, and Last Available Record are relative to the sfethe cache.

table. The SVector descriptor register (see Figure 4) aumta
two fields (not programmer visible) in addition to the CRP
and those initialized from the SVector instruction dis@gss

in Section 2: (i) Start Line specifies the cache index address
of the first record of the SVR, and (ii) Last Available Record

sage to the rename stage to update the Last Available Record
Field for that SVR. At the same time, the cache index plus
bank number is passed as an 8-bit tag along a wakeup tag
port of the issue queue (along the same tag ports used for
passing an 8-bit register identifier when a normal load com-
pletes) and compared against the same information carried i
the decoded instruction. On the tag match, the waiting SIMD
instruction sets its operand ready bit, and is ready forigfsu
both its operands are ready. If an instruction reads from two
vectors mapped to the same L1 bank, the instruction has to
be stalled in the read-operand stage until both operands are
read. However, this condition can be often avoided in the
code itself by using vectors that map to different banks,(i.e
odd and even vectors map to different banks).

For memory disambiguation and conflict resolution, the
load/store queue receives VLD instructions and SIMD in-
structions that write to an SVector allocated with VAL-
LOCst. Such an instruction may access several possibly
strided packed-words — we conservatively assume that it
accesses the entire memory range from the address of the
first to the last packed-word for resolving conflicts. Sup-
port for detecting conflicts among accesses with different
address ranges already exists; e.g., conflicts betweelaregu

specifies the absolute record number of the last record thatg|\ip j0ads/stores spanning 16 consecutive bytes and other

has been produced (loaded/written) so far. The Last Avail-
able Record and CRP fields store the absolute record numbe
relative to the start of the cache bank.

The allocation process for an SVR is analogous to that for
a scalar register, requiring maintaining a free list of klde

FP/integer loads spanning fewer bytes.

" Retirement: For SVector load and allocate instructions,
the retirement stage frees SVRs similar to the freeing of re-
named registers for ordinary instructions; i.e., the ptlsi
register that used to map to the destination logical registe

space. However, an SVR requires allocation of & SequenCeg retired instruction is freed. Additionally, the SVRsbiif

of cache lines. One simple way to achieve this is to logically

the corresponding L1 cache lines are reset. Since the start

divide a cache bank into N equal sized segments, where N iSjjneq and the maximum number of cache lines for SVRs are

determined by the number of physical registers that can be
allocated in that bank. This fixes the number of SVRs and
the StartLine of each SVR in a cache bank. Now a free bit

can be maintained for each such logical segment to indicate

whether it is free or allocated.

When a SIMD instruction with an S\Vector operand is re-
named, the CRP field from the corresponding SVector de-
scriptor is read to provide the location of the operand. The
CRP is then incremented for the next SIMD instruction to

predetermined, simple circuitry can be used to reset all SVR
bits of an SVR in a cycle. An SVR is also freed when the
thread that created it is killed. ALP also provides a special
instruction to explicitly free all SVRs, which can be used
when the subsequent code does not use SVectors. As for
ordinary stores, storing records of a vector to memory also
happens at retirement.

Speculation: To rollback modifications to SVR related re-
sources by mispredicted instructions, ALP uses the conven-

the same SVector. Thus, the CRP is accessed and updategons| combination of renaming and checkpointing. Specif-

only in the in-order part of the pipeline, avoiding any RAW,
WAW, or WAR hazards on it. Similarly, the ClearCRP in-
struction also performs its CRP update in the rename stage.

Issue and scheduling:Only minor changes are necessary
for the issue and scheduling logic. For a SIMD instruction
that reads an SVR record, the availability of the record is
marked in a ready bit as done for a normal register source
operand. An SVR record is known to be available if the
CRP of the SVector descriptor is less than or equal to the
Last Available Record of the same descriptor.

If the required record is not yet available, the SIMD in-
struction awaits its availability in the issue queue juke li
other instructions waiting for their operands. When the re-

ically, on a branch, ALP checkpoints the rename map table
for SVectors and the CRP values (analogous to checkpoint-
ing integer/FP rename tables).

Precise exceptions:Precise exceptions are largely han-
dled through register renaming and in-order retirement as
with current GPPs, with three additions. First, on an excep-
tion, the (currently allocated) SVRs need to be saved. Sec-
ond, exceptions within VLD can be handled as in CODE
by allowing the VLD to be restarted with partial comple-
tion [24]. Third, as discussed for retirement, for SIMD in-
structions that write to memory, the memory update is done
only at retirement, after examining for exceptions. In case
a memory write due to such an instruction needs to modify

quired record arrives in the SVR, the cache sends a mes-

multiple packed words and there is a TLB miss/page fault words whereas SpeechRec and FaceRec use larger FP sub-
on one of them, again, partial completion as in [24] can be words.
used. The % SIMD instr. row gives the percentage of total dy-
namic instructions that are SIMD in the version of the code
3.3 Support for SIMD Streams with ALP SIMD. The relatively small percentage shows the
SStreams are implemented similar to SVectors, with the importance of supporting ILP and TLP for these complex
following additional support. For an SStream, an SVR is applications.
managed as a FIFO circular buffer with a head and a tail The Computation/Memoryow of Table 2 gives the ratio
(LastAvailRec). When a SIMD instruction reading from (or of SIMD computation to memory operations (and instruc-
writing to) the head of an SStream retires, the retirement tions) in the version of the code with ALP SIMD. All our
logic checks if the record involved is at the end of an L1 applications show low computation to memory ratios. This
cache line. In that case, the cache line is evicted from the indicates that efficient support for memory operations @oul
SVR and a load request is sent to the L2 to bring in the next lead to significant performance and energy improvements for
records that need to be appended to the tail (or a store rethese applications.
guest is sent to write the records at the head). Since an SVR The DLP Granularity row shows the DLP granularity
cannot hold an entire SStream, an SStream load (SLD) is al-in 128b SIMD words (i.e., the iteration count of SIMD
lowed to retire before the entire SStream is loaded. If the loops). All our applications except FaceRec exhibit small-
load of a subsequent record later incurs an exception, thegrain DLP (i.e., small vector lengths), while FaceRec ex-
record number is stored in a special exception field in the hibits very large grain DLP (i.e., streams). It may (or may
corresponding SVector descriptor. The exception is taken a not) be possible to increase the vector lengths with much ef-

the next instruction that refers to the record. fort using substantially different algorithms. Howevarch
changes were not obvious to us and, we believe, are beyond
4. APPLICATIONS AND PARALLELISM the scope of this work. (Some obvious changes substantially

We used five complex media applications available in Increase the amount of work to be done and significantly
the ALPBench benchmark suite [27]: MSSG MPEG-2 en- reduce performance; e.g., using a full-search instead of an
coder and decoder [29] (MPGenc and MPGdec) Tachyonintelligent search in MPGenc, using matrix multiplication
ray tracer [38] (RayTrace), Sphinx-3 speech recognizer [32 based DCT/IDCT in MPGenc/MPGdec instead of an opti-

(SpeechRec), and CSU face recognizer [4] (FaceRec). ThemizedOChen—ang butterfly algorithm [40].)
applications are modified by hand to extract TLP and DLP. 1he% Reductionsow shows the dynamic number of DLP

TLP is exploited using POSIX threads. The threads usu- OPerations that are part of a reduction, as a percentage of
ally share read-only data, requiring little additionalsro- ~ the total dynamic DLP compute operations in the version
nization. For DLP, the applications include ALP's SiMD ©f the code with ALP SIMD. This relatively high percent-
instructions. We additionally extended this SIMD support @3¢ combined with the small DLP granularity underscores
with SVector/SStream instructions. MMX style hand-coding the importance of supporting efficient reductions for these
is prevalent practice for these applications and the maxi- aPplications. Some implementations are not efficient in sup
mum number of static assembly instructions inserted (for POrting reductions when the DLP granularity is small (e.g.,
MPGenc) is about 400. All applications exploit TLP and Multi-laned vector units). This property indicates thattsu
ILP. Al applications except for RayTrace exploit SIMD implementations may be a poor match for these applications.

and SVectors; only FaceRec exploits SStreams. A detailed
description and characterization of the applications appe 5. SIMULATION METHODOLOGY

in [27]. We simulate the following systems based on Section 3:
| | MPGenc | MPGdec | SpeechRec| FaceRec | o 1T: The base system with only one thread and no
Sub-word size 1B,2B 1B,2B 4B (float) | 8B (double) ;
% STMD ot T - 17 55 SIMD or SVectors/SStreams (Figure 3 and Table 1).
Computation/Memory 1.70 1.84 1.43 1.00 e 1T+S: 1T system with SIMD instructions.
DLP Granularity 1,8,16 1,4,8 10 9750 .
(in 128b words) (stream) e 1T+SV: 1T+S system with SVectors/SStreams.
% Reductions 36 10 28 50

e AT, AT+S, 4T+SV.. Analogous to the above three sys-
tems, respectively, but with four cores in each system
(4 way CMP) and each core running one thread.

o 4X2T, 4x2T+S 4x2T+SV. Analogous to 4T, 4T+S,

Table 2 summarizes the DLP characteristics of our appli- 4T+SV respectively, but each core is a 2-thread SMT.
cations, except for RayTrace, which has only TLP and ILP.

The first row summarizes the sub-word sizes used by each We refer to the 1T system as thaseand to the others as
application. MPGenc and MPGdec use smaller integer sub-enhanced ALP is 4x2T+SV. Note that we keep the total L2

Table 2: DLP characteristics of applications.

Speedup

Figure 5: Speedup of enhanced systems over the base 1T system for eagimplete application (ExecutionTimeBase/ExecutionTimeBhanced).

B Clock

aL2

oLiD

B FU+ResBus
[RegFiles
O1Q/ROB

E FrontEnd

I1100
I1100
I1100
1100

% Energy (100% = Energy of 1T)

1748 L 130
1TV B 28

42T+SV BT

Figure 6: Energy consumption and distribution of enhanced systems & percentage of the energy consumption of the base system.

cache size the same in 1T and 4T systems to ensure that thé.1 Overall Results
CMP benefits do not come simply from a larger cache size. rjqres 5 and 6 and Table 3 present our high-level resullts.
To model the above systems, we use an execution-drivengqr each application, they respectively provide the exenut
cycle-level simulator derived from RSIM [17], and model ine speedumchieved over the base system (single-thread
wrong path mstructlpns and contention at all resources. Wesuperscalar), the energy consumed normalized to the base,
only emulate operating system calls. _ _ _and theimprovementn energy-delay product (EDP) over
Pthread-based C code is translated into binary usinghe pase, for each system. Each energy bar also shows the
the Sun cc 4.2 compiler with options -xO4 -xunroll=4 - gistribution of energy among different components. Table 5
xarch=v8plusa. DLP code resides in a separate assembly;,mmarizes the above data by reportingtthemonicmeans
file, organized as blocks of instructions and simulatedgisin - ¢ e speedup, energyprovementand EDP improvement
hooks placed in the binary. When the simulator reaches suchg, key pairs of systems. For the DLP enhancements (+S and
a hook, it switches to the proper block of DLP instructions +SV), the means are computed across the applications that

in the assembly file. _ use those enhancements (i.e., all except RayTrace); for the
We integrate Wattch [5] for dynamic power and HotLeak- ghers; the means are computed across all applications. For

age [43] with temperature models from [37] for static power. \oterence, Table 4 gives the instructions and operations pe
We assume agg_res_sive clock gating. Most components hav%yde (IPC and OPC) for each application and system.
10% ungated circuitry [5]. To favor the base system, we "o 4ata validates our claims that complex media applica-
model only 2% ungated power for caches and functional yjons demand support for a wide spectrum of parallelism and
units. Since the base system takes longer to execute a givery| p effectively provides such support. Specifically, atth
application, having more ungated circuitry would make it techniques in ALP are important and effective.
consume more power. Since the exact amount of clock across all our applications, compared with the base 1T
gating is highly implementation dependent, we made the g qtem ALP with all the enhancements (i.e., 4x2T+SV)
choices to favor the base system. We model energy for sup-ghows a speedup of 5X to 56X (harmonic mean 9.2X),
porting SVectors/_SStreams (e.g., _for SVRs, vector rename—energy improvement of 1.7X to 17.2X (harmonic mean
map tables/descriptors, extra bits in caches). 2.8X), and EDP improvement of 8.4X to 970X (harmonic
mean 22.7X). All comparisons are made at the same volt-
age/frequency for all systems — ALP’s energy savings could
6. RESULTS be further improved by using dynamic voltage scaling, at the

cost of some reduction in its performance speedups. App 1T | 1T | 4T | 4T AT | 4x2T | 4x2T | 4x2T
Table 5 clearly shows each technique in ALP contributes Y 5288 IlSOV4 - 3;:8 g]_82V1 e 5;(?5 ;'750\/4
significantly to the above benefits, especially when consid- ~yscgec 128 149 [5.9 50.0 | 68.1 | 106 | 87.3 | 97.8
ering the relative complexity/area overhead of the tealiq RayTrace | NJ/A | NJA | 55| N/A | N/A | 86 | NJ/A | N/A
Specifically, comparing the effect of an enhancement over| SpeechRed 33 | 56 | 4.7] 147 | 205 | 6.4 | 209 | 294
a system with all the other enhancements, we see that the "2ceRec | 2.6 | 12.7 | 64] 153 | 575] 6.7 | 155 | 79.2
mean improvement in EDP from adding SIMD instructions
to 4x2T is 4.5X, from adding SVector/SStreams to 4x2T+S Table 3: Energy Delay Product (EDP) improvement over the base
is 1.7X, from adding 4-way CMP to 1T+SV is 4.5X, and (1T) system (EDPbase/EDPenhancediigher values are better.
from adding SMT to 4T+SV is 1.4X. The means for the
DLP enhancements (SIMD and SVector/SStream) are over
the DLP applications (i.e., except for RayTrace). . i
We also performed experiments with the 4x2T+SV system tons here (i.e., all except RayTrace). _ _
restricted to 2-wide fetch/decode/retirement (but sarsesis To aid our analysis, Table 6 gives the total instructions and
width and functional units). Compared to this system, the 4- OPerations retired for the 1T+S and 1T+SV systems as a per-
wide system reduced execution time from 5% to 22% (mean C€Ntage of the base 1T system. (The numbers for the other
12%), validating the need for the ILP support in ALP. +S (+SV) systems are the same as for the 1T+S (1T+3V)
We also increased the L1/SVR hit time from 1 to 4 cy- systems.) Further, Figure 7 shows the different components
cles. The speedup of SVectors/SStreams over SIMD re- of execution time in these systems, normalized to the total
mained within 6% except that FaceRec saw a 15-20% in- ime of 1T+S. For an out-of-order processor, it is generally
crease (due to the use of SStreams that successfully hide th&ifficult to attribute execution time to different comporen
higher latency). Similarly, we also experimented with igh ~ Following prior work [33], we follow a retirement-centric
processor frequency (i.e., longer memory latencies) and ge @PProach. Let be the maximum number of instructions
erally found increased benefits for SVectors/SStreams overthat can be retired in a cycle. For a cycle that retires-
SIMD (since SVRs reduce the impact of the higher latency). Structions, we attribute/r fraction of that cycle as busy, at-
Since it is possible to emulate SStreams using SVectors bytrlbutlng 1/r cycle of .bl.sz time to each retiring instruction.
strip mining long loops, we also performed experiments us- e charge the remaining I cycle as stalled, and charge
ing SVectors instead of SStreams for FaceRec, the only ap_thIS time to the instruction at the top of the reorder buffer
plication that uses SStreams. However, SVectors are not ad!-€- the first instruction that could not retire). Thisliec
effective as SStreams for hiding memory latency. This is be- Nidué may appear simplistic, but it provides insight inte th
cause SVector loads have to be explicitly scheduled for max- "€@sons for the benefits seen. _
imal latency hiding whereas hardware automatically sched- e categorize instructions as: Vector memory (VecMem)
ules record loads well in advance for SStreams. As a result, (0Nl for 1T+SV), SIMD memory (SimdMem), SIMD ALU
we found that there is a 17% performance degradation with (SIMJALU), and all others. In Figure 7, the lower part of the
SVectors with respect to SStreams for FaceRec. This benePars shows the busy time divided into the above categories,
fit from SStreams may appear modest but comes at a smallVhile the upper part shows the stall components. The busy
additional hardware cost. time for a category is directly proportional to the number
Finally, as an indication of application-level real-timerp of instructions retired in that category. We also note that
formance, for each second, ALP supports MPEG2 encod- the “other” category includes overhead instructions for ad
ing of 73 bVD resolution fra’mes MPEG2 decoding of 374 dress generation for SimdMem instructions and SIMD loop
DVD frames, ray tracing of 5 5’312x512 frames (a scene branches; therefore, the time spent in the DLP part of the
of a room with 20 objects), recognizing 30 words using a 2Pplication exceeds that shown by the Simd category of
130 word vocabulary/dictionary (SpeechRec), and recegniz nstructions. The figure shows that the benefits of Svec-
ing 1,451 130x150 images in a 173-image database (Fac-lorS/SStreams arise from the following: S
eRec). Although the above application performance may Reduction in busy timeoccurs due to the reduction in in-
seem more than currently required in some cases, it is ex-Struction count from SimdMem and related overhead (Other)
pected that these applications will be run with larger igput InStructions (Table 6 and benefit 1 in Section 2.3).
in the future, requiring higher performance (except peshap Eliminating SIMD loads should eliminate a significant

for MPEG decode which shows ample performance even for fraction of the total SIMD and associated overhead instruc-
future larger inputs). tions for our applications due to the low SIMD computation

to memory ratio (Table 2). This effect can be clearly seen in

. MPGenc and FaceRec.
6.2 Analysis of SIMD Vectors/Streams In SpeechRec, as a fraction of total instructions, the SIMD
Section 2.3 qualitatively described the benefits of SVec- instructions are small. Nevertheless, the benefit of reduc-
tors/SStreams over SIMD. We next relate our quantitative ing SimdMem/overhead instructions (and associated ¥talls
data to those benefits. We only consider the DLP applica- is large enough that it allows skipping of a pre-computation

10

App 1T 1T+S 1T+SV 4T 4T+S 4T+SV
MPGenc 1.8(1.8)| 25(8.5)| 2.3(10.3)|| 6.3(6.3)| 9(30.9) | 8.3(37.5)
MPGdec 21(21)]| 23(6.4)| 24(6.6) || 74(7.4] 6.9(19.5)| 7.2(20.1)
RayTrace || 1.9 (1.9) N/A N/A 7.1(7.1) N/A N/A

SpeechRed| 1.6 (1.6)| 1.5(2.2)| 1.8(2.9) || 5.3(5.3)| 4.5(6.8) 5.1(8)
FaceRec 13(1.3)| 1.3(22)| 2234 || 5.2(5.2)| 53(8.7) | 8.1(12.8)
App ax2T 4x2T+S Ax2T+SV
MPGenc 10.7 (10.7)| 12.8 (44.4)| 11.4 (51.5)
MPGdec 11.3(11.3)| 9.2(25.9) | 9.4(26.2)
RayTrace 9.8 (9.8) N/A N/A

SpeechRed| 6.6 (6.6) 5.7 (8.6) 6.6 (10.3)
FaceRec 5.3(5.3) 5.3(8.7) | 10.7 (16.9)

Table 4: Instructions-per-cycle (operations-per-cycle) achievéby all systems.

Benefits of SIMD SVectors/SStreams

Systems 1T+S/ | 4T+S/ | 4x2T+S/ || 1T+SV/ | 4T+SV/ | 4x2T+SV/

compared 1T 4T 4x2T 1T+S 4T+S 4x2T+S

Speedup 2.63 2.52 2.41 1.48 1.43 1.46

Energy 2.41 2.29 2.25 1.3 1.21 1.21

EDP 5.06 4.69 4.52 1.83 1.67 1.69
Benefits of CMP SMT ALP
Systems AT/ | 4T+S/ | AT+SV/ || 4x2T/ | 4x2T+S/ | 4x2T+SV/ || 4x2T+SV/
compared 1T 1T+S | 1T+SV 4T 4T+S 4T+SV 1T
Speedup 2.88 | 3.38 3.24 1.05 1.23 1.32 9.24
Energy 1.26 1.5 1.38 0.91 1.1 1.11 2.81
EDP 452 | 5.08 4.48 1.18 1.35 1.45 22.69

Table 5: Mean speedup, energy improvement, and EDP improvementAll means areharmonicmeans of the ratio of the less enhanced to the more
enhanced system. The means for the DLP enhancements (SI¥MB\attors/SStreams) are over the DLP applications (llexeept RayTrace).

phasé: This results in a further reduction of the “other” in- FaceRec because (1) a larger number of independent Sim-
structions. dALU instructions fit in the instruction window due to the
For MPGdec, SVectors could not remove many of the elimination of intervening SimdMem and overhead instruc-
SIMD loads because it uses an optimized IDCT algorithm tions (benefit 2 of Section 2.3) and (2) better load latency
with random memory access patterns [27]). Consequently,tolerance results in the ALU instructions obtaining their
SVectors see a limited benefit from the reduction of instruc- operands sooner (benefit 3 in Section 2.3). FaceRec in par-
tion count. This in turn lowers the execution time benefit for ticular has two dependent 4 cycle FP SimdALU instruc-
SVectors. tions within a SIMD loop iteration, which feed into an FP
In general, we do not expect the SimdALU instruction reduction running through the loop iterations. This incurs
count to change since +SV performs the same computationsa relatively large stall time in 1T+S. In 1T+SV, more of
However, there is a slight increase in SpeechRec becausghe (mostly independent) iterations fit in the reorder huffe
skipping the pre-computation phase results in more SIMD (since about 50% of the instructions per iteration are elimi
computation. nated), and so more parallelism can be exploited. SpeechRec
Reduction in SimdMem stallsis given by the difference sees a slight decrease in SimdALU stall time due to the same
between SimdMem stalls in +S and VecMem stalls (plus reasons.
SimdMem stalls, if any) in +SV. The benefit occurs because MPGdec and MPGenc do not have much of a SimdALU
of the reduction in SimdMem instructions and increased load stall time to start with because they use integer instrastio
latency tolerance (benefits 1 and 3 in Section 2.3). However, and also have independent instructions within iterations.
the magnitude of this benefit is quite small for all applica- To confirm that not all of the benefits in SImdALU stall
tions. This is because (1) most memory accesses either hitime came from load latency tolerance in FaceRec and
in the L1 cache or the L2 cache and the out-of-order proces-SpeechRec, we also ran both 1T+S and 1T+SV versions of
sor can tolerate these latencies, and (2) the L2 missesdhat d all applications with a perfect cache where all memory ac-
occur see a relatively low miss penalty since we model a low cesses take 1 cycle. We continued to see benefits in Sim-
frequency processor. dALU stalls (for FaceRec and SpeechRec) and total execu-
Reduction in SimdALU stalls is significant specially in tion time from +SV (e.g., for FaceRec, 1T+SV showed a
speedup of 1.8X over 1T+S with a perfect cache). These
'The original version of SpeechRec has a pre-computatiosepha experiments also show that techniques such as prefetching

to reduce the amount of work done in later phases. This pre- .
computation is omitted for +SV due to lack of any benefit. cannot capture all the benefits of SVectors/SStreams.

11

It is possible to obtain more exposed parallelism for
SIMD (+S) systems using larger resources. Although we al-

7. RELATED WORK

There is a vast amount of literature on conventional vec-

ready simulate an aggressive processor, we also conductegy, 5rchitectures and their recent uniprocessor and mottip

experiments where we doubled the sizes of the physical
SIMD register file, FP/SIMD issue queue, and the reorder
buffer. Of all our applications, FaceRec showed the largest
speedup with increased resources - 1.67X for the SIMD ver-
sion. However, SVectors/SStreams (+SV) continued to show
significant benefits over SIMD even with larger resources
(1.63X over SIMD for FaceRec) due to other sources such
as the reduction of SIMD load instructions and overhead.

cessor variations; e.g., VIRAM [23], CODE [24], Taran-
tula [12], TO [3], out-of-order vectors [14], MOM [7],
SMT Vectors [13], NEC SX [22], Cray X1 [8], and Hi-
tachi SR [41]. Such systems require investment in a rela-
tively large special-purpose dedicated vector unit (ete,
Tarantula vector unit is the same size as the 4-thread scalar
core [12]). In return, they provide excellent performance
and energy efficiency for medium-grain regular DLP; e.g.,

Thus, SVectors/SStreams can be viewed as a way to aChieV‘?hrough multi-laned implementations.

the benefits of much larger resources and more, without
the higher power consumption and slower processor clock
speeds associated with larger resources.

It may be possible to further improve SIMD performance
by providing more SIMD logical registers. However, all the
loop bodies in our applications, except the large tables, ca
comfortably fit in the logical SIMD registers provided. Fit-
ting the larger tables would require a much larger regideer fi
(e.g., 32 additional SIMD registers for DCT/IDCT coeffi-
cient tables). We also note that our out-of-order core direa
performs dynamic unrolling effectively to use the much
larger physical register file, and ALP SIMD already achieves
much better performance compared with SSE2 [27].

Reduction in other stallsresults directly from the reduc-
tion in overhead instructions described above (most signifi
cantly in MPGenc and SpeechRec).

Energy benefitsdue to SVectors/SStreams come largely
from the reduction of instruction count. Comparing corre-

sponding +S and +SV systems in Figure 6, we can see en-

ergy reduction in almost every component.

1T+S)

100
90 A
80

OOtherStall

B SimdALUStall
OSimdMemStall
@VecMemsStall

SESSSESSSESSSNTENY
BINSIRNERNSINNINN

s 70 1E=H O0therBusy
S 60 {—] ©SimdALUBUsy
\E‘; 50 | OSimdMemBusy
£ 0] EVecMemBusy
E 2L
s) |
E =
5 10 = w
A N s = = o |

23 23 23 23

= + = + = + = +

— [2l [\ — - — [

- - - -
MPGenc MPGdec SpeechRec FaceRec

Figure 7: Execution time distribution for 1T+S and 1T+SV.

| MPGenc| MPGdec| RayTrace| SpeechRed FaceRec]

1T+S

17 (59)

28 (80)

N/A

51(77)

58 (95)

1T+SV

11 (52)

27 (75)

N/A

45 (70)

34 (53)

Table 6: # of instructions (operations) retired for 1T+S and 1T+SV
systems as a percentage of instructions (operations) reéid by 1T. The
numbers for other +S (+SV) systems are the same as for 1 T+HSM)T

12

However, our applications mostly exhibit small-grain DLP
interspersed with control and reductions, and have parts
that do not exhibit any DLP at all (Section 1 and 4). We
therefore chose to explore a lighter weight DLP mechanism,
SVectors/SStreams, that could be tightly integrated into e
pected GPP designs that already have superscalar cores,
CMP, SMT, and SIMD. Our results show that the resulting
architecture, ALP, is effective in exploiting the diffetdeav-
els of parallelism in complex media applications, and SVec-
tors/SStreams in particular show significant benefits over
ALP’s other enhancements. Further, ALP does so primar-
ily using existing data paths and storage with only modest
modifications to a conventional superscalar core. Thus, we
believe that this paper has demonstrated a valuable design
point between pure SIMD and conventional vectors.

Nevertheless, conventional vectors would have the advan-
tage of reduced dynamic compute instructions (ALP uses
SIMD compute instructions, which encode only 2-16 oper-
ations in each instruction). Further, it may (or may not) be
possible that significant algorithmic changes to our applic
tions can expose larger grain DLP for which conventional
vectors would be well suited. We are currently performing a
detailed quantitative comparison between ALP and a repre-
sentative vector machine (Tarantula) — reporting the tesul
of such a study is outside the scope of this paper.

The Imagine architecture [1] (and its multiprocessor ver-
sion, Merrimac [9]) are also motivated by support for large
amounts of DLP, specifically streams. ALP’s focus on small-
grain DLP and the constraint of integration within a GPP re-
sults in significant design differences. Specifically, @) f
computation, Imagine provides ALU clusters that work in
lockstep while ALP uses independent SIMD units to exploit
ILP and TLP along with fine-grain DLP; (ii) Imagine is de-
signed as a co-processor that depends on a scalar host for
irregular scalar computation while ALP’s DLP support is
tightly integrated into the superscalar core; and (iii)ikml
ALP, Imagine needs a substantially new programming model
to manipulate streams. ALP and Imagine share similarities
in the handling of data — ALP’s combination of the SIMD
register file and SVRs is analogous to Imagine’s storage hi-
erarchy with a local register file for intermediate computa-
tion and a stream register file for stream data. At the same
frequency, we found ALP’s performance on MPEG2 encod-

ing comparable to that reported for Imagine (138 360x288
frames per second at 200 MHz but without B frames, half-
pixel motion estimation, and Huffman VLC [1]). The details
are omitted for lack of space.

A few architectures like SCALE [25], Pseudo Vector Ma-
chine (PVM) [26], conditional streams [21] of Imagine, and
Titan [20] cater to fine-grain DLP. SCALE combines TLP
and vectors in a concept called vector-thread architegture
which uses a control processor along with a vector of vir-
tual processors. It can exploit DLP interspersed with con-
trol; however, it uses a new programming model while ALP

support for DLP consists of rescheduling loop iterations
for computation without requiring prefetching and other

repeated front end overhead (called revitalization). RAW
allows direct accessing of operands from the network,
eliminating some explicit loads. SmartMemories can morph
memories into many structures; ALP uses a more restricted
type of morphing cache for SVRs. Unlike ALP, both

Smart Memories and TRIPS require switching to a different
mode to support DLP (resulting in mode changes between
different parts of an application). Unlike ALP, both RAW

and Smart Memories expose underlying hardware details

extends the established GPP programming model. So far,and communication to the programming model.

SCALE has been evaluated primarily for kernels; a compar-

ison with ALP on complex applications is therefore difficult
PVM provides support for vector/stream-like processing

Several mechanisms enhance the memory system to sup-
port DLP. Impulse [42] augments the memory controller to
map non-contiguous memory to contiguous locations. Pro-

of loops that are difficult to vectorize. Two source vectors cessor in memory architectures like DIVA [11] increase
are associated with two registers. A compute instructien ac memory bandwidth and decrease memory latency. Some
cessing such a register implicitly accesses the next elemenDSP processors, as well as TRIPS, support software man-
of the associated vector. The PVM implementation does aged caches or scratchpad memories which usually need ex-
not support a cache hierarchy, and all vector data accesseglicit loads/stores to be accessed. To reduce loads/stores
by compute instructions is transferred from memory space. they support memory to memory addressing modes and
This shares similarity with SVectors/SStreams, but hasssom DMA. SVRs achieve similar benefits without loads/stores.
key differences. Our SVectors use vector load instructions To support regular computation, DSP processors include
to bring data into the SVR in a pipelined way, and enable indexed addressing modes with auto-incrementing, loop rep

preloading of data. Any data that is spilled from the SVRs is
held in the L2 cache for some time. In contrast, PVM sup-

etition, and/or rotating registers. ALP achieves similanb
efits with the unified mechanism of SVectors/SStreams.

ports a fast scratchpad memory space, somewhat analogous Itanium [19], Cydra 5 [31], and Hitachi SR-8000 [41] use
to our SVR. However, there are no vector load instructions to rotating registers to hold data elements that are accessed s
bring data into this space; data can be moved to scratchpadjuentially. Rotating registers are used to provide difiere

only through functional units using explicit instructions
Conditional streams provide limited fine grain DLP sup-
port for Imagine — they allow different operations on dif-

registers for different instances (in different loop it&as)
of the same variable. In out-of-order processors, renam-
ing provides the same functionality albeit at a higher hard-

ferent records on a stream. However, conditional streamsware cost. Rotating registers, which are usually a part of

change the order of the resulting records.

Titan uses a different approach to cater to DLP inter-
spersed with control. It uses successealar FP registers
to store a vector allowing individual vector elements to be
accessed. All compute instructions are vector instrustion
and scalar operations have a length of 1. It is difficult to map
such a design on to current renamed/out-of-order cores.

At a high level, SVectors exploit two dimensional DLP as
done by traditional SIMD array processors [18], MOM [7,
34], and CSI [6]. This is because SVectors are in turn com-
posed of small vectors (SIMD). However, unlike ALP, MOM

the general purpose register file, are loaded with scaldr loa
instructions. In contrast, S\Vectors use vector loads tagori
a sequence of data records into the data arrays of reconfig-
ured L1 cache. Further, rotating registers can hold vagbl
that are accessed only within a given iteration. Therefore,
unlike SVRs, such registers cannot store more permanent
state (e.g., a table that is used many times or a variable used
across iterations). SVectors do not have such limitations —
i.e., SVectors can be loaded in advance and used repeatedly.
Our previous work characterizes the parallelism and per-
formance of the applications used in this paper [27]. How-

uses vector/matrix instructions for computation and uses aever, that work evaluates only SIMD support for exploiting

large matrix register file. Similarly, unlike ALP, CSI uses

the DLP of our applications. This paper presents our novel

a memory to memory stream architecture with a seperateDLP support, SVectors and SStreams, in the context of a

pipeline for streams.

Several architectures like Smart Memories [28],
TRIPS [35], and RAW [39] support all forms of paral-
lelism. Instead of supporting a DLP based programming
model like vectors/streams in the ISA, these architec-
tures support efficient mapping/scheduling of multiple

instructions that work on independent data and schedule

communication among them. For example, TRIPS’' main

13

complete architecture that targets multiple levels of bara
lelism for our target applications.

8. CONCLUSIONS

We seek to provide energy efficient performance for con-
temporary media applications in a GPP. We observe that
these applications require efficient support for diffetgpes
of parallelism, including ILP, TLP, and multiple forms of

DLP. Given existing support for SIMD instructions in GPPs,

the additional DLP in these applications is either fine-
grained or stream-based, and exhibits a relatively high ra- [

17]

tio of memory to compute operations. Based on these ob-
servations and current GPP trends, we propose a completéls]

architecture called ALP. ALP uses a CMP with superscalar
cores with SIMD and SMT, enhanced with a novel mech-

[y
©
—

anism of SIMD vectors and streams (SVectors/SStreams).[20]
SVectors/SStreams exploit many advantages of convettiona
vectors, without the cost of a dedicated vector unit.

Using several complex media applications, we show that
all the techniques used in ALP are indeed important and

[21]

effective and no single type of parallelism alone suffices. [22]

Specifically, SVectors/SStreams give speedups of 1.1X to

3.4X and EDP improvements of 1.1X to 5.1X for the ap- [23]

plications that have DLP, over and above all of the other en-

hancements in ALP. The results of this paper are applicable[24]
to the applications with properties described in Sectiond. a
can be extended to other applications with similar propsrti
In future work, we will report on a quantitative compari-
son with Tarantula.

9.
(1]

(2]

(3]

[4

[l

5

—_

(6]

[7

—

(8]
(9]

(20]

(11]

(12]

(23]

[14]

[15]

(16]

REFERENCES

J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das
Evaluating the Imagine Stream Architecture Aroc. of the 31th
Annual Intl. Symp. on Comp. Architectug004.

D. H. Albonesi. Selective Cache Ways: On-Demand CacleRee
Allocation. InProc. of the 32nd Annual Intl. Symp. on
Microarchitecture 1999.

K. Asanovic.Vector Microprocessor$hD thesis, Univ. of California
at Berkeley, 1998.

R. Beveridge and B. Draper. Evaluation of Face Recogniti
Algorithms. http://www.cs.colostate.edu/evalfacerezd03.

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framevidor
Architectural-Level Power Analysis and Optimizations Aroc. of
the 27th Annual Intl. Symp. on Comp. Architect#@00.

D. Cheresiz, B. H. H. Juurlink, S. Vassiliadis, and H. A.\@ijshoff.
The CSI Multimedia ArchitecturdEEE Trans. VLSI Syst13(1),
2005.

J. Corbal, R. Espasa, and M. Valero. MOM: A Matrix SIMD
Instruction Set Architecture for Multimedia Applicatiaria Proc. of
the 14th Intl. Conf. on SupercomputjriP99.

Cray Inc. Cray X1 System Overviewuww.cray.com2005.

W. J. Dally, P. Hanrahan, M. Erez, et al. Merrimac: Supenputing
with Streams. IrProc. of 2003 ACM/IEEE conference on
Supercomputing?2003.

K. Diefendorff and P. K. Dubey. How Multimedia WorklogVill
Change Processor DesidBEE ComputerSep. 1997.

J. Draper, J. Chame, M. Hall, et al. The architecturenefdiva
processing-in-memory chip. Proc. of the 17th Intl. Conf. on
Supercomputing?002.

R. Espasa, F. Ardanaz, J. Emer, et al. Tarantula: A Vdexéension
to the Alpha Architecture. liProc. of the 29th Annual Intl. Symp. on
Comp. Architecture2002.

R. Espasa and M. Valero. Simultaneous multithreadetbve
architecture. IrProc. of the 3rd Intl. Symp. on High-Perf. Comp.
Architecture 1997.

R. Espasa, M. Valero, and J. E. Smith. Out-of-order @ect
architectures. IfProc. of the 25th Annual Intl. Symp. on Comp.
Architecture 1997.

J. L. Hennessy and D. A. Patters@omputer Architecture: A
Quantitative ApproachMorgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002.

M. Holliman and Y.-K. Chen. MPEG Decoding Workload

14

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

Characterization. liProc. of Workshop on Computer Architecture
Evaluation using Commercial Worklogd)03.

C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. AdvBMRS
Simulating Shared-Memory Multiprocessors with ILP Prees.
IEEE ComputerFebruary 2002.

K. Hwang.Advanced Computer Architecture: Parallelism,
Scalability, programmabilityMcGraw-Hill Inc., 1993.

Intel Corporationintel Itanium Architecture Software Developer's
Manual 2001.

N. P. Jouppi. A Unified Vector/Scalar Floating-PointcAitecture. In
Proc. of the 8th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systetf89.

U. J. Kapsai, W. J. Dally, S. Rixner, et al. Efficient Catiwhal
Operations for Data-parallel Architectures.Rroc. of the 36rd
Annual Intl. Symp. on Microarchitectur2003.

K. Kitagawa, S. Tagaya, Y. Hagihara, and Y. Kanoh. A Hreaice
Overview of SX-6 and SX-7 Supercomputer.
http://www.nec.co.jp/techrep/endnd.d/r03/r03-no1/rd02.pdf2002.
C. Kozyrakis.Scalable Vector Media Processors for Embedded
SystemsPhD thesis, Univ. of California at Berkeley, 2002.

C. Kozyrakis and D. Patterson. Overcoming the Liméas of
Conventional Vector Processors.Rnoc. of the 30th Annual Intl.
Symp. on Comp. Architectyr2003.

R. Krashinsky, C. Batten, M. Hampton, et al. The Vectbread
Architecture. InProc. of the 31th Annual Intl. Symp. on Comp.
Architecture 2004.

L. H. Lee.Pseudo-Vector Machine for Embedded Applicatid?isD
thesis, University of Michigan, 2000.

M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. DebEse
ALPBench Benchmark Suite for Multimedia Applications
(Submitted for publication). Technical Report
UIUCDCS-R-2005-2603, Dept. of Computer Science, Universi
lllinois, July 2005.

K. Mai, T. Paaske, N. Jayasena, R. Ho, et al. Smart MezsoA
Modular Reconfigurable Architecture. Rroc. of the 27th Annual
Intl. Symp. on Comp. Architectyr2000.

MPEG Software Simulation Group. MSSG MPEG2 encoder and
decoderhttp://www.mpeg.org/MPEG/MSSAR94.

P. Ranganathan, S. Adve, and N. P. Jouppi. Reconfigu@athes
and their Application to Media Processing.Rroc. of the 27th
Annual Intl. Symp. on Comp. Architectu2900.

B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towie. The Cydra 5
Departmental Supercomputer: Design Philosophies, Dedsand
Trade-Offs. INEEE Computer1989.

R. Reddy et al. CMU SPHINX.
http://www.speech.cs.cmu.edu/sphi2001.

M. Rosenblum, E. Bugnion, and S. A. Herrod. Vector Vsp&scalar
and VLIW Architectures for Embedded Multimedia Benchmathks
Proc. of 20th ACM Symp. on Operanting Systems Pringifd/@s5.
F. Sanchez, M. Alvarez, E. Salam, A. Ramirez, and M. kal®n
the Scalability of 1- and 2-Dimensional SIMD Extensions for
Multimedia Applications. IrProc. of IEEE Intl. Symp. on
Performance Analysis of Systems and Softn2005.

K. Sankaralingam, R. Nagarajan, H. Liu, et al. ExplagtiLP, TLP,
and DLP with the Polymorphous TRIPS ArchitecturePiroc. of the
30th Annual Intl. Symp. on Comp. Architectu803.

R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. Thedgner
Efficiency of CMP vs. SMT for Multimedia Workloads. Proc. of
the 20th Intl. Conf. on Supercomputjri2D04.

K. Skadron, T. Abdelzaher, and M. R. Stan. Control-Tre¢io
Techniques and Thermal-RC Modeling for Accurate and Laedli
Dynamic Thermal Management. Rroc. of the 8th Intl. Symp. on
High-Perf. Comp. Architecture2002.

J. E. Stone. Taychon Raytracer.

http://jedi.ks.uiuc.edu/ johns/raytrace003.

M. Taylor, W. Lee, J. Miller, D. Wentzlaff, et al. Evaltian of the
RAW Microprocessor: An Exposed-Wire-Delay Architectuoe LP
and Streams. IRroc. of the 31th Annual Intl. Symp. on Comp.
Architecture 2004.

Z. Wang. Fast Algorithms for the Discrete Cosine Transf and for
the Discrete Fourier Transform. IREE Transactions in Acoustics,

[41]

[42]

(43]

Speech, and Signal Processing. Vol. ASSP1984.

Y.Tamaki, N. Sukegawa, M. lto, et al. Node Architectarel
Performance Evaluation of the Hitachi Super Technical &erv
SR8000. InProc. of the 11th Intl. Conf. on Parallel and Distributed
Systems1999.

L. Zhang, Z. Fang, M. Parker, B. K. Mathew, et al. The Irgsu
Memory Controller. INEEE Transcations on Computei2001.

Y. Zhang, D. Parikh, K. Sankaranarayanan, et al. Hotaga: A
Temperature-Aware Model of Subthreshold and Gate Leakage f
Architects. Technical Report CS-2003-05, Univ. of Virgin2003.

15

