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ABSTRACT 
Composed of tens of thousands of t iny devices with very 
limited resources ("motes"), sensor networks are subject to 
novel systems problems and constraints. The large number 
of motes in a sensor network means that  there will often 
be some failing nodes; networks must be easy to repopu- 
late. Often there is no feasible method to recharge motes, 
so energy is a precious resource. Once deployed, a network 
must be reprogrammable although physically unreachable, 
and this reprogramming can be a significant energy cost. 

We present Mat~, a tiny communication-centric virtual 
machine designed for sensor networks. Mat~'s high-level in- 
terface allows complex programs to be very short (under 
100 bytes), reducing the energy cost of transmitt ing new 
programs. Code is broken up into small capsules of 24 
instructions, which can self-replicate through the network. 
Packet sending and reception capsules enable the deploy- 
ment of ad-hoc routing and data aggregation algorithms. 
Mat~'s concise, high-level program representation simplifies 
programming and allows large networks to be frequently re- 
programmed in an energy-efficient manner; in addition, its 
safe execution environment suggests a use of virtual ma- 
chines to provide the user/kernel boundary on motes that 
have no hardware protection mechanisms. 

1. INTRODUCTION 
Wireless sensor networks pose novel problems in system 

management and programming. Networks of hundreds or 
thousands of nodes, limited in energy and individual re- 
sources, must be reprogrammable in response to changing 
needs. A spectrum of reprogrammability emerges, from sim- 
ple parameter adjustments to uploading complete binary im- 
ages. As network bandwidth is limited and network activity 
is a large energy draw, a concise way to represent a wide 
range of programs is needed. A virtual machine is a natural  
way to achieve this, but  characteristics of sensor networks, 
such as their large numbers, require an approach distinct 
from prior VM architectures. 
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Traditionally, virtual machines have focused on virtual- 
izing real hardware [3][5], intermediate program represen- 
tation [4], or bytecode interpretation [20]. Each technique 
has its own design goals and advantages as well as draw- 
backs. All have generally focused on traditional uniproces- 
sor or multiprocessor environments, although some work has 
dealt with bringing bytecode interpreters to small consumer 
devices [15]; one solution, PicoJava, has been to design hard- 
ware that  natively runs the VM instruction set [16]. Virtual 
machines for tiny devices have been proposed, but  their de- 
sign goals have focused on byte-code verification and online 
compilation [30]. 

Sensor networks are a domain characterized by resources 
that are orders of magnitude smaller t h a n  what current vir- 
tual machines require. For example, current sensor network 
nodes (motes  1) have 8 to 128 KB of instruction memory 
and 512B to 4KB of RAM, while the K Virtual Machine tar- 
gets devices with a memory budget of 160KB to 512 KB [15]. 
Energy is a critical resource, especially in terms of communi- 
cation; sending a single bit can consume the same energy as 
executing 1000 instructions. The hardware/software bound- 
ary of an individual mote is currently a topic of open re- 
search [10][11]. 

Although sensor networks are distinct from other comput- 
ing domains in several ways, they have similarities to parallel 
architectures and distributed systems; notably, they are all 
composed of many separate processing elements that must 
communicate. There are, of course, important differences; 
as opposed to a reliable message passing system in parallel 
architectures, sensor networks have lossy irregular wireless 
networks. 

Content-based routing and naming in sensor networks 
have been examined for bandwidth conservation [9] [14]; this 
work borrows ideas from active networks. By taking a more 
general approach, however, active networks allow not only 
these mechanisms but  arbitrary computation within a net- 
work [32]. There is growing interest in data aggregation as a 
mechanism for making the most of precious sensor- network 
bandwidth [13] - a problem that could be easily investigated 
with an active sensor network. While incremental code mi- 
gration has been achieved using XML [6], motes lack the 
RAM to store even a few simple XML elements. 

The basic question of how sensor networks will be pro- 
grammed remains largely unanswered. A spectrum ex- 
ists between minor application adjustments (tweaking con- 
stants) and uploading entire programs (binary images). The 

1mote:  n.; A very small particle; a speck: "Dust motes 
hung in a slant of sunlight" (Anne Tyler). 
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former can be achieved with a t iny RPC-like mechanism and 
a handful of packets, while the la t ter  requires sending kilo- 
bytes  of da t a  at  high energy cost. Our experience has shown 
tha t  most sensor network applications are composed of a 
common set of services and sub-systems, combined in dif- 
ferent ways. A system tha t  allows these compositions to be 
concisely described (a few packets) could provide much of 
the flexibility of reprogramming with the transmission costs 
of parameter  tweaking. 

To establish tha t  a wide range of sensor network applica- 
tions can be composed of a small set of high level primitives, 
we built  Matd 2, a byte-code interpreter  to run on motes. 
Capsules of 24 instructions fit in a packet and can forward 
themselves through a network. Complex programs, such as 
an ad-hoc routing layer, can be composed of several capsules 
and represented in under 100 bytes. Matd therefore allows a 
wide range of programs to be installed in a network quickly 
and with litt le network traffic, conserving energy. We show 
tha t  for a common class of frequently reprogrammed sys- 
tems, the energy cost of the CPU overhead of a bytecode 
interpreter  is outweighed by the energy savings of t ransmit-  
t ing such concise program representations. 

The  following two sections present sensor networks and 
TinyOS, an operat ing system designed specifically for sen- 
sor networks; from these two sections a clear set of require- 
ments emerge for a mote reprogramming system. Section 4 
describes the design, structure, and implementation of Matd. 
Section 5 evaluates the system's  behavior and performggnce. 
Section 6 and 7 discuss our evaluations of Matd and the 
conclusions one can draw from it. The full Matd instruction 
set and an implementation of a beacon-less ad-hoc routing 
algorithm are included in the appendix. 

2. SENSOR NETWORKS 
The progression of Moore's  Law has led to the design and 

manufacture of small sensing computers tha t  can communi- 
cate with one another over a wireless network [11]. Research 
and industry indicate tha t  motes will be used in networks of 
hundreds, thousands, or more [2][7][18]. 

Sensor networks are distinct from tradi t ional  computing 
domains. Their design assumes being embedded in com- 
mon environments (e.g., a corn field, a bathroom),  instead of 
dedicated ones (e.g., a server room, an office). Mean t ime to 
failure combined with large numbers leads to routine failure; 
a network must be easy to repopulate without  interrupting 
operation. Compared to infrastructure or even mobile sys- 
tems, power is scarce and valuable. One can easily recharge 
a laptop or a handheld; recharging thousands of motes (or 
even finding all of them!) is much more difficult. 

Communication in sensor networks is more precious than 
in other computing domains. Sending a single bi t  of da t a  
can consume the energy of executing a thousand instruc- 
tions. This dispari ty has led to investigation of passive 
networking systems [12]. Additionally, the power cost of 
producing sensor da ta  is orders of magnitude lower than  
the cost of t ransmit t ing it, and its rate  of production (e.g. 
100Kbit/sec.mote) is far greater than can be communi- 

2 M a t d  (mah-tay) n.; Matd is as tea like beverage con- 
sumed mainly in Argentina, Uruguay, Paraguay and south- 
ern Brazil. It  is brewed from the dried leaves and stemlets of 
the perennial tree Rex paraguarensis ("yerba matd").  The 
name "matd" derives from the Quechua word 'hnati" tha t  
means cup or vessel used for drinking. 

cated through a network. This has led to investigation 
into content-specific routing and in-network da ta  aggrega- 
t ion [9] [21]; centralized control and da ta  collection is ineffi- 
cient and wasteful. 

Once deployed, motes often cannot be easily collected; re- 
programming cannot require physical contacl~. Being able 
to re-task a network as analysis techniques or environmen- 
tal  conditions evolve is desirable. For example, we are in 
the process of deploying a sensor network to monitor  s torm 
petrels 3 on Great  Duck Island off the coast of Maine. De- 
ploying motes involves placing them in possible nesting sites; 
once birds nest, disturbing them to reach a mote is infeasi- 
ble. Being able to monitor  the birds this  closely (inches) 
for continuous periods is unheard of in biological research; 
scientists are still unsure exactly how, what  and at  what  fre- 
quency they want the network to sense [23]; the abil i ty to 
reprogram is invaluable. 

Our experiences working with civil engineers present sim- 
ilar issues in programming. By monitoring building struc- 
tures with embedded motes, expensive tasks such as earth- 
quake damage assessment can be made fast and simple [1]. 
Such a network would be very useful for a wide variety of 
tasks, such as water damage detection or sound propaga- 
tion testing. As not all of these tasks would be anticipated,  
installing software for all of them at deployment t ime is im- 
possible; additionally, as the network is embedded in the 
building, the motes are unreachable and not feasibly re- 
deployable. 

Being able to reprogram a network quickly is also very use- 
ful for issues such as da ta  aggregation and adaptive query 
processing [22]; dynamically installing aggregation functions 
can provide a more flexible system than a predefined set of 
aggregates. Examining these sample use cases (habi tat  mon- 
itoring, building instrumentation,  and query processing), it 
is clear tha t  a flexible, rapid and powerful reprogramming 
mechanism is needed. 

Although computat ion is inexpensive in comparison to 
communication, it  is not abundant.  For example, the latest  
generation of motes we have designed (the mica platform) 
has a 4MHz 8-bit processor. An individual mote cannot 
perform large computations rapidly by i t s e l f -  they must be 
performed in a distr ibuted manner. The scarcity of RAM 
and network bandwidth inhibits the use of algorithms tha t  
depend on global state,  such as many ad-hoc routing algo- 
r i thms designed for mobile computers [28]. 

3. TINYOS 
TinyOS is an operating system designed specifically for 

use in sensor networks [11]. Combined with a family of wire- 
less sensor devices, TinyOS is currently used as a research 
platform by several institutions. Examining sensor network 
challenges and the l imitations of TinyOS produces a set of 
requirements for a flexible and concise sensor network pro- 
gramming model. 

3.1 Hardware: rene2~ mica 

Two mote hardware platforms, the rene2 ~md the mica, 
are currently available for general development. The rene2 

3Storm Petrel: Genus Oceanodroma. Habitat: Open 
ocean and oceanic islands. Nests are built in burrows, among 
colonies on oceanic islands. After mating emd hatching, 
Oceanodroma return to the open ocean. 
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Mote Type v.c "~'~_1 ~..2 doe ~c. 

Ji • 
D a t e  9/99 10/00 I 6 /01 8/01 2/02 
M i c r o c o n t r o l l e r  

Prog ..... (KB) l 8 16 128 
RAM ~KB) I 0.5 1 4 
N o n v o l a t i l e  s torage  
Chip I 24LC256 [ AT45DB041B [ 
C o n n e c t i o n  t y p e  I2C SPI 
S ze (KB) 32 512 
Default Power source 
Type [ Alk ] 
Size [ CR24 2xAA 
C a p a c i t y  (mAh) [ S 2850 
C o m m u n i c a t i o n  

I Radio RFM TRi000 
Rate (Kbps) I0 I 10 [ i0 ] i0 10/40 

OOK M o d u l a t i o n  type OOK/ASK 

T a b l e  1: T h e  f ami ly  of B e r k e l e y  T i n y O S  m o t e s  

is the older of the two, and has correspondingly smaller re- 
sources. The complete family of TinyOS motes is summa- 
rized in Table 1. The mica supports 40Kbit communication 
on its radio, while the rene2 is limited to 10Kbit; the mica 
radio can be put into 10 Kbit mode for backwards compat- 
ibility. All mote platforms are Harvard architectures, with 
separate instruction and data memory. Installing new binary 
code requires a reset to take effect. 

To change the behavior of a TinyOS program, one must 
either hardcode a state transition in a program (when one 
receives a type of packet, start reading light data instead of 
temperature), or one must modify source code, recompile a 
TinyOS image, and place the entire new image on a mote. 

3.2 Software Architecture 
A TinyOS program is composed of a graph of software 

components. At the component level, TinyOS has three 
computational abstractions: commands, events, and tasks. 
Commands are used to call down the component graph: for 
example, telling the network component to send a packet. 
Events are calls up the component graph: for example, sig- 
naling the packet has been sent. From a traditional OS per- 
spective, commands are analagous to downcalls while events 
are analagous to upcalls. 

Tasks are used for long running computations that can be 
preempted by events. A command (or event) can enqueue 
a task to perform a computation and immediately return. 
TinyOS schedules tasks on a FIFO basis and runs a task 
to completion before another task is run; as they do not 
preempt one-another, they must be short. Otherwise, the 
task queue can overflow as new tasks are posted. 

TinyOS supports high concurrency through split-phase 
non-blocking execution. No command or event blocks. In- 
stead, completion of long lasting operations (such as sending 
a byte over a radio) are indicated by the issuing of an event 
(such as a send byte done). Non-blocking operation allows 
a form of high concurrency distinct from a threaded model: 
the operations of many components can be interleaved at a 
fine granularity. This asynchronous behavior is ultimately 
powered by hardware interrupts. 

TinyOS provides high parallelism and efficiency through 
a constrained, and somewhat tricky, programming interface. 
This interface is badly suited to non-expert programmers, 
such as the biologists and civil engineers we are working with 
to deploy networks. A simpler programming model, which 
allows novice programmers to express their desired behav- 
ior without worrying about timing and asynchrony, would 

greatly improve the usefulness of TinyOS sensor networks. 

3.3 TinyOS Networking: Active Messages 
The top-level TinyOS packet abstraction is an Active Mes- 

sage [33]. The characteristics of this abstraction are impor- 
tant  because they define the capabilities of systems built on 
top of it. AM packets are an unreliable data  link protocol; 
the TinyOS networking stack handles media access control 
and single hop communication between motes. Higher layer 
protocols (e.g. network or transport) are built  on top of the 
AM interface. 

AM packets can be sent to a specific mote (addressed with 
a 16 bit ID) or to a broadcast address ( 0 x f f f f ) .  TinyOS 
provides a namespace for up to 256 types of Active Messages, 
each of which can each be associated with a different software 
handler. AM types allow multiple network or data  protocols 
to operate concurrently without conflict. The AM layer also 
provides the abstraction of an 8-bit AM group; this allows 
logically separate sensor networks to be physically co-present 
but  mutually invisible, even if they run the same application. 

3.4 System Requirements 
Looking at sensor network challenges and the limitations 

of TinyOS and its hardware, a set of clear requirements 
emerge for an effective sensor network programming system. 
They are: 

• Small - it must fit on rene2 and mica hardware (tar- 
geting only the cutting edge - mica - would alienate 
users); 

• Expressive - one must be able to write a wide range of 
applications; 

• Concise - applications should be short, to conserve net- 
work bandwidth; 

• Resilient - applications cannot crash a mote; 

• Efficient - energy efficient sensing and communication: 

• Tailorable - support efficient specialized operations; 

• and Simple - programming an entire network should 
be in-situ, fast, and mostly autonomous. 

4. Mat4 
Matd is a bytecode interpreter that  runs on TinyOS. It is a 

single TinyOS component that sits on top of several system 
components, including sensors, the network stack, and non- 
volatile storage (the "logger"). Code is broken in c a p s u l e s  

of 24 instructions, each of which is a single byte long; larger 
programs can be composed of multiple capsules. In addi- 
tion to bytecodes, capsules contain identifying and version 
information. Matd has two stacks: an operand stack and 
a return address stack. Most instructions operate solely on 
the operand stack, but  a few instructions control program 
flow and several have embedded operands. There are three 
execution contexts that can run concurrently at instruction 
granularity. Matd capsules can forward themselves through 
a network with a single instruction. Matd provides both a 
built-in ad-hoc routing algorithm (the send instruction) as 
well as mechanisms for writing new ones (the sendr  instruc- 
tion). 

We designed Matd to run on both the mica and the r e n e 2  
hardware platforms. This means that Matd and all of its 
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Mat6 Code Footprint 

[ ]  Network 

[ ]  Hardware 
0 ~ B Boot/Scheduler 

, Component 
i VM (Mats )  

Network 
Logger 
Hardware 
Boot/Scheduler 
Total 

Mat6 Data Footprint 

7~ 

~ 512 

2 ~  

0 

Code bytes) Data (bytes) 
7286 603 
6410 206 

844 18 
1232 8 
272 14 

16044 849 

[] VM (Matd) 

[ ]  Network 

• Logger 
[ ]  Hardware 
BI Boot/Scheduler 

F i g u r e  1: Mat(~ C o m p o n e n t  B r e a k d o w n  

subcomponents must fit in 1KB of RAM and 16 KB of in- 
struction memory. Figure 1 outlines the code and data size 
breakdowns of the TinyOS components in a Mats mote. 

4.1 Architecture and Instruction Set 
The communication model in the Mat~ VM architecture 

allows a program to send a message as a single instruction; 
the sent message is (from the caller's perspective) automat-  
ically routed to its destination. The arrival of a packet au- 
tomatically enqueues a task to process it. This approach 
has strong similarities to Active Messages [33] and the J- 
Machine [26]. There are, of course, important differences 
- for example, instead of reliably routing to processors, it 
routes through an unreliable multihop wireless network. The 
tiny amount of RAM also forces motes to have a constrained 
storage model - Mats cannot buffer messages and tasks 
freely as the J-Machine can. 

Mats instructions hide the asynchrony (and race condi- 
tions) of TinyOS programming. For example, when the s e n d  
instruction is issued, Mats calls a command in the ad-hoc 
routing component to send a packet. Mat~ suspends the 
context until  a message send complete event is received, at 
which point it resumes execution. By doing this, Mats does 
not need to manage message buffers - the capsule will not re- 
sume until the network component is done with the buffer. 
Similarly, when the s e n s e  instruction is issued, Mat~ re- 
quests data from the sensor TinyOS component and sus- 
pends the context until  the component returns data with 
an event. This synchronous model makes application level 
programming much simpler and far less prone to bugs than 
dealing with asynchronous event notifications. Additionally, 
Mats efficiently uses the resources provided by TinyOS; dur- 
ing a split-phase operation, Mats does nothing on behalf of 
the calling context, allowing TinyOS to put  the CPU to sleep 
or use it freely. 

Mat~ is a stack-based architecture [19]. We chose this to 
allow a concise instruction set; most instructions do not have 
to specify operands, as they exist on the operand stack [17]. 
There are three classes of Mat~ instructions: basic, s-class, 
and x-class. Figure 3 shows the instruction formats for 
each class. Basic instructions include such operations as 
arithmetic, halting, and activating the LEDs on a mote. s- 
class instructions access in-memory structures used by the 
messaging system, such message headers or messaging layer 
state; they can only be executed within the message send 
and receive contexts. The two x-class instructions are pushc 
(push constant) and b l ez  (branch on less than or equal to 

Subroutines Events 

¢¢¢ 
gets/sets 

Matq  

Mate 
Context 

F i g u r e  2: M a t h  A r c h i t e c t u r e  a n d  E x e c u t i o n  M o d e l :  
Ca psu l e s ,  C o n t e x t s ,  a n d  S tacks  

basic 
s-class 
x-class 

00±±±±ii ± = instruction 
01i±ixxx ± ---- instruction, x = argument 
l±xxxxxx ± = instruction, x = argument 

F i g u r e  3:  M a t s  I n s t r u c t i o n  F o r m a t s  

zero). Both the s-class and x-class instructions have an 
operand embedded in the instruction: s-class have a 3-bit 
index argument and x-class have a 6-bit unsigned value ar- 
gument. 

Eight instructions (usr0-7) are reserved for users to define. 
By default, they are no-ops. However, as a (:lass of sensor 
network applications might require some specific processing 
outside the capabilities of MatE, such as a complex data fil- 
ter, these user instructions allow efficient domain-specific in- 
structions. Mats has been structured to make implementing 
these instructions easy. One can therefore build a specially 
tailored version of Mats with efficient support for common 
complex operations. 

MatE's three execution contexts, illustrated in Figure 2, 
correspond to three events: clock timers, message receptions 
and message send requests. Inheriting from languages such 
as FORTH [25], each context has two stacks, an operand 
stack and a return address stack. The former is used for all 
instructions handling data, while the latter is used for sub- 
routine calls. The operand stack has a maximum depth of 
16 while the call stack has a maximum depth of 8. We have 
found this more than adequate for programs we have writ- 
ten. The clock operand stack persists across executions - if 
one invocation left a sensor reading on the top of the stack, 
it is available in the next invocation. This is an easy way 
to implement internal clock timers, as Section 4.3 demon- 
strates. When a clock capsule is installed, the value zero is 
pushed onto its operand stack. The receive and send con- 
texts expect the message received or the data to send to 
be on the top of their stacks when they begin execution, so 
these stacks do not persist across invocations. 

There are three operands types: values, sensor readings, 
and messages. Some instructions can only operate on certain 
types. For example, the pu r l ed  instruction expects a value 
on the top of the operand stack. However, many instructions 
are polymorphic. For example, the add instruction can be 
used to add any combination of the types, with different 
results. Adding messages results in appending the data in 
the second operand onto the first operand. Adding a value 
to a message appends the value to the message data payload. 
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pushc 1 
add 
copy 
pushc 7 
and 
pur led  
h a l t  

# push one onto operand stack 
# Add the one to the stored counter 
# Copy the new counter value 

# Take bottom t h r e e  b i t s  of  copy 
# Se t  t h e  LEDs t o  t h e s e  t h r e e  b i t s  

F i g u r e  4: Mat(~ cnt_to_leds - Shows t h e  b o t t o m  3 
b i t s  o f  a c o u n t e r  o n  m o t e  L E D s  

Adding a sensor reading to a value results in a sensor reading 
of the same type increased by the value, while adding two 
sensor readings of different types (e.g. light and humidity) 
just returns the first operand. Sensor readings can be turned 
into values with the cas t  instruction. 

There is a single shared variable among the three contexts 
- a one word heap. It can be accessed with the s e t s  and 
g e t s  instructions. This allows the separate contexts to com- 
municate shared state (e.g. timers). Our experience so far 
has shown this to be adequate but  it is unclear whether a 
heap this size will be feasible in the long term. Its size could 
be easily increased by having sets-and gets specify an ad- 
ditional operand to state the address within the heap. As 
we have yet to find a situation where this is necessary, we 
have decided against it for now. 

4.2 Code Capsules and Execution 
Mat~ programs are broken up into capsules of up to 24 

instructions. This limit allows a capsule to fit into a single 
TinyOS packet. By making capsule reception atomic, Mats 
does not need to buffer partial capsules, which conserves 
RAM. Every code capsule includes type and version infor- 
mation. Mat~ defines four types of code capsules: message 
send capsules, message receive capsules, timer capsules, and 
subroutine capsules. Subroutine capsules allow programs to 
be more complex than what fits in a single capsule. Applica- 
tions invoke and return from subroutines using the c a l l  and 
r e t u r n  instructions. There are names for up to 21~ subrou- 
tines; to keep MatE's RAM requirements small, its current 
implementation has only four. 

Mats begins execution in response to an event - a timer 
going off, a packet being received, or a packet being sent. 
Each of these events has a capsule and an execution con- 
text. Control jumps to the first instruction of the capsule 
and executes until  it reaches the h a l t  instruction. These 
three contexts can run concurrently. Each instruction is ex- 
ecuted as a TinyOS task, which allows their execution to 
interleave at an instruction granularity. Additionally, un- 
derlying TinyOS components can operate concurrently with 
Mats instruction processing. When a subroutine is called, 
the return address .(capsule, instruction number) is pushed 
onto a return address stack and control jumps to the first 
instruction of the subroutine. When a subroutine returns, 
it pops an address off the return stack and jumps to the 
appropriate instruction. 

The packet receive and clock capsules execute in response 
to external events; in contrast, the packet send capsule ex- 
ecutes in response to the sendr instruction. As sendr will 
probably execute a number of Mat~ instructions in addition 
to sending a packet, it can be a lengthy operation. Therefore, 
when sendr is issued, Mat~ copies the message buffer onto 
the send context operand stack and schedules the send con- 
text to run. Once the message has been copied, the calling 

pushc I 
sense 
copy 
gets 

J.nv 
add 
pushc 32 
add 

# Push one on the  operand s t a c k  
# Road sensor  1 ( l i g h t )  
# Copy the  sensor  read ing  
# Get prev ious  s e n t  r ea d ing  

# I n v e r t  prev ious  read ing  
# C u r r e n t  - prev ious  s e n t  v a l u e  

blez 17 # If curr < (prey-32) Jump to send 
copy # Copy the sensor reading 
inv # Invert the current 
gets # Get the previous reading 

add # Previous - current 
pushc 32 
add 
blez 17 # If (curt+32) • prey jtunp to send 

halt 

copy # PC 17 -- jump-to point from above 
sets # Set shared var to current reading 
pushm # Push a message onto operand stack 

clear # Clear out the message payload 
add # Add the reading I~o message payload 
send # Send the  message 
halt 

F i g u r e  5: M a t h  P r o g r a m  to  R e a d  L ight  D a t a  a n d  
S e n d  a P a c k e t  o n  R e a d i n g  C h a n g e  

context can resume execution. The send context executes 
concurrently to the calling context, preparing a packet and 
later sending it. This frees up the calling context to handle 
subsequent events - in the case of the receive context, this 
is very important. 

The constrained addressing modes of Mats instructions 
ensure a context cannot access the state of a separate con- 
text. Every push and pop on the operand and return value 
stack has bound checks to prevent overrun and underrun. As 
there is only a single shared variable, heap addressing is not a 
problem. Unrecognized instructions result in simple no-ops. 
All bounds are always checked - the only way two contexts 
can share state is through gets  and s e t s .  Nefarious cap- 
sules can at worst clog a network with packets - even in this 
case, a newer capsule will inevitably be heard. By provid- 
ing such a constrained execution environment and providing 
high-level abstractions to services such as the network layer, 
Mats ensures that it is resilient to buggy or malicious cap- 
s u l e s .  

4.3 Simple Mats Programs 
The Mats program in Figure 4 maintains a counter that  

increments on each clock tick. The bottom three bits of the 
counter are displayed on the three mote LEDs. The counter 
is kept as a value which persists at the top of the stack 
across invocations. This program could alternatively been 
implemented by using gets  and sets to modify the shared 
variable. This code recreates one of the simplest TinyOS 
applications, cnt_to_leds,  implemented in seven bytes. 

The Mat~ program in Figure 5 reads the light sensor on 
every clock tick. If the sensor value differs from the last sent 
value by more than a given amount (32 in this example), 
the program sends the data using MatE's built-in ad-hoc 
routing system. This program is 24 bytes long, fitting in a 
single capsule. 
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Figure 6: Maid Instruction Overhead C l a s s e s  

4.4 Code Infection 
A capsule sent in a packet contains a type  (subroutines 

0-3, clock, receive, send) and a version number.  If Matd 
receives a more recent version of a capsule than the one of 
the specified type currently being used, Matd installs it. A 
capsule can be transmitted to other motes using the forw 
instruction, which broadcasts the issuing capsule for network 
neighbors to install. These motes will then issue forw when 
they execute the capsule, forwarding the capsule to their 
local neighbors. Because of the version information, motes 
with the new code will ignore older capsules they receive. 
Over time, the new code will disseminate through the logical 
network like a virus - all one needs to do is install it on a 
single mote and execute the capsule. Correspondingly, for 
a mote to be able to run a different version of the program 
with no threat of reprogramming, it must be in a logically 
separate network. Versioning is implemented as a 32 bit 
counter - this allows a single network to last for a very long 
time (centuries) even with very rapid reprogramming rates 
(once every few seconds). 

A capsule can also forward other installed capsules with 
the forwo (forward other) instruction. This is useful if the 
desired program is composed of several capsules; a tempo- 
rary clock capsule tha t  forwards every capsule can be in- 
stalled, then as each component capsule is installed it will 
be forwarded. Once the entire network has installed all of 
these capsules, the clock capsule can be replaced with a pro- 
gram to drive the application. 

5. EVALUATION 
To test  the expressiveness, behavior and performance of 

Matd, we implemented a n  ad-hoc routing algorithm, mea- 
sured its rate  of instruction issue, quantified its CPU over- 
head, and measured network infection rates with different 
capsule forwarding probabilities. 

5.1 BLESS - BeaconLESS ad-hoc routing 
Ad-hoc networking is a critical system issue in sen- 

sor networks. The transient nature of sensor networks 
means packet routing must be adaptive; effectively collecting 
da ta  from a network requires an ad-hoc routing algorithm. 
BLESS is an ad-hoc routing protocol included in the stan- 
dard TinyOS release, implemented in 600 lines of C. We 
have re-implemented a slightly simpler version 4 of BLESS 
in Matd to demonstrate  tha t  Matd is expressive enough to 
provide similar functionality to native TinyOS code. Addi- 
tionally, BLESS can now be dynamically installed on a net- 
work, demonstrat ing tha t  Matd transforms sensor networks 
into active networks. 

BLESS includes routing information in every packet and 
t ransmits  everything on an AM broadcast.  All  messages are 
forwarded to the root of a tree, which can be connected to a 
PC for processing or storage. By snooping traffic, motes can 

4The native TinyOS version maintains a table of possible 
parents to use; the Matd version only keeps track of one. 

g e t s  # Ge t  t h e  c o u n t e r  
pus lm # Get  a b u f f e r  
c l e a z  # C l e a r  t h e  b u f f e r  
add # Append t h e  c o u n t  

s e n d  # Send t h e  p a c k e t  
puehc  0 
s e t s  # C l e a r  c o u n t e r  t o  0 
g e t s  # Jump-to  p o i n t  

pushc  1 
add 
s e r e  
pushc  0 

# I n c r e m e n t  C o u n t e r  

b l e z  7 # A].ways b r a n c h  

Average. loop executions: 8472 
Matd IPS: 7 + ((loops / 5) * 6): 10][73 

Figure 7: Matd Simple Loop and IPS Calculat ion 

hear packets sent to other motes to find a suitable routing 
tree parent.  

Every BLESS packet contains three fields: the  address of 
the source mote, the address of the dest inat ion mote, and 
the hopcount of the source. The hopcount of the tree root  
is zero. Motes t ry  to minimize their hopcount in the  tree. A 
maximum hopcount  of 16 prevents disconnected graphs from 
wastefully sending packets in perpetual  cycles. If  a parent  is 
not heard for a given interval, a mote chooses a new parent.  

The complete Matd BLESS code, the packet format and 
the frame format are included in Appendix  B. 

5.2 Instruction Issue Rate 
Some instructions (such as sending a packet.) take much 

more t ime than  others. Figure 6 contains a rough break- 
down of the cost classes of Matd instructions. Some instruc- 
tions (such as add) merely manipulate  the o p e r a n d  stack 
with minimal addi t ional  processing. A second class of in- 
structions (such as pu r l ed )  call commands on components 
below Mat& TinyOS commands return quickly, but  calling 
a function obviously has a CPU cost. The last two classes 
of instructions perform spli t-phase TinyOS operations; these 
instructions include the cost of a TinyOS event handler plus 
the latency between the command its corresponding event. 
For sense, this is very short, on the order of 2:00 microsec- 
onds. For send or forw, however, this involves a packet 
being sent, which takes roughly 50 milliseconds on the 10 
Kbit  radio. 

To determine the cost of issuing an instruction in Matd, we 
wrote a program tha t  executes a t ight loop (six instructions) 
for five seconds. The code tha t  clears the previous count and 
sends a packet containing the count is seven instructions. 
Matd does not normally have sole control of the processor 
when running. For example, the TinyOS network stack han- 
dles interrupts at  20KHz to find packet s tar t  symbols, then 
at  10KHz when reading or writing data.  To meastire Matd's  
raw performance, we turned the TinyOS radio off when run- 
ning the Matd t iming loop. From the loop cou~nts we calcu- 
lated the number of Matd instructions executed per second. 

Every instruction in the loop was a simple one (e.g. add, 
branch, push constant).  Therefore, the IPS we calculated 
executing the loop measures the approximate M:atd overhead 
imposed on every instruction as opposed to overhead from 
calling components or split-phase operations. The average 
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Figure 9: Appl i ca t ion  Ins ta l la t ion  Cos t s  

Mat4 IPS (instructions per second) was just  over 10,000. 
To precisely quantify the overhead Mat~ places over na- 

tive code, we compiled a few small operations to native mote 
code and compared the cost of the native and Mat4 imple- 
mentations. Obviously, some Mats instructions impose a 
higher overhead than others; those that encapsulate high- 
level TinyOS constructs are efficient, while those that  per- 
form simple arithmetic operations are not nearly as much so. 
The comparative instruction costs are in Figure 8. We se- 
lected one instruction from each of the cost classes of Figure 
6: and, rand, sense, and send. A Mat4 implementation's 
native instruction count is 33.5 to 1 for a logical and on two 
words, while 1.03 to 1 for a packet send. A logical and op- 
eration takes more cycles than random because it involves 
popping two operands and pushing one; in contrast, random 
pushes a single operand. 

Approximately one-third of the Mat~ overhead is due to 
every instruction being executed in a separate TinyOS task, 
which requires an enqueue and dequeue operation. We ran 
the loop code for determining IPS except that every Mat4 
task executed three instructions instead of one. The average 
IPS jumped to 12,754, which quantifies the task operations 
to be roughly 35% of Mat4's overhead. This indicates a 
tradeoff between Mat4 concurrency and performance that 
could be adjusted for different applications. 

5.3 Energy 
Mat4's computational overhead poses an energy overhead, 

as Mat~ must execute the additional instructions for inter- 
pretation. However, the concise representation of programs 
represents a savings in energy over full binary uploads; pro- 
grams can be contained in a handful of packets instead of 
hundreds. Given the overhead data from the previous sec- 
tion, we can compute the energy overhead of Mat~ execution 
data over native code. Figure 9 gives a comparison of the 
size of different TinyOS programs in binary code and cap- 
sules. The application bless_tesl; 's Mat4 version is much 
larger than the others because instead of representing co- 
operation between a few subsystems, it implements a new 
one. 

Uploading and installing an 8KB binary programs requires 
the mote to be fully active for roughly two minutes; this cost 
scales linearly with size [31]. By comparing binary programs 
with their equivalents in Mat4, we can calculate the relative 
energy costs of installation. Given the energy cost of an exe- 
cution and the energy cost of installation in the two systems, 
we can calculate at what point each of the two approaches 
is preferable. For a small number of executions, Mat4 is 
preferable; the energy cost of the CPU overhead is tiny in 
comparison to savings of only having to be awake to receive 
a single packet. For a large number of executions, native 
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Figure  11: T i m e  to  C o m p l e t e  Infec t ion  ( seconds)  

code is preferable; the savings on each execution overcomes 
the cost of installation. 

As an example, we consider the application currently de- 
ployed on Great Duck Island. This application spends most 
of its time in a deep sleep mode that  has a power draw of 
roughly 50 pA. Every eight seconds, the application wakes 
up, reads several sensors, and sends a packet containing the 
sensor data. Given the CPU overhead of Math, the duty cy- 
cle of the GDI application and the energy cost of installing a 
native image, a Mat4 version running for five days or less will 
save energy over a binary version. After running for about 
six days, the energy cost of MatE's CPU overhead grows to 
be greater than the cost of installing a binary version of the 
GDI program. 

These relative energy costs suggest a clear use for Mat~ 
in energy constrained domains. While the interpretation 
overhead makes implementing complex applications entirely 
in Mat4 wasteful, infrequent invocations have a tiny energy 
cost; using capsules to reconfigure the native execution of an 
application (modifying sample rates, which sensors to sam- 
ple, etc.) provides greatly improved flexibility at a much 
lower energy cost than installing a new application. Instead 
of building a new RPC-like mechanism for every applica- 
tion to control its configuration, applications can use Mat t  
capsules as a general RPC engine. 

5.4 Network Infection 
To measure network infection rates, we deployed a 42 node 

network as a 3 by 14 grid. The radio transmission radius 
formed a 3 hop network; depending on the mote, cells varied 
from 15 to 30 motes in size. 

Figures 10 and 11 contain the data we collected on net- 
work infection behavior. Figure 10 shows the rate at which 
motes in a network starting running a new program. In this 
experiment, configured every mote to run its clock capsule 
every twenty seconds. We introduced a mote to the network 
that  ran a newer self-forwarding clock capsule. Every twenty 
seconds, we recorded how many motes were running the new 
program (the new program changed the LED pattern a mote 
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displayed). We ran this experiment ten times, and averaged 
the results. The curve does not converge at one hundred 
percent because often one mote in the network (the same 
mote every time) would not reprogram for a long time, or at 
all - it was very resistant to a new viral capsule. We later 
inspected this mote and found it had a loose antenna; when 
re-soldered, it reprogrammed similarly to other motes. 

Figure 11 shows the time a healthy network took to be 
fully reprogrammed. In this experiment, capsules had vary- 
ing probabilistic forwarding rates. For each trial, we con- 
figured the network to have a clock capsule that  ran once a 
second and forwarded itself with a certain probability. We 
then introduced a mote into the network that  had a new 
clock capsule that  self-forwarded with another probability. 
We measured the elapsed time between the mote being in- 
troduced and the entire network being infected with the new 
program. We performed each infection six times. 

The percentages in Figure 11 are the probabilities that  
a capsule would forward itself when run. There are two 
values: the forwarding probability of the running network, 
and the forwarding probability of the introduced capsule. 
The columns are the forwarding rates of the running net- 
work, while the rows are the forwarding rates of the intro- 
duced capsule. Each entry in the table shows the mean time 
to infection and the standard deviation between the infec- 
tion runs. We chose a probabilistic scheme to prevent mote 
synchronization, which could artificially inflate network con- 
tention. 

Increasing the forwarding rate of a capsule can increase 
the rate a program infects the network, but  with diminishing 
returns. For example, increasing the forwarding probability 
from one eighth to one fourth often halved the time to net- 
work infection but  increasing it further did not have nearly 
as notable an effect. The drastically higher time to infection 
for networks always forwarding their capsules is due to net- 
work congestion. The 10 kilobit radio can support roughly 
twenty packets per second after backoff, encoding, etc. As 
the maximum cell size of the network was approximately 30, 
capsule forwarding once per second resulted in the network 
going well past its saturation point. 

6. DISCUSSION 
The presence of an interpreter for dynamically loaded code 

qualitatively changes the behavior and usage model of wire- 
less sensor networks. We discuss three ramifications of this 
change: phased programming of the network as a whole, 
interactions between static and dynamic layers in capsule 
forwarding and system architecture directions. 

6.1 Phased Execution, Agility, and Active Sen- 
sors 

The ease of installing new code in Matd means that pro- 
grams which transition through several states can be written 
as a series of capsules. For example, to have a sense-report 
cycle in a network, one could first write a capsule that sensed 
the environment, _placing this data in non-volatile storage 
with the log instruction. Once the data acquisition is com- 
plete, one could inject a new program that reads in stored 
data entries (with the logr instruction) then sends them 
over the network to be collected. The lightweight nature of 
capsules also makes them excellent candidates as a mech- 
anism for experimenting with sensor network application 
agility [27]; the Great Duck Island use case is an example of 

this. 
Currently, Matd executes capsules in response to only 

three types of events. One could imagine extending Matd 
to have contexts and capsules associated with a much richer 
set of activating primitives. Active networks ran code in 
response to only network events; the possibility of running 
easily installable code in response to such things as sensor 
thresholds, signal detection, or real-world actuation expands 
this idea from an active network node into an active sensor. 

6.2 Capsule Forwarding 
The results from our network reprogramming experiments 

establish that  application control of the propagation rate is 
undesirable. There are obviously more efficient possibilities; 
one would be to tag whether capsules should forward or not. 
If a capsule is tagged, Matd could broadcast the capsule at a 
rate appropriate for the network density, effectively adapting 
to a forwarding rate that  the network could sustain. This 
would not necessarily slow down the rate of :programming 
- in a dense network, more motes would heal: a forwarded 
capsule than in a sparse one. This issue gets at a funda- 
mental limitation in the current TinyOS design; motes can 
actuate a network (send packets), but  there is no mecha- 
nism to sense how busy the network is. If TinyOS included 
such a mechanism, Matd could provide mechanisms such as 
message merge capsules, which are called to ask an applica- 
tion to aggregate data buffers when it is sending data more 
rapidly than the network can handle. 

Additionally, the se tg rp  instruction allows Matd to con- 
struct several logical networks on top of a single physical 
network by changing a mote's AM group ID. This raises the 
question of whether several logically separate networks run- 
ning different applications could share common infrastruc- 
ture, such as an ad-hoc routing layer. The current TinyOS 
AM group mechanism prevents such a system from being 
implemented. 

6.3 Architectural Directions 
Motes currently do not have the traditional user/kernel 

boundary enforced by hardware protection mechanisms; 
a badly written application component can cause all of 
TinyOS to fail. Matd's interface solves this problem - a 
program cannot, among other things, disable interrupts or 
write to arbitrary memory locations. The need for user-land 
is supplanted by VM-land, which can provide the same guar- 
antees to applications. Matd contexts are also much smaller 
than hardware contexts; allocating multiple C stacks is nigh 
impossible on the rene2 without putt ing harsh limits on call 
depth. 

Given their size, it is no surprise that  motes do not have 
hardware support for virtual memory. Matd could provide 
functionality equivalent of many of the benefits a virtual 
memory system brings. As it is a virtual machine, Matd 
can provide a virtual address space. Swapping to backing 
store for suspended programs can be provided by using a 
mote's non-volatile storage. Motes could enter low-power 
sleep states with RAM powered down and restore an execu- 
tion context on waking up, even possibly running under a 
different version of Matd. 

Currently, Matd has eight instructions reserved for user 
specific operations. As all of the other instructions, these 
user instructions are part of the Matd binary' image; they 
must be defined when Matd is installed, and cannot be 
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changed. While subroutines allow some execution flexibil- 
ity, Mat6's overhead means that  any non-trivial mathemati- 
cal operation is infeasible. Being able to load binary code for 
user instructions in a manner similar to subroutines would 
greatly improve Mat6; the fact that motes are Harvard ar- 
chitectures prevents this from being effectively and safely 
implemented. For Mat6 to be efficiently tailorable in-situ, 
motes should have a unified data and instruction memory, 
or at least the capability to execute instructions out of data 
memory. 

7. CONCLUSION 
For sensor networks to be widely adopted, tl~ey must be 

easy to use. We have defined a set of system requirements 
for ease of sensor network programming and presented a 
tiny virtual machine, Mat6, which meets these requirements. 
Mat6 is small and expressive, has concise programs that  are 
resilient to failure, provides efficient network and sensor ac- 
cess, can be tailored to specific domains, and can quickly 
self-program a network. The effectiveness of Mat6 as an ex- 
ecution model suggests that  virtual machines are a promising 
way to provide protective hardware abstractions to applica- 
tion code in sensor networks, fulfilling the traditional role of 
an operating system. Clearly, given the autonomous nature 
of viral reprogramming, significant and possibly novel secu- 
rity measures must be taken to protect a network. While an 
application composed of a static organization of components 
might evolve slowly, Mat6 makes the network dynamic, flex- 
ible and easily reconfigurable. This suggests Mat6 can par- 
ticipate in the management of networks in addition to being 
a platform for application development. 

Our future work on Mat6 focuses on two areas: application- 
specific virtual machines and the user-land abstraction. We 
are currently looking at application-specific Mat6 flavors for 
identified domain requirements. In addition to being a top- 
level interface for mote programming, the VM can also sit 
below other TinyOS components as a computational engine 
in certain domains. For example, we have developed a ver- 
sion named Bombilla to provide an execution engine to the 
TeleTiny system, a miniature query processor and data ag- 
gregation system for SQL-like queries on a network [21]. In 
its current state, Mat6 is only an architecture and bytecodes; 
the next step is to develop higher level languages and pro- 
gramming models for application development, providing a 
user-land programming environment distinct from TinyOS. 
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APPENDIX 
The complete Mats instruction set follows, as well as our Mats 
implementation of the ad-hoc routing protocol BLESS. 

A. Mats ISA 

0 ~ h a l t  O x O 0  00000000 
1 0Preset Ox01 00000001 c l e a r  s t a c k  
2 0 ~ n d  Ox02 00000010 push(SO & $1) 
3 ~ o r  Oz03 00000011 p~udx($O I $1) 
4 ~ s h / f t r  0x04 00000100 ~ h ( $ O  >> $1) ( S l p n d )  
5 ~ s h i f t l  Ox05 00000101 ~ ( $ 0  << $1) ( s igned)  

MESSAGE HEADER ROUTING DATA FRAME 

D e s t i n a t i o n  a d d r e s s  
S o u r c e  a d d r e s s  

H o p c o u n t  [ 

F i g u r e  12: B L E S S  M e s s a g e  H e a d e r  a n d  ]Frame Lay-  
o u t s  

• ~ a d d  OxC~ 00000110 push(SO + $1) - -  depends on types  
• OPput lnd Ox08 00001000 $0 used as 2 - b i t  cad ÷ 3 - b i t  op~nd 
9 R i d  Oz09 00001001 push ( so t s lD)  

10 ~ i n v  0x0a 00001010 push( -$0)  
11 OPcopy O x O b  00010000 copy tO on Cop o f  s t a c k  
12 ~ p o p  OxOc 00001100 (pop $0) 
13 ~ s a n s e  OxOd 00001101 p u s h ( e ~ s o r  ($0)) 
14 OPsend O x O e  00001110 s e n d ( S 0 )  
15 OPsendr OzOf 00001111 send(SO) w i t h  capsule  5 

16 OPcast OxlO 00010000 p u s h ( t e n e t  ($0) )  
17 O~p~shJ 0 x l l  00010001 push(message) 
18 ~Pmo~ 0x12 00010010 p u s h ( p u l l  e n t r y  o f f  $0) 
19 O~clear 0x13 00010011 c l e a r ( 8 0 ) ,  do nJ t  pop i t  
20 ~ s o n  0x14 00010100 t u r n  so under  on 
21 ~ s o f f  OX16 00010101 t u r n  sounder o f f  
22 OPnot 0z16 00010110 pumh('$O) 
23 OPlog 0x17 00010111 l o g v r i t e ( $ O )  onto s t a b l e  s torage  
24 OPlogr 0z18 00011000 r e a d ( l i n e  $1 i n t o  asg SO) 
25 OPlogr2 0x19 00011001 r e n d ( l i n e  SO i n t o  meg $1) 
26 OPsets Oxla 00011010 s e t  s h a r e d  v a r i a b l e  Co $0 
27 OPgete Ozlb 00011011 push(shazed v a r i a b l e )  
28 ~ r a n d  Oxlc 00011100 puBh 16 b i t  r a n d ~ a  ntmber  o n t o  s t a c k  
29 ~ e q  Oxld 00011100 i f  $0 m $1, push 1 e l se  0 
30 O~neq Oxle 00011101 i f  ~0 l "  $1t push 1 e l s e  0 
31 ~ c a l l  O x l f  00011111 C a l l  $0 
32 ~ s v a p  Ox20 OOlO0000 n e t  $0 and $1 

46 ~ f o z ~  Ox2e 00101110 f o r v e x d  t h i s  code capsule  
47 OPfor~o Ox2f C0101111 foz'ws.rd capaale  $0 

48 ~ u s r O  Ox30 00110000 u s e r  i n s t r u c t i o n  0 
49 ~ u s r l  Ox31 O0110OO1 u s e r  ~ t r u c t i ~ u  1 
60 ~usz~2 0x32 00110010 u s e r  ~ n s t r ~ c t i o n  2 
61 ~ r 3  0x33 00110011 u s e r  i n s t r u c t i o n  3 
62 ~ u ~ r 4  0x34 00110100 u s e r  i n s t r u c t i o n  4 
63 ~ u ~ r 5  Gx35 00110101 u s e r  i n s t r u c t i o n  S 
54 OPusr6 0x36 00110110 u s e r  i ~ t r ~ c ~ i ~ n  6 
55 0Pusr7 0x37 00110111 u s e r  i n s t z m c t t o n  7 

50 ~Pset~rp Ox3~ 00111010 met group l d  ¢o  $0 
59 OPpot Ox3h 00111011 p u s h ( p o t e n t l ~ t e r  s e t t i n g )  
60 ~ p o t I  0x3c 00111100 s e t  r a d i o  p o t s : t i I t s r  CO SO 
61 OPclockc Ox3d 00111101 set  c l o c k  c o u n t e r  wish  $0 
62 ~ c l o c k ~  0x3e 00111110 s e t  c l o c k  f r e q  v l t h  $0  ( 0 - 7 )  
63 O~ret Ox3f 00111111 rett~n from s u b r o u t i n e  

SCIASS 
64 O P g S ~  0X40-47 01000XXX push(shor~ xxx from Ig h i n d e r )  
72 GPgs~b Ox48-4f OlO01xxz push (by t e  xxx from Ig hea der )  
80 ~ g e t f e  h ~ 0 - 5 7  Ol010x~x push(ehoz~ x n  f r ~  f r a y )  
g8  ~ g e t f b  Ox58-Sf OlOllxxx p u s h ( b y t e  :~¢ from f r a a a )  
96 C ~ s e ~ s  0x60-67 01100xxx s h o r t  xxx o f  ~sg header  - $0 
102 ~set~nb OX6~-6f OI101XXX b y t e  x3m o f  ~Sg header - $0 
108 ~ e e t f e  Ox70-TT 01110xxx s h o r t  xxx of  f l  " $0 
114 ~ I S t ~ O  0X78-Tf 01111XXX by to  ~ of  f r I  l $0 

XCLtSg 
128 OPp~hc 0x80-bf  1 0 - ~  push (xxxxxx) (uns isned)  
192 ~q~lsz OxCO-ff 1 ~  i f  ($0 <-  O) J ~ p  ~ T ~  

B. BLESS 

B.1 Clock Capsule 

pushc 1 
add 
copy 
pushc 4 

inv  
add 
b l e z  11 
pop 

pushc 0 
pushc 3 
c a l l  
pushc 1 

s ense  
p u ~  
c l e a r  
add 

sendz 
pushc ! 
pushe 3 
pushc 3 

s h i f t l  

# K e e p ~  a covmter - -  copy  i t s  v a l u e  
# T i l e r  i s  eve ry  4 c l o c k  t i c k s  

• I f  the  t L a e r  h a s n ' t  e x p i r e d ,  s k i p  f l u s h  check (jumps ~ t e r  c a l l )  
• P~rent  f l u s h  check code  - g e t  r i d  o f  o l d  t l a e r  

# heset  t i n c t  

# C a l l  s u b r o u t i n e  3 - -  check f o r  paren t  f l n s h  
• J u ~ , - t o  p o i n t  f o r  branch shows 

• head l ight :  sensor ,  put  ~ l u e  in a e s s ~ e  

• Send :assags w i t h  send capsu le  
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. c..t. ~tt Port.,. ~s 
t l I d  # Ox9 t o u l e s  r ed  

hL1t  

B . 2  M e s s a g e  S e n d  

p u s h ¢ S  
no t  
g e t f s  0 
neq 

b l e z  16 
g a f f s  0 
s e t w  0 
id  

e e t M  i 
g e t f b  2 
setmb 4 
pushc 0 

n o t  
sandr  
pushc 4 
p u t l n d  

h a l t  

B.3  

• I f  ou r  p a r e n t  ! -  O x f f f f  (no p a r e n t ) ,  we v o n ' t  branch 

• I f  our  p a r e n t  i s  O x f f f f  (no F ~ r e n t ) ,  wePll sk ip  sending 
• Cot s h o r t  0 o f  f r u m  - -  p a r e n t  addr  
S Se t  shore  0 o f  header  - -  d e s t i n a t i o n  addr  

• Se t  source f i e l d  ( s h o r t  1) o f  header  t o  our  addr 
# Cet our  hnpcouut  
# Set  hopcount  f i e l d  i n  heade r  

• Crea te  •M broadcast; addr  ( O x f f f f )  
• Send packe t  on t~oadcas t  

• Turn on g reen  l ed  

• J u N t o  p o i n t  of  above b ranch  

Message Receive 

pushc 0 
c a l l  
puehc 1 
c a l l  # Check i f  es  should  make sender  o ~  hey p a z e n t  

push¢ 2 
c a l l  S I f  i t ' s  our  cuzwent p a r e n t ,  f l a g  p a r e n t  hea rd  
texans S S Cet d e s i n a t i o n  addr  o f  packe t  
id  

eq 
blez 13 # Branch t o  halt if weJre not the destination 
pushc 2 
pur l ed  S Tufa on g reen  I ~  

sendr • Send packe t  on AN b roadcas t  
h a l t  

B.4  S u b r o u t i n e  0 - I f  no parent, set hopcount 
to  64 

s e r f s  S 
push¢ 0 
no t  
eq 

b l ez  9 
push¢ 1 
p u s h ¢ S  
shiftl 

e e t f b  2 
re~ 

• I f  p a r e n t  I -  O x f f f f  (no p a r e n t ) ,  jwap t o  r e t  

# Se t  hopcount  t o  64 

B.5 S u b r o u t i n e  1 - C h a n g e  Paren t?  

g e t f b  2 
getmb 4 
inv 
add 

b l ez  11 
g e t u  1 
s e r f s  0 
getmb 4 

puehc 1 
add 
s a t f b  2 
r e t  

# I f  es  S hopcount  g r e a t e r  o r  equal  t o  our  ho!~otmt , jump t o  r e t  

• Se t  our  p a r e n t  addr t o  source addr  o f  Pocket  

• Se t  our  hopcount  t o  hopcount  of  source + 1 

B.6  S u b r o u t i n e  2 - F lag  P a r e n t  H e a r d ?  

g e r m  1 
g e t f a  0 
eq 
b l ez  1S 

puehc l 
s e t f b  3 
getmb 4 
puahc 1 

add 
e e t f b  2 
r e t  

• I f  no t  our  pazen t ,  jump t o  r e t  

• Se t  h e a r d - p a r l n t  f l a g  of  frame t o  I 

• Se t  our  hopcount t o  p a r e n t  h o p c o ~ t  + 1 

B.7  S u b r o u t i n e  3 - F l u s h  P a r e n t ?  

g e t f b  3 
pushc 0 
eq 
blez  7 

pushc 0 
no t  
serf8 0 
pushc 0 

s e t f b  3 
puehc i 
pushc 4 
s h i f t l  

inv  # Create -16 
g e t f b  4 
add 
b l e z  19 • sk ip  i f  hopcount  <- 1S 

puehc 0 
lnv  
ser fs  S S Set parent  ~o O x f f f f  (no payent)  - -  too f a r  from roo t  
r e t  

S I f  ee have heard  our  p a r e n t ,  s k i p  p a r e n t  c l e a r  

S Clear  p a r e n t  

# Se t  p a r e n t  n o t - h e a r d  
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