
Matd: A Tiny Virtual Machine for Sensor Networks

Philip Levis and David Culler
{pal,culler} @cs.berkeley.edu

Computer Science Division Intel Research: Berkeley
University of California Intel Corporation

Berkeley, California Berkeley, California

ABSTRACT
Composed of tens of thousands of t iny devices with very
limited resources ("motes"), sensor networks are subject to
novel systems problems and constraints. The large number
of motes in a sensor network means that there will often
be some failing nodes; networks must be easy to repopu-
late. Often there is no feasible method to recharge motes,
so energy is a precious resource. Once deployed, a network
must be reprogrammable although physically unreachable,
and this reprogramming can be a significant energy cost.

We present Mat~, a tiny communication-centric virtual
machine designed for sensor networks. Mat~'s high-level in-
terface allows complex programs to be very short (under
100 bytes), reducing the energy cost of transmitt ing new
programs. Code is broken up into small capsules of 24
instructions, which can self-replicate through the network.
Packet sending and reception capsules enable the deploy-
ment of ad-hoc routing and data aggregation algorithms.
Mat~'s concise, high-level program representation simplifies
programming and allows large networks to be frequently re-
programmed in an energy-efficient manner; in addition, its
safe execution environment suggests a use of virtual ma-
chines to provide the user/kernel boundary on motes that
have no hardware protection mechanisms.

1. INTRODUCTION
Wireless sensor networks pose novel problems in system

management and programming. Networks of hundreds or
thousands of nodes, limited in energy and individual re-
sources, must be reprogrammable in response to changing
needs. A spectrum of reprogrammability emerges, from sim-
ple parameter adjustments to uploading complete binary im-
ages. As network bandwidth is limited and network activity
is a large energy draw, a concise way to represent a wide
range of programs is needed. A virtual machine is a natural
way to achieve this, but characteristics of sensor networks,
such as their large numbers, require an approach distinct
from prior VM architectures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS X 10/02 San Jose, CA, USA
Copyright 2002 ACM 1-58113-574-2/02/0010 ...$5.00.

Traditionally, virtual machines have focused on virtual-
izing real hardware [3][5], intermediate program represen-
tation [4], or bytecode interpretation [20]. Each technique
has its own design goals and advantages as well as draw-
backs. All have generally focused on traditional uniproces-
sor or multiprocessor environments, although some work has
dealt with bringing bytecode interpreters to small consumer
devices [15]; one solution, PicoJava, has been to design hard-
ware that natively runs the VM instruction set [16]. Virtual
machines for tiny devices have been proposed, but their de-
sign goals have focused on byte-code verification and online
compilation [30].

Sensor networks are a domain characterized by resources
that are orders of magnitude smaller t h a n what current vir-
tual machines require. For example, current sensor network
nodes (motes 1) have 8 to 128 KB of instruction memory
and 512B to 4KB of RAM, while the K Virtual Machine tar-
gets devices with a memory budget of 160KB to 512 KB [15].
Energy is a critical resource, especially in terms of communi-
cation; sending a single bit can consume the same energy as
executing 1000 instructions. The hardware/software bound-
ary of an individual mote is currently a topic of open re-
search [10][11].

Although sensor networks are distinct from other comput-
ing domains in several ways, they have similarities to parallel
architectures and distributed systems; notably, they are all
composed of many separate processing elements that must
communicate. There are, of course, important differences;
as opposed to a reliable message passing system in parallel
architectures, sensor networks have lossy irregular wireless
networks.

Content-based routing and naming in sensor networks
have been examined for bandwidth conservation [9] [14]; this
work borrows ideas from active networks. By taking a more
general approach, however, active networks allow not only
these mechanisms but arbitrary computation within a net-
work [32]. There is growing interest in data aggregation as a
mechanism for making the most of precious sensor- network
bandwidth [13] - a problem that could be easily investigated
with an active sensor network. While incremental code mi-
gration has been achieved using XML [6], motes lack the
RAM to store even a few simple XML elements.

The basic question of how sensor networks will be pro-
grammed remains largely unanswered. A spectrum ex-
ists between minor application adjustments (tweaking con-
stants) and uploading entire programs (binary images). The

1mote: n.; A very small particle; a speck: "Dust motes
hung in a slant of sunlight" (Anne Tyler).

85

former can be achieved with a t iny RPC-like mechanism and
a handful of packets, while the la t ter requires sending kilo-
bytes of da t a at high energy cost. Our experience has shown
tha t most sensor network applications are composed of a
common set of services and sub-systems, combined in dif-
ferent ways. A system tha t allows these compositions to be
concisely described (a few packets) could provide much of
the flexibility of reprogramming with the transmission costs
of parameter tweaking.

To establish tha t a wide range of sensor network applica-
tions can be composed of a small set of high level primitives,
we built Matd 2, a byte-code interpreter to run on motes.
Capsules of 24 instructions fit in a packet and can forward
themselves through a network. Complex programs, such as
an ad-hoc routing layer, can be composed of several capsules
and represented in under 100 bytes. Matd therefore allows a
wide range of programs to be installed in a network quickly
and with litt le network traffic, conserving energy. We show
tha t for a common class of frequently reprogrammed sys-
tems, the energy cost of the CPU overhead of a bytecode
interpreter is outweighed by the energy savings of t ransmit-
t ing such concise program representations.

The following two sections present sensor networks and
TinyOS, an operat ing system designed specifically for sen-
sor networks; from these two sections a clear set of require-
ments emerge for a mote reprogramming system. Section 4
describes the design, structure, and implementation of Matd.
Section 5 evaluates the system's behavior and performggnce.
Section 6 and 7 discuss our evaluations of Matd and the
conclusions one can draw from it. The full Matd instruction
set and an implementation of a beacon-less ad-hoc routing
algorithm are included in the appendix.

2. SENSOR NETWORKS
The progression of Moore's Law has led to the design and

manufacture of small sensing computers tha t can communi-
cate with one another over a wireless network [11]. Research
and industry indicate tha t motes will be used in networks of
hundreds, thousands, or more [2][7][18].

Sensor networks are distinct from tradi t ional computing
domains. Their design assumes being embedded in com-
mon environments (e.g., a corn field, a bathroom), instead of
dedicated ones (e.g., a server room, an office). Mean t ime to
failure combined with large numbers leads to routine failure;
a network must be easy to repopulate without interrupting
operation. Compared to infrastructure or even mobile sys-
tems, power is scarce and valuable. One can easily recharge
a laptop or a handheld; recharging thousands of motes (or
even finding all of them!) is much more difficult.

Communication in sensor networks is more precious than
in other computing domains. Sending a single bi t of da t a
can consume the energy of executing a thousand instruc-
tions. This dispari ty has led to investigation of passive
networking systems [12]. Additionally, the power cost of
producing sensor da ta is orders of magnitude lower than
the cost of t ransmit t ing it, and its rate of production (e.g.
100Kbit/sec.mote) is far greater than can be communi-

2 M a t d (mah-tay) n.; Matd is as tea like beverage con-
sumed mainly in Argentina, Uruguay, Paraguay and south-
ern Brazil. It is brewed from the dried leaves and stemlets of
the perennial tree Rex paraguarensis ("yerba matd"). The
name "matd" derives from the Quechua word 'hnati" tha t
means cup or vessel used for drinking.

cated through a network. This has led to investigation
into content-specific routing and in-network da ta aggrega-
t ion [9] [21]; centralized control and da ta collection is ineffi-
cient and wasteful.

Once deployed, motes often cannot be easily collected; re-
programming cannot require physical contacl~. Being able
to re-task a network as analysis techniques or environmen-
tal conditions evolve is desirable. For example, we are in
the process of deploying a sensor network to monitor s torm
petrels 3 on Great Duck Island off the coast of Maine. De-
ploying motes involves placing them in possible nesting sites;
once birds nest, disturbing them to reach a mote is infeasi-
ble. Being able to monitor the birds this closely (inches)
for continuous periods is unheard of in biological research;
scientists are still unsure exactly how, what and at what fre-
quency they want the network to sense [23]; the abil i ty to
reprogram is invaluable.

Our experiences working with civil engineers present sim-
ilar issues in programming. By monitoring building struc-
tures with embedded motes, expensive tasks such as earth-
quake damage assessment can be made fast and simple [1].
Such a network would be very useful for a wide variety of
tasks, such as water damage detection or sound propaga-
tion testing. As not all of these tasks would be anticipated,
installing software for all of them at deployment t ime is im-
possible; additionally, as the network is embedded in the
building, the motes are unreachable and not feasibly re-
deployable.

Being able to reprogram a network quickly is also very use-
ful for issues such as da ta aggregation and adaptive query
processing [22]; dynamically installing aggregation functions
can provide a more flexible system than a predefined set of
aggregates. Examining these sample use cases (habi tat mon-
itoring, building instrumentation, and query processing), it
is clear tha t a flexible, rapid and powerful reprogramming
mechanism is needed.

Although computat ion is inexpensive in comparison to
communication, it is not abundant. For example, the latest
generation of motes we have designed (the mica platform)
has a 4MHz 8-bit processor. An individual mote cannot
perform large computations rapidly by i t s e l f - they must be
performed in a distr ibuted manner. The scarcity of RAM
and network bandwidth inhibits the use of algorithms tha t
depend on global state, such as many ad-hoc routing algo-
r i thms designed for mobile computers [28].

3. TINYOS
TinyOS is an operating system designed specifically for

use in sensor networks [11]. Combined with a family of wire-
less sensor devices, TinyOS is currently used as a research
platform by several institutions. Examining sensor network
challenges and the l imitations of TinyOS produces a set of
requirements for a flexible and concise sensor network pro-
gramming model.

3.1 Hardware: rene2~ mica

Two mote hardware platforms, the rene2 ~md the mica,
are currently available for general development. The rene2

3Storm Petrel: Genus Oceanodroma. Habitat: Open
ocean and oceanic islands. Nests are built in burrows, among
colonies on oceanic islands. After mating emd hatching,
Oceanodroma return to the open ocean.

86

Mote Type v.c "~'~_1 ~..2 doe ~c.

Ji •
D a t e 9/99 10/00 I 6 /01 8/01 2/02
M i c r o c o n t r o l l e r

Prog (KB) l 8 16 128
RAM ~KB) I 0.5 1 4
N o n v o l a t i l e s torage
Chip I 24LC256 [AT45DB041B [
C o n n e c t i o n t y p e I2C SPI
S ze (KB) 32 512
Default Power source
Type [Alk]
Size [CR24 2xAA
C a p a c i t y (mAh) [S 2850
C o m m u n i c a t i o n

I Radio RFM TRi000
Rate (Kbps) I0 I 10 [i0] i0 10/40

OOK M o d u l a t i o n type OOK/ASK

T a b l e 1: T h e f ami ly of B e r k e l e y T i n y O S m o t e s

is the older of the two, and has correspondingly smaller re-
sources. The complete family of TinyOS motes is summa-
rized in Table 1. The mica supports 40Kbit communication
on its radio, while the rene2 is limited to 10Kbit; the mica
radio can be put into 10 Kbit mode for backwards compat-
ibility. All mote platforms are Harvard architectures, with
separate instruction and data memory. Installing new binary
code requires a reset to take effect.

To change the behavior of a TinyOS program, one must
either hardcode a state transition in a program (when one
receives a type of packet, start reading light data instead of
temperature), or one must modify source code, recompile a
TinyOS image, and place the entire new image on a mote.

3.2 Software Architecture
A TinyOS program is composed of a graph of software

components. At the component level, TinyOS has three
computational abstractions: commands, events, and tasks.
Commands are used to call down the component graph: for
example, telling the network component to send a packet.
Events are calls up the component graph: for example, sig-
naling the packet has been sent. From a traditional OS per-
spective, commands are analagous to downcalls while events
are analagous to upcalls.

Tasks are used for long running computations that can be
preempted by events. A command (or event) can enqueue
a task to perform a computation and immediately return.
TinyOS schedules tasks on a FIFO basis and runs a task
to completion before another task is run; as they do not
preempt one-another, they must be short. Otherwise, the
task queue can overflow as new tasks are posted.

TinyOS supports high concurrency through split-phase
non-blocking execution. No command or event blocks. In-
stead, completion of long lasting operations (such as sending
a byte over a radio) are indicated by the issuing of an event
(such as a send byte done). Non-blocking operation allows
a form of high concurrency distinct from a threaded model:
the operations of many components can be interleaved at a
fine granularity. This asynchronous behavior is ultimately
powered by hardware interrupts.

TinyOS provides high parallelism and efficiency through
a constrained, and somewhat tricky, programming interface.
This interface is badly suited to non-expert programmers,
such as the biologists and civil engineers we are working with
to deploy networks. A simpler programming model, which
allows novice programmers to express their desired behav-
ior without worrying about timing and asynchrony, would

greatly improve the usefulness of TinyOS sensor networks.

3.3 TinyOS Networking: Active Messages
The top-level TinyOS packet abstraction is an Active Mes-

sage [33]. The characteristics of this abstraction are impor-
tant because they define the capabilities of systems built on
top of it. AM packets are an unreliable data link protocol;
the TinyOS networking stack handles media access control
and single hop communication between motes. Higher layer
protocols (e.g. network or transport) are built on top of the
AM interface.

AM packets can be sent to a specific mote (addressed with
a 16 bit ID) or to a broadcast address (0 x f f f f) . TinyOS
provides a namespace for up to 256 types of Active Messages,
each of which can each be associated with a different software
handler. AM types allow multiple network or data protocols
to operate concurrently without conflict. The AM layer also
provides the abstraction of an 8-bit AM group; this allows
logically separate sensor networks to be physically co-present
but mutually invisible, even if they run the same application.

3.4 System Requirements
Looking at sensor network challenges and the limitations

of TinyOS and its hardware, a set of clear requirements
emerge for an effective sensor network programming system.
They are:

• Small - it must fit on rene2 and mica hardware (tar-
geting only the cutting edge - mica - would alienate
users);

• Expressive - one must be able to write a wide range of
applications;

• Concise - applications should be short, to conserve net-
work bandwidth;

• Resilient - applications cannot crash a mote;

• Efficient - energy efficient sensing and communication:

• Tailorable - support efficient specialized operations;

• and Simple - programming an entire network should
be in-situ, fast, and mostly autonomous.

4. Mat4
Matd is a bytecode interpreter that runs on TinyOS. It is a

single TinyOS component that sits on top of several system
components, including sensors, the network stack, and non-
volatile storage (the "logger"). Code is broken in c a p s u l e s

of 24 instructions, each of which is a single byte long; larger
programs can be composed of multiple capsules. In addi-
tion to bytecodes, capsules contain identifying and version
information. Matd has two stacks: an operand stack and
a return address stack. Most instructions operate solely on
the operand stack, but a few instructions control program
flow and several have embedded operands. There are three
execution contexts that can run concurrently at instruction
granularity. Matd capsules can forward themselves through
a network with a single instruction. Matd provides both a
built-in ad-hoc routing algorithm (the send instruction) as
well as mechanisms for writing new ones (the sendr instruc-
tion).

We designed Matd to run on both the mica and the r e n e 2
hardware platforms. This means that Matd and all of its

87

Mat6 Code Footprint

[] Network

[] Hardware
0 ~ B Boot/Scheduler

, Component
i VM (Mats)

Network
Logger
Hardware
Boot/Scheduler
Total

Mat6 Data Footprint

7~

~ 512

2 ~

0

Code bytes) Data (bytes)
7286 603
6410 206

844 18
1232 8
272 14

16044 849

[] VM (Matd)

[] Network

• Logger
[] Hardware
BI Boot/Scheduler

F i g u r e 1: Mat(~ C o m p o n e n t B r e a k d o w n

subcomponents must fit in 1KB of RAM and 16 KB of in-
struction memory. Figure 1 outlines the code and data size
breakdowns of the TinyOS components in a Mats mote.

4.1 Architecture and Instruction Set
The communication model in the Mat~ VM architecture

allows a program to send a message as a single instruction;
the sent message is (from the caller's perspective) automat-
ically routed to its destination. The arrival of a packet au-
tomatically enqueues a task to process it. This approach
has strong similarities to Active Messages [33] and the J-
Machine [26]. There are, of course, important differences
- for example, instead of reliably routing to processors, it
routes through an unreliable multihop wireless network. The
tiny amount of RAM also forces motes to have a constrained
storage model - Mats cannot buffer messages and tasks
freely as the J-Machine can.

Mats instructions hide the asynchrony (and race condi-
tions) of TinyOS programming. For example, when the s e n d
instruction is issued, Mats calls a command in the ad-hoc
routing component to send a packet. Mat~ suspends the
context until a message send complete event is received, at
which point it resumes execution. By doing this, Mats does
not need to manage message buffers - the capsule will not re-
sume until the network component is done with the buffer.
Similarly, when the s e n s e instruction is issued, Mat~ re-
quests data from the sensor TinyOS component and sus-
pends the context until the component returns data with
an event. This synchronous model makes application level
programming much simpler and far less prone to bugs than
dealing with asynchronous event notifications. Additionally,
Mats efficiently uses the resources provided by TinyOS; dur-
ing a split-phase operation, Mats does nothing on behalf of
the calling context, allowing TinyOS to put the CPU to sleep
or use it freely.

Mat~ is a stack-based architecture [19]. We chose this to
allow a concise instruction set; most instructions do not have
to specify operands, as they exist on the operand stack [17].
There are three classes of Mat~ instructions: basic, s-class,
and x-class. Figure 3 shows the instruction formats for
each class. Basic instructions include such operations as
arithmetic, halting, and activating the LEDs on a mote. s-
class instructions access in-memory structures used by the
messaging system, such message headers or messaging layer
state; they can only be executed within the message send
and receive contexts. The two x-class instructions are pushc
(push constant) and b l ez (branch on less than or equal to

Subroutines Events

¢¢¢
gets/sets

Matq

Mate
Context

F i g u r e 2: M a t h A r c h i t e c t u r e a n d E x e c u t i o n M o d e l :
Ca psu l e s , C o n t e x t s , a n d S tacks

basic
s-class
x-class

00±±±±ii ± = instruction
01i±ixxx ± ---- instruction, x = argument
l±xxxxxx ± = instruction, x = argument

F i g u r e 3: M a t s I n s t r u c t i o n F o r m a t s

zero). Both the s-class and x-class instructions have an
operand embedded in the instruction: s-class have a 3-bit
index argument and x-class have a 6-bit unsigned value ar-
gument.

Eight instructions (usr0-7) are reserved for users to define.
By default, they are no-ops. However, as a (:lass of sensor
network applications might require some specific processing
outside the capabilities of MatE, such as a complex data fil-
ter, these user instructions allow efficient domain-specific in-
structions. Mats has been structured to make implementing
these instructions easy. One can therefore build a specially
tailored version of Mats with efficient support for common
complex operations.

MatE's three execution contexts, illustrated in Figure 2,
correspond to three events: clock timers, message receptions
and message send requests. Inheriting from languages such
as FORTH [25], each context has two stacks, an operand
stack and a return address stack. The former is used for all
instructions handling data, while the latter is used for sub-
routine calls. The operand stack has a maximum depth of
16 while the call stack has a maximum depth of 8. We have
found this more than adequate for programs we have writ-
ten. The clock operand stack persists across executions - if
one invocation left a sensor reading on the top of the stack,
it is available in the next invocation. This is an easy way
to implement internal clock timers, as Section 4.3 demon-
strates. When a clock capsule is installed, the value zero is
pushed onto its operand stack. The receive and send con-
texts expect the message received or the data to send to
be on the top of their stacks when they begin execution, so
these stacks do not persist across invocations.

There are three operands types: values, sensor readings,
and messages. Some instructions can only operate on certain
types. For example, the pu r l ed instruction expects a value
on the top of the operand stack. However, many instructions
are polymorphic. For example, the add instruction can be
used to add any combination of the types, with different
results. Adding messages results in appending the data in
the second operand onto the first operand. Adding a value
to a message appends the value to the message data payload.

88

pushc 1
add
copy
pushc 7
and
pur led
h a l t

push one onto operand stack
Add the one to the stored counter
Copy the new counter value

Take bottom t h r e e b i t s of copy
Se t t h e LEDs t o t h e s e t h r e e b i t s

F i g u r e 4: Mat(~ cnt_to_leds - Shows t h e b o t t o m 3
b i t s o f a c o u n t e r o n m o t e L E D s

Adding a sensor reading to a value results in a sensor reading
of the same type increased by the value, while adding two
sensor readings of different types (e.g. light and humidity)
just returns the first operand. Sensor readings can be turned
into values with the cas t instruction.

There is a single shared variable among the three contexts
- a one word heap. It can be accessed with the s e t s and
g e t s instructions. This allows the separate contexts to com-
municate shared state (e.g. timers). Our experience so far
has shown this to be adequate but it is unclear whether a
heap this size will be feasible in the long term. Its size could
be easily increased by having sets-and gets specify an ad-
ditional operand to state the address within the heap. As
we have yet to find a situation where this is necessary, we
have decided against it for now.

4.2 Code Capsules and Execution
Mat~ programs are broken up into capsules of up to 24

instructions. This limit allows a capsule to fit into a single
TinyOS packet. By making capsule reception atomic, Mats
does not need to buffer partial capsules, which conserves
RAM. Every code capsule includes type and version infor-
mation. Mat~ defines four types of code capsules: message
send capsules, message receive capsules, timer capsules, and
subroutine capsules. Subroutine capsules allow programs to
be more complex than what fits in a single capsule. Applica-
tions invoke and return from subroutines using the c a l l and
r e t u r n instructions. There are names for up to 21~ subrou-
tines; to keep MatE's RAM requirements small, its current
implementation has only four.

Mats begins execution in response to an event - a timer
going off, a packet being received, or a packet being sent.
Each of these events has a capsule and an execution con-
text. Control jumps to the first instruction of the capsule
and executes until it reaches the h a l t instruction. These
three contexts can run concurrently. Each instruction is ex-
ecuted as a TinyOS task, which allows their execution to
interleave at an instruction granularity. Additionally, un-
derlying TinyOS components can operate concurrently with
Mats instruction processing. When a subroutine is called,
the return address .(capsule, instruction number) is pushed
onto a return address stack and control jumps to the first
instruction of the subroutine. When a subroutine returns,
it pops an address off the return stack and jumps to the
appropriate instruction.

The packet receive and clock capsules execute in response
to external events; in contrast, the packet send capsule ex-
ecutes in response to the sendr instruction. As sendr will
probably execute a number of Mat~ instructions in addition
to sending a packet, it can be a lengthy operation. Therefore,
when sendr is issued, Mat~ copies the message buffer onto
the send context operand stack and schedules the send con-
text to run. Once the message has been copied, the calling

pushc I
sense
copy
gets

J.nv
add
pushc 32
add

Push one on the operand s t a c k
Road sensor 1 (l i g h t)
Copy the sensor read ing
Get prev ious s e n t r ea d ing

I n v e r t prev ious read ing
C u r r e n t - prev ious s e n t v a l u e

blez 17 # If curr < (prey-32) Jump to send
copy # Copy the sensor reading
inv # Invert the current
gets # Get the previous reading

add # Previous - current
pushc 32
add
blez 17 # If (curt+32) • prey jtunp to send

halt

copy # PC 17 -- jump-to point from above
sets # Set shared var to current reading
pushm # Push a message onto operand stack

clear # Clear out the message payload
add # Add the reading I~o message payload
send # Send the message
halt

F i g u r e 5: M a t h P r o g r a m to R e a d L ight D a t a a n d
S e n d a P a c k e t o n R e a d i n g C h a n g e

context can resume execution. The send context executes
concurrently to the calling context, preparing a packet and
later sending it. This frees up the calling context to handle
subsequent events - in the case of the receive context, this
is very important.

The constrained addressing modes of Mats instructions
ensure a context cannot access the state of a separate con-
text. Every push and pop on the operand and return value
stack has bound checks to prevent overrun and underrun. As
there is only a single shared variable, heap addressing is not a
problem. Unrecognized instructions result in simple no-ops.
All bounds are always checked - the only way two contexts
can share state is through gets and s e t s . Nefarious cap-
sules can at worst clog a network with packets - even in this
case, a newer capsule will inevitably be heard. By provid-
ing such a constrained execution environment and providing
high-level abstractions to services such as the network layer,
Mats ensures that it is resilient to buggy or malicious cap-
s u l e s .

4.3 Simple Mats Programs
The Mats program in Figure 4 maintains a counter that

increments on each clock tick. The bottom three bits of the
counter are displayed on the three mote LEDs. The counter
is kept as a value which persists at the top of the stack
across invocations. This program could alternatively been
implemented by using gets and sets to modify the shared
variable. This code recreates one of the simplest TinyOS
applications, cnt_to_leds, implemented in seven bytes.

The Mat~ program in Figure 5 reads the light sensor on
every clock tick. If the sensor value differs from the last sent
value by more than a given amount (32 in this example),
the program sends the data using MatE's built-in ad-hoc
routing system. This program is 24 bytes long, fitting in a
single capsule.

89

Simple Downcall Quick Split Long Split
etnd rand sense senRr
call purled log send
svap pots lost forgo
blez Bon

Figure 6: Maid Instruction Overhead C l a s s e s

4.4 Code Infection
A capsule sent in a packet contains a type (subroutines

0-3, clock, receive, send) and a version number. If Matd
receives a more recent version of a capsule than the one of
the specified type currently being used, Matd installs it. A
capsule can be transmitted to other motes using the forw
instruction, which broadcasts the issuing capsule for network
neighbors to install. These motes will then issue forw when
they execute the capsule, forwarding the capsule to their
local neighbors. Because of the version information, motes
with the new code will ignore older capsules they receive.
Over time, the new code will disseminate through the logical
network like a virus - all one needs to do is install it on a
single mote and execute the capsule. Correspondingly, for
a mote to be able to run a different version of the program
with no threat of reprogramming, it must be in a logically
separate network. Versioning is implemented as a 32 bit
counter - this allows a single network to last for a very long
time (centuries) even with very rapid reprogramming rates
(once every few seconds).

A capsule can also forward other installed capsules with
the forwo (forward other) instruction. This is useful if the
desired program is composed of several capsules; a tempo-
rary clock capsule tha t forwards every capsule can be in-
stalled, then as each component capsule is installed it will
be forwarded. Once the entire network has installed all of
these capsules, the clock capsule can be replaced with a pro-
gram to drive the application.

5. EVALUATION
To test the expressiveness, behavior and performance of

Matd, we implemented a n ad-hoc routing algorithm, mea-
sured its rate of instruction issue, quantified its CPU over-
head, and measured network infection rates with different
capsule forwarding probabilities.

5.1 BLESS - BeaconLESS ad-hoc routing
Ad-hoc networking is a critical system issue in sen-

sor networks. The transient nature of sensor networks
means packet routing must be adaptive; effectively collecting
da ta from a network requires an ad-hoc routing algorithm.
BLESS is an ad-hoc routing protocol included in the stan-
dard TinyOS release, implemented in 600 lines of C. We
have re-implemented a slightly simpler version 4 of BLESS
in Matd to demonstrate tha t Matd is expressive enough to
provide similar functionality to native TinyOS code. Addi-
tionally, BLESS can now be dynamically installed on a net-
work, demonstrat ing tha t Matd transforms sensor networks
into active networks.

BLESS includes routing information in every packet and
t ransmits everything on an AM broadcast. All messages are
forwarded to the root of a tree, which can be connected to a
PC for processing or storage. By snooping traffic, motes can

4The native TinyOS version maintains a table of possible
parents to use; the Matd version only keeps track of one.

g e t s # Ge t t h e c o u n t e r
pus lm # Get a b u f f e r
c l e a z # C l e a r t h e b u f f e r
add # Append t h e c o u n t

s e n d # Send t h e p a c k e t
puehc 0
s e t s # C l e a r c o u n t e r t o 0
g e t s # Jump-to p o i n t

pushc 1
add
s e r e
pushc 0

I n c r e m e n t C o u n t e r

b l e z 7 # A].ways b r a n c h

Average. loop executions: 8472
Matd IPS: 7 + ((loops / 5) * 6): 10][73

Figure 7: Matd Simple Loop and IPS Calculat ion

hear packets sent to other motes to find a suitable routing
tree parent.

Every BLESS packet contains three fields: the address of
the source mote, the address of the dest inat ion mote, and
the hopcount of the source. The hopcount of the tree root
is zero. Motes t ry to minimize their hopcount in the tree. A
maximum hopcount of 16 prevents disconnected graphs from
wastefully sending packets in perpetual cycles. If a parent is
not heard for a given interval, a mote chooses a new parent.

The complete Matd BLESS code, the packet format and
the frame format are included in Appendix B.

5.2 Instruction Issue Rate
Some instructions (such as sending a packet.) take much

more t ime than others. Figure 6 contains a rough break-
down of the cost classes of Matd instructions. Some instruc-
tions (such as add) merely manipulate the o p e r a n d stack
with minimal addi t ional processing. A second class of in-
structions (such as pu r l ed) call commands on components
below Mat& TinyOS commands return quickly, but calling
a function obviously has a CPU cost. The last two classes
of instructions perform spli t-phase TinyOS operations; these
instructions include the cost of a TinyOS event handler plus
the latency between the command its corresponding event.
For sense, this is very short, on the order of 2:00 microsec-
onds. For send or forw, however, this involves a packet
being sent, which takes roughly 50 milliseconds on the 10
Kbit radio.

To determine the cost of issuing an instruction in Matd, we
wrote a program tha t executes a t ight loop (six instructions)
for five seconds. The code tha t clears the previous count and
sends a packet containing the count is seven instructions.
Matd does not normally have sole control of the processor
when running. For example, the TinyOS network stack han-
dles interrupts at 20KHz to find packet s tar t symbols, then
at 10KHz when reading or writing data. To meastire Matd's
raw performance, we turned the TinyOS radio off when run-
ning the Matd t iming loop. From the loop cou~nts we calcu-
lated the number of Matd instructions executed per second.

Every instruction in the loop was a simple one (e.g. add,
branch, push constant). Therefore, the IPS we calculated
executing the loop measures the approximate M:atd overhead
imposed on every instruction as opposed to overhead from
calling components or split-phase operations. The average

90

O p e r a t i o n J Mat6 Clock Cycles J N a t i v e C l o c k Cycles

D o w n c a l l : rand 435 45 9 . 5 : 1
Q u i c k Sp l i t : sense 1342 396 I 3393.'~::i 1

• : • , , ; ; t OIl I I l l

Figure 8: M a t h B y t e c o d e s vs. N a t i v e C o d e

B i n a r y Matd
A p p l i c a t i o n S i z e (b y t e s) I n s t a l l T i m e C a p s u l e s [I n s t r u c t i o n s

eene.to.rfla 5394 ~ 7 9 s 1 [6
gdl-c~te 7130 ,.~ 104s 1 19

b lee= . tes t 7381 ~ 1 0 8 s 7 108

Figure 9: Appl i ca t ion Ins ta l la t ion Cos t s

Mat4 IPS (instructions per second) was just over 10,000.
To precisely quantify the overhead Mat~ places over na-

tive code, we compiled a few small operations to native mote
code and compared the cost of the native and Mat4 imple-
mentations. Obviously, some Mats instructions impose a
higher overhead than others; those that encapsulate high-
level TinyOS constructs are efficient, while those that per-
form simple arithmetic operations are not nearly as much so.
The comparative instruction costs are in Figure 8. We se-
lected one instruction from each of the cost classes of Figure
6: and, rand, sense, and send. A Mat4 implementation's
native instruction count is 33.5 to 1 for a logical and on two
words, while 1.03 to 1 for a packet send. A logical and op-
eration takes more cycles than random because it involves
popping two operands and pushing one; in contrast, random
pushes a single operand.

Approximately one-third of the Mat~ overhead is due to
every instruction being executed in a separate TinyOS task,
which requires an enqueue and dequeue operation. We ran
the loop code for determining IPS except that every Mat4
task executed three instructions instead of one. The average
IPS jumped to 12,754, which quantifies the task operations
to be roughly 35% of Mat4's overhead. This indicates a
tradeoff between Mat4 concurrency and performance that
could be adjusted for different applications.

5.3 Energy
Mat4's computational overhead poses an energy overhead,

as Mat~ must execute the additional instructions for inter-
pretation. However, the concise representation of programs
represents a savings in energy over full binary uploads; pro-
grams can be contained in a handful of packets instead of
hundreds. Given the overhead data from the previous sec-
tion, we can compute the energy overhead of Mat~ execution
data over native code. Figure 9 gives a comparison of the
size of different TinyOS programs in binary code and cap-
sules. The application bless_tesl; 's Mat4 version is much
larger than the others because instead of representing co-
operation between a few subsystems, it implements a new
one.

Uploading and installing an 8KB binary programs requires
the mote to be fully active for roughly two minutes; this cost
scales linearly with size [31]. By comparing binary programs
with their equivalents in Mat4, we can calculate the relative
energy costs of installation. Given the energy cost of an exe-
cution and the energy cost of installation in the two systems,
we can calculate at what point each of the two approaches
is preferable. For a small number of executions, Mat4 is
preferable; the energy cost of the CPU overhead is tiny in
comparison to savings of only having to be awake to receive
a single packet. For a large number of executions, native

• o 100%
80%

'~ 60%
"E 40%

20%
~. 0%

Network Infection Rates

0 2O 40 80 80 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 200 ~ 0 240

Time (seconds)

Figure 10: Percentage o f M o t e s R u n n i n g N e w Pro-
g r a m Over T i m e

Network
New 12.5% 25% 50%

12.5% 23 ::t= 8 28 ::h 15 45 ::t:: 24
25% 10 ::h 4 10 =t= 4 19 ::t= 10
50% 7 ::t= 3 7 ::t= 2 21 =h 10
100% 8 ::h 2 12 ::h 5 14 ::h 4

100%
361 ::h 252
425 ::h 280
226 ::t= 199
400 ::h 339

Figure 11: T i m e to C o m p l e t e Infec t ion (seconds)

code is preferable; the savings on each execution overcomes
the cost of installation.

As an example, we consider the application currently de-
ployed on Great Duck Island. This application spends most
of its time in a deep sleep mode that has a power draw of
roughly 50 pA. Every eight seconds, the application wakes
up, reads several sensors, and sends a packet containing the
sensor data. Given the CPU overhead of Math, the duty cy-
cle of the GDI application and the energy cost of installing a
native image, a Mat4 version running for five days or less will
save energy over a binary version. After running for about
six days, the energy cost of MatE's CPU overhead grows to
be greater than the cost of installing a binary version of the
GDI program.

These relative energy costs suggest a clear use for Mat~
in energy constrained domains. While the interpretation
overhead makes implementing complex applications entirely
in Mat4 wasteful, infrequent invocations have a tiny energy
cost; using capsules to reconfigure the native execution of an
application (modifying sample rates, which sensors to sam-
ple, etc.) provides greatly improved flexibility at a much
lower energy cost than installing a new application. Instead
of building a new RPC-like mechanism for every applica-
tion to control its configuration, applications can use Mat t
capsules as a general RPC engine.

5.4 Network Infection
To measure network infection rates, we deployed a 42 node

network as a 3 by 14 grid. The radio transmission radius
formed a 3 hop network; depending on the mote, cells varied
from 15 to 30 motes in size.

Figures 10 and 11 contain the data we collected on net-
work infection behavior. Figure 10 shows the rate at which
motes in a network starting running a new program. In this
experiment, configured every mote to run its clock capsule
every twenty seconds. We introduced a mote to the network
that ran a newer self-forwarding clock capsule. Every twenty
seconds, we recorded how many motes were running the new
program (the new program changed the LED pattern a mote

91

displayed). We ran this experiment ten times, and averaged
the results. The curve does not converge at one hundred
percent because often one mote in the network (the same
mote every time) would not reprogram for a long time, or at
all - it was very resistant to a new viral capsule. We later
inspected this mote and found it had a loose antenna; when
re-soldered, it reprogrammed similarly to other motes.

Figure 11 shows the time a healthy network took to be
fully reprogrammed. In this experiment, capsules had vary-
ing probabilistic forwarding rates. For each trial, we con-
figured the network to have a clock capsule that ran once a
second and forwarded itself with a certain probability. We
then introduced a mote into the network that had a new
clock capsule that self-forwarded with another probability.
We measured the elapsed time between the mote being in-
troduced and the entire network being infected with the new
program. We performed each infection six times.

The percentages in Figure 11 are the probabilities that
a capsule would forward itself when run. There are two
values: the forwarding probability of the running network,
and the forwarding probability of the introduced capsule.
The columns are the forwarding rates of the running net-
work, while the rows are the forwarding rates of the intro-
duced capsule. Each entry in the table shows the mean time
to infection and the standard deviation between the infec-
tion runs. We chose a probabilistic scheme to prevent mote
synchronization, which could artificially inflate network con-
tention.

Increasing the forwarding rate of a capsule can increase
the rate a program infects the network, but with diminishing
returns. For example, increasing the forwarding probability
from one eighth to one fourth often halved the time to net-
work infection but increasing it further did not have nearly
as notable an effect. The drastically higher time to infection
for networks always forwarding their capsules is due to net-
work congestion. The 10 kilobit radio can support roughly
twenty packets per second after backoff, encoding, etc. As
the maximum cell size of the network was approximately 30,
capsule forwarding once per second resulted in the network
going well past its saturation point.

6. DISCUSSION
The presence of an interpreter for dynamically loaded code

qualitatively changes the behavior and usage model of wire-
less sensor networks. We discuss three ramifications of this
change: phased programming of the network as a whole,
interactions between static and dynamic layers in capsule
forwarding and system architecture directions.

6.1 Phased Execution, Agility, and Active Sen-
sors

The ease of installing new code in Matd means that pro-
grams which transition through several states can be written
as a series of capsules. For example, to have a sense-report
cycle in a network, one could first write a capsule that sensed
the environment, _placing this data in non-volatile storage
with the log instruction. Once the data acquisition is com-
plete, one could inject a new program that reads in stored
data entries (with the logr instruction) then sends them
over the network to be collected. The lightweight nature of
capsules also makes them excellent candidates as a mech-
anism for experimenting with sensor network application
agility [27]; the Great Duck Island use case is an example of

this.
Currently, Matd executes capsules in response to only

three types of events. One could imagine extending Matd
to have contexts and capsules associated with a much richer
set of activating primitives. Active networks ran code in
response to only network events; the possibility of running
easily installable code in response to such things as sensor
thresholds, signal detection, or real-world actuation expands
this idea from an active network node into an active sensor.

6.2 Capsule Forwarding
The results from our network reprogramming experiments

establish that application control of the propagation rate is
undesirable. There are obviously more efficient possibilities;
one would be to tag whether capsules should forward or not.
If a capsule is tagged, Matd could broadcast the capsule at a
rate appropriate for the network density, effectively adapting
to a forwarding rate that the network could sustain. This
would not necessarily slow down the rate of :programming
- in a dense network, more motes would heal: a forwarded
capsule than in a sparse one. This issue gets at a funda-
mental limitation in the current TinyOS design; motes can
actuate a network (send packets), but there is no mecha-
nism to sense how busy the network is. If TinyOS included
such a mechanism, Matd could provide mechanisms such as
message merge capsules, which are called to ask an applica-
tion to aggregate data buffers when it is sending data more
rapidly than the network can handle.

Additionally, the se tg rp instruction allows Matd to con-
struct several logical networks on top of a single physical
network by changing a mote's AM group ID. This raises the
question of whether several logically separate networks run-
ning different applications could share common infrastruc-
ture, such as an ad-hoc routing layer. The current TinyOS
AM group mechanism prevents such a system from being
implemented.

6.3 Architectural Directions
Motes currently do not have the traditional user/kernel

boundary enforced by hardware protection mechanisms;
a badly written application component can cause all of
TinyOS to fail. Matd's interface solves this problem - a
program cannot, among other things, disable interrupts or
write to arbitrary memory locations. The need for user-land
is supplanted by VM-land, which can provide the same guar-
antees to applications. Matd contexts are also much smaller
than hardware contexts; allocating multiple C stacks is nigh
impossible on the rene2 without putt ing harsh limits on call
depth.

Given their size, it is no surprise that motes do not have
hardware support for virtual memory. Matd could provide
functionality equivalent of many of the benefits a virtual
memory system brings. As it is a virtual machine, Matd
can provide a virtual address space. Swapping to backing
store for suspended programs can be provided by using a
mote's non-volatile storage. Motes could enter low-power
sleep states with RAM powered down and restore an execu-
tion context on waking up, even possibly running under a
different version of Matd.

Currently, Matd has eight instructions reserved for user
specific operations. As all of the other instructions, these
user instructions are part of the Matd binary' image; they
must be defined when Matd is installed, and cannot be

92

changed. While subroutines allow some execution flexibil-
ity, Mat6's overhead means that any non-trivial mathemati-
cal operation is infeasible. Being able to load binary code for
user instructions in a manner similar to subroutines would
greatly improve Mat6; the fact that motes are Harvard ar-
chitectures prevents this from being effectively and safely
implemented. For Mat6 to be efficiently tailorable in-situ,
motes should have a unified data and instruction memory,
or at least the capability to execute instructions out of data
memory.

7. CONCLUSION
For sensor networks to be widely adopted, tl~ey must be

easy to use. We have defined a set of system requirements
for ease of sensor network programming and presented a
tiny virtual machine, Mat6, which meets these requirements.
Mat6 is small and expressive, has concise programs that are
resilient to failure, provides efficient network and sensor ac-
cess, can be tailored to specific domains, and can quickly
self-program a network. The effectiveness of Mat6 as an ex-
ecution model suggests that virtual machines are a promising
way to provide protective hardware abstractions to applica-
tion code in sensor networks, fulfilling the traditional role of
an operating system. Clearly, given the autonomous nature
of viral reprogramming, significant and possibly novel secu-
rity measures must be taken to protect a network. While an
application composed of a static organization of components
might evolve slowly, Mat6 makes the network dynamic, flex-
ible and easily reconfigurable. This suggests Mat6 can par-
ticipate in the management of networks in addition to being
a platform for application development.

Our future work on Mat6 focuses on two areas: application-
specific virtual machines and the user-land abstraction. We
are currently looking at application-specific Mat6 flavors for
identified domain requirements. In addition to being a top-
level interface for mote programming, the VM can also sit
below other TinyOS components as a computational engine
in certain domains. For example, we have developed a ver-
sion named Bombilla to provide an execution engine to the
TeleTiny system, a miniature query processor and data ag-
gregation system for SQL-like queries on a network [21]. In
its current state, Mat6 is only an architecture and bytecodes;
the next step is to develop higher level languages and pro-
gramming models for application development, providing a
user-land programming environment distinct from TinyOS.

Acknowledgments
We would like to thank the members of the TinyOS group
for all of their hardware and software development efforts.
We would like to specifically thank Robert Szewczyk for pro-
viding Table 1 and for his first suggesting the idea of viral
reprogramming.

This work was supported, in part, by the Defense Depart-
ment Advanced Research Projects Agency (grants F33615-
01-C-1895 and N6601-99-2-8913), the National Science Foun-
dation under Grant No. 0122599, California MICRO pro-
gram, and Intel Corporation. Research infrastructure was
provided by the National Science Foundation (grant EIA-
9802069).

REFERENCES go

[1] Smart buildings admit their faults. Lab Notes: Research
from the College of Engineering, UC Berkeley.
ht tp: / / toe , berkIley, edu/labnotes/l I01. ~artbuildlngs. h~al, 2001.

[2] Small Times: Big News in Small Tech. ut tp, / /~.~zt~
[3] Edouard Bugnion, Scott Devine, and Mendel P,.osenblum.

Disco: Running Commodity Operating Systems on Scalable
Multiprocessors. In Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles, 1997.

[4] David Culler, Anurag Sah, Klaus Schauser, Thorsten von
Eicken and John Wawrzynek. Fine-grain Parallelism with
Minimal Hardware Support: A Compiler-Controlled
Threaded Abstract Machine. In Proceedings of the Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, 1991.

[5] Lloyd I. Dickman. Small Virtual Machines: A Survey. In
Proceedings of the Workshop on Virtual Computer
Systems, 1973.

[6] Wolfgang Emmerich, Cecilia Mascolo, and Anthony
Finkelstein. Implementing Incremental Code Migration
with XML. In Proceedings of the 2and International
Conference on Software Engineering, 2000.

[7] Deborah Estrin, Ramesh Govindan, John Heidemann, and
Satish Kumar. Next Century Challenges: Scalable
Coordination in Sensor Networks. In Proceedings of the
A CM/IEEE International Conference on Mobile
Computing and Networking, 1999.

[8] Virginie Galtier, Kevin L. Mills, Yannick Carlinet, Stefan
Leigh, and Andrew Rukhin. Expressing Meaningful
Processing Requirements Among Heterogeneous Nodes in
an Active Network. In Proceedings of the Second
International Workshop on Software and Performance,
2000.

[9] John Heidemann, Fabio Silva, Shalermek Intanagonwiwat,
Ramesh Govindan (USC/ISI), Deborah Estrin, Deepak
Ganesan (UCLA). Building Efficient Wireless Sensor
Networks with Low-Level Naming. In Proceedings of the
18th A CM Symposium on Operating System Principles,
2001.

[10] Jason Hill and David Culler. A wireless embedded sensor
architecture for system-level optimization. Intel Research
IRB-TR-02-00N, 2002.

[11] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David
Culler, and Kristofer Pister. System Architecture Directions
for Networked Sensors. In the Ninth International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2000.

[12] Victor Hsu, Joseph M. Kahn, and Kristofer Pister. Wireless
Communications for Smart Dust. Electronics Research
Laboratory Technical Memorandum Number M98/2, 1998.

[13] Chalermek Intanagonwiwat, Deborah Estrin, Ramesh
Govindan, and John Heidemann. Impact of Network
Density on Data Aggregation in Wireless Sensor Networks.
Technical Report 01-750, University of Southern California
Computer Science Department, 2001.

[14] Chalermek Intanagonwiwat, Ramesh Govindan, and
Deborah Estrin. Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In
Proceedings of the ACM/IEEE International Conference
on Mobile Computing and Networking, 2000.

[15] Java 2 Platform Micro Edition (J2ME) Technology for
Creating Mobile Devices White Paper.
http://J ava. s~u. com/J 21v, e/do¢$/

[16] Java Card Technology. h~1;p://J Om/l~'Oduct, /Javacal~

[17] Richard K. Johnsson, John D. Wick. An Overview of the
Mesa Processor Architecture. In Proceedings of the
Symposium on Architectural Support for Programming
Languages and Operating Systems, 1982.

[18] Joseph M. Kahn, Randy H. Katz, Kristofer Pister. Next
Century Challenges: Mobile Networking for "Smart Dust."
In Proceedings of the A CM/IEEE International Conference

93

on Mobile Computing and Networking, 1999.
[19] Philip J. Koopman, Jr. Modern Stack Computer

Architecture. In System Design and Network Architecture
Conference, 1990.

[20] Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification, Second Edition. Addison-Wesley, 1999.

[21] Samuel R. Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong. TAG: A Tiny AGgregation
Service for Ad-Hoc Sensor Networks. In submission.

[22] Samuel R. Madden, Mehul A. Shah, Joseph M. Hellerstein,
and Vijayshankar Raman. Continuously Adaptive
Continuous Queries over Streams. In Proceedings of the
A CM SIGMOD International Conference on Management
of Data, 2002.

[23] Alan Mainwaring, private communication, 2002.
[24] Dejan S. Milojicic, Fred Douglas, Yves Paindaveine,

Richard Wheeler, and Songnian Zhou. Process Migration.
In ACM Computing Surveys, Volume 32, Issue 3,
September 2000.

[25] Charles H. Moore and Geoffrey C. Leach. FORTH - A
Language for Interactive Computing. 1970.

[26] Michael Noakes, Deborah Wallach, and William J. Dally.
The J-Machine Multicomputer: An Architectural
Evaluation. In Proceedings of the ~Oth International
Symposium on Computer Architecture, 1993.

[27] Brian D. Noble, M. Satyanarayanan, Dushyanth
Narayanan, James Eric Tilton, Jason Flinn and Kevin R.
Walker. Agile application-aware adaptation for mobility. In
Proceedings of the Sixteenth A CM Symposium on Operating
Systems Principles, 1997.

[28] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir
Das. Ad Hoc On Demand Distance Vector (AODV)
Routing. IETF Internet draft, draft-ietf-manet-aodv-09.txt,
November 2001 (Work in Progress).

[29] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler
and J.D. Tygar. SPINS: Security Protocols for Sensor
Networks. In The Proceedings of Mobicom 2001, 2001.

[30] Phillip Stanley-Maxbell and Liviu Iftode. Scylla: A Smart
Virtual Machine for Mobile Embedded Systems. In
Proceedings of The 3rd IEEE Workshop on Mobile
Computing Systems and Applications, 2000.

[31] Robert Szewczyk, private communcation, 2002.
[32] David L. Tennenhouse and David J. Wetherall. Towards an

Active Network Architecture. In Computer Communication
Review, Vol. 26, No. 2, April 1996.

[33] Thorsten von Eicken, David Culler, Seth Ooldstein, and
Klaus Schauser. Active Messages: A Mechanism for
Integrated Communication and Computation. In
Proceedings of the 19th International Symposium on
Computer Architecture, 1992.

[34] David J. Wetherall, John V. Cuttag and David L.
Tennenhouse. ANTS: A Toolkit for Building and
Dynamically Deploying Network Protocols. IEEE
OPENARCH '98, 1998.

[35] Alexander L. Wolf, Dennis Heimbigner, John Knight,
Premkumar Devanbu, Michael Oertz, and Antonio
Carzaniga. Bend, Don't Break: Using Reconfiguration to
Achieve Survivability. Third Information Survivability
Workshop, October 2000.

APPENDIX
The complete Mats instruction set follows, as well as our Mats
implementation of the ad-hoc routing protocol BLESS.

A. Mats ISA

0 ~ h a l t O x O 0 00000000
1 0Preset Ox01 00000001 c l e a r s t a c k
2 0 ~ n d Ox02 00000010 push(SO & $1)
3 ~ o r Oz03 00000011 p~udx($O I $1)
4 ~ s h / f t r 0x04 00000100 ~ h ($ O >> $1) (S l p n d)
5 ~ s h i f t l Ox05 00000101 ~ ($ 0 << $1) (s igned)

MESSAGE HEADER ROUTING DATA FRAME

D e s t i n a t i o n a d d r e s s
S o u r c e a d d r e s s

H o p c o u n t [

F i g u r e 12: B L E S S M e s s a g e H e a d e r a n d]Frame Lay-
o u t s

• ~ a d d OxC~ 00000110 push(SO + $1) - - depends on types
• OPput lnd Ox08 00001000 $0 used as 2 - b i t cad ÷ 3 - b i t op~nd
9 R i d Oz09 00001001 push (so t s lD)

10 ~ i n v 0x0a 00001010 push(-$0)
11 OPcopy O x O b 00010000 copy tO on Cop o f s t a c k
12 ~ p o p OxOc 00001100 (pop $0)
13 ~ s a n s e OxOd 00001101 p u s h (e ~ s o r ($0))
14 OPsend O x O e 00001110 s e n d (S 0)
15 OPsendr OzOf 00001111 send(SO) w i t h capsule 5

16 OPcast OxlO 00010000 p u s h (t e n e t ($0))
17 O~p~shJ 0 x l l 00010001 push(message)
18 ~Pmo~ 0x12 00010010 p u s h (p u l l e n t r y o f f $0)
19 O~clear 0x13 00010011 c l e a r (8 0) , do nJ t pop i t
20 ~ s o n 0x14 00010100 t u r n so under on
21 ~ s o f f OX16 00010101 t u r n sounder o f f
22 OPnot 0z16 00010110 pumh('$O)
23 OPlog 0x17 00010111 l o g v r i t e ($ O) onto s t a b l e s torage
24 OPlogr 0z18 00011000 r e a d (l i n e $1 i n t o asg SO)
25 OPlogr2 0x19 00011001 r e n d (l i n e SO i n t o meg $1)
26 OPsets Oxla 00011010 s e t s h a r e d v a r i a b l e Co $0
27 OPgete Ozlb 00011011 push(shazed v a r i a b l e)
28 ~ r a n d Oxlc 00011100 puBh 16 b i t r a n d ~ a ntmber o n t o s t a c k
29 ~ e q Oxld 00011100 i f $0 m $1, push 1 e l se 0
30 O~neq Oxle 00011101 i f ~0 l " $1t push 1 e l s e 0
31 ~ c a l l O x l f 00011111 C a l l $0
32 ~ s v a p Ox20 OOlO0000 n e t $0 and $1

46 ~ f o z ~ Ox2e 00101110 f o r v e x d t h i s code capsule
47 OPfor~o Ox2f C0101111 foz'ws.rd capaale $0

48 ~ u s r O Ox30 00110000 u s e r i n s t r u c t i o n 0
49 ~ u s r l Ox31 O0110OO1 u s e r ~ t r u c t i ~ u 1
60 ~usz~2 0x32 00110010 u s e r ~ n s t r ~ c t i o n 2
61 ~ r 3 0x33 00110011 u s e r i n s t r u c t i o n 3
62 ~ u ~ r 4 0x34 00110100 u s e r i n s t r u c t i o n 4
63 ~ u ~ r 5 Gx35 00110101 u s e r i n s t r u c t i o n S
54 OPusr6 0x36 00110110 u s e r i ~ t r ~ c ~ i ~ n 6
55 0Pusr7 0x37 00110111 u s e r i n s t z m c t t o n 7

50 ~Pset~rp Ox3~ 00111010 met group l d ¢o $0
59 OPpot Ox3h 00111011 p u s h (p o t e n t l ~ t e r s e t t i n g)
60 ~ p o t I 0x3c 00111100 s e t r a d i o p o t s : t i I t s r CO SO
61 OPclockc Ox3d 00111101 set c l o c k c o u n t e r wish $0
62 ~ c l o c k ~ 0x3e 00111110 s e t c l o c k f r e q v l t h $0 (0 - 7)
63 O~ret Ox3f 00111111 rett~n from s u b r o u t i n e

SCIASS
64 O P g S ~ 0X40-47 01000XXX push(shor~ xxx from Ig h i n d e r)
72 GPgs~b Ox48-4f OlO01xxz push (by t e xxx from Ig hea der)
80 ~ g e t f e h ~ 0 - 5 7 Ol010x~x push(ehoz~ x n f r ~ f r a y)
g8 ~ g e t f b Ox58-Sf OlOllxxx p u s h (b y t e :~¢ from f r a a a)
96 C ~ s e ~ s 0x60-67 01100xxx s h o r t xxx o f ~sg header - $0
102 ~set~nb OX6~-6f OI101XXX b y t e x3m o f ~Sg header - $0
108 ~ e e t f e Ox70-TT 01110xxx s h o r t xxx of f l " $0
114 ~ I S t ~ O 0X78-Tf 01111XXX by to ~ of f r I l $0

XCLtSg
128 OPp~hc 0x80-bf 1 0 - ~ push (xxxxxx) (uns isned)
192 ~q~lsz OxCO-ff 1 ~ i f ($0 <- O) J ~ p ~ T ~

B. BLESS

B.1 Clock Capsule

pushc 1
add
copy
pushc 4

inv
add
b l e z 11
pop

pushc 0
pushc 3
c a l l
pushc 1

s ense
p u ~
c l e a r
add

sendz
pushc !
pushe 3
pushc 3

s h i f t l

K e e p ~ a covmter - - copy i t s v a l u e
T i l e r i s eve ry 4 c l o c k t i c k s

• I f the t L a e r h a s n ' t e x p i r e d , s k i p f l u s h check (jumps ~ t e r c a l l)
• P~rent f l u s h check code - g e t r i d o f o l d t l a e r

heset t i n c t

C a l l s u b r o u t i n e 3 - - check f o r paren t f l n s h
• J u ~ , - t o p o i n t f o r branch shows

• head l ight : sensor , put ~ l u e in a e s s ~ e

• Send :assags w i t h send capsu le

94

. c..t. ~tt Port.,. ~s
t l I d # Ox9 t o u l e s r ed

hL1t

B . 2 M e s s a g e S e n d

p u s h ¢ S
no t
g e t f s 0
neq

b l e z 16
g a f f s 0
s e t w 0
id

e e t M i
g e t f b 2
setmb 4
pushc 0

n o t
sandr
pushc 4
p u t l n d

h a l t

B.3

• I f ou r p a r e n t ! - O x f f f f (no p a r e n t) , we v o n ' t branch

• I f our p a r e n t i s O x f f f f (no F ~ r e n t) , wePll sk ip sending
• Cot s h o r t 0 o f f r u m - - p a r e n t addr
S Se t shore 0 o f header - - d e s t i n a t i o n addr

• Se t source f i e l d (s h o r t 1) o f header t o our addr
Cet our hnpcouut
Set hopcount f i e l d i n heade r

• Crea te •M broadcast; addr (O x f f f f)
• Send packe t on t~oadcas t

• Turn on g reen l ed

• J u N t o p o i n t of above b ranch

Message Receive

pushc 0
c a l l
puehc 1
c a l l # Check i f es should make sender o ~ hey p a z e n t

push¢ 2
c a l l S I f i t ' s our cuzwent p a r e n t , f l a g p a r e n t hea rd
texans S S Cet d e s i n a t i o n addr o f packe t
id

eq
blez 13 # Branch t o halt if weJre not the destination
pushc 2
pur l ed S Tufa on g reen I ~

sendr • Send packe t on AN b roadcas t
h a l t

B.4 S u b r o u t i n e 0 - I f no parent, set hopcount
to 64

s e r f s S
push¢ 0
no t
eq

b l ez 9
push¢ 1
p u s h ¢ S
shiftl

e e t f b 2
re~

• I f p a r e n t I - O x f f f f (no p a r e n t) , jwap t o r e t

Se t hopcount t o 64

B.5 S u b r o u t i n e 1 - C h a n g e Paren t?

g e t f b 2
getmb 4
inv
add

b l ez 11
g e t u 1
s e r f s 0
getmb 4

puehc 1
add
s a t f b 2
r e t

I f es S hopcount g r e a t e r o r equal t o our ho!~otmt , jump t o r e t

• Se t our p a r e n t addr t o source addr o f Pocket

• Se t our hopcount t o hopcount of source + 1

B.6 S u b r o u t i n e 2 - F lag P a r e n t H e a r d ?

g e r m 1
g e t f a 0
eq
b l ez 1S

puehc l
s e t f b 3
getmb 4
puahc 1

add
e e t f b 2
r e t

• I f no t our pazen t , jump t o r e t

• Se t h e a r d - p a r l n t f l a g of frame t o I

• Se t our hopcount t o p a r e n t h o p c o ~ t + 1

B.7 S u b r o u t i n e 3 - F l u s h P a r e n t ?

g e t f b 3
pushc 0
eq
blez 7

pushc 0
no t
serf8 0
pushc 0

s e t f b 3
puehc i
pushc 4
s h i f t l

inv # Create -16
g e t f b 4
add
b l e z 19 • sk ip i f hopcount <- 1S

puehc 0
lnv
ser fs S S Set parent ~o O x f f f f (no payent) - - too f a r from roo t
r e t

S I f ee have heard our p a r e n t , s k i p p a r e n t c l e a r

S Clear p a r e n t

Se t p a r e n t n o t - h e a r d

95

