
To appear, ACM SenSys 2004

ELF: An Efficient Log-Structured Flash File System For Micro Sensor Nodes

Hui Dai Michael Neufeld Richard Han
University of Colorado at Boulder
Computer Science Department

Boulder, CO, 80302

{huid, neufeldm, rhan}@cs.colorado.edu

Categories and Subject Descriptors
E.5 [File Systems Management]: Miscellaneous; D.4.3, F.2.2, H.2
[FILES]; I.2.9 [Sensors]

General Terms
Design Management Reliability

Keywords
file system, flash, sensor, reliability, log structured, eeprom

ABSTRACT
An efficient and reliable file storage system is important to micro
sensor nodes so that data can be logged for later asynchronous de-
livery across a multi-hop wireless sensor network. Designing and
implementing such a file system for a sensor node faces various
challenges. Sensor nodes are highly resource constrained in terms
of limited runtime memory, limited persistent storage, and finite
energy. Also, the flash storage medium on sensor nodes differs in
a variety of ways from the traditional hard disk, e.g. in terms of
the limited number of writes for a flash memory unit. We present
the design and implementation of ELF, an efficient log-structured
flash-based file system tailored for sensor nodes. ELF is adapted to
achieve memory efficiency, low power operation, and tailored sup-
port for common types of sensor file operations such as appending
data to a file. ELF’s log-structured approach achieves wear level-
ling across flash memory pages with limited write lifetimes. ELF
also uniquely provides garbage collection capability as well as re-
liability for micro sensor nodes. A performance evaluation of an
implementation of ELF based on TinyOS and MICA2 sensor motes
is presented.

1. INTRODUCTION
The popularity of wireless sensor networks (WSNs) as an im-

portant new research domain has grown dramatically [1]. WSN
systems are capable of providing novel distributed in-situ sensing
of environmental phenomena, and typically consist of a combina-
tion of small, resource-constrained micro sensor nodes that collect

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’04,November 3–5, 2004, Baltimore, Maryland, USA.
Copyright 2004 ACM 1-58113-879-2/04/0011 ...$5.00.

data and cooperatively relay the data back to a more powerful col-
lection point. Building such a system requires the integration of
multiple hardware platforms, operating systems, network systems,
and back-end data services. Standard micro sensor systems include
Berkeley’s Mote/TinyOS architecture [2], MIT’s cricket [3, 4], the
MANTIS system [5], Europe’s Smart-Its [6], Eyes [7], and BTN-
odes [8] projects.

Some of the above systems have been deployed in a wide variety
of real world situations with different data storage requirements. In
some cases, sensor readings should be immediately relayed from
the sensor nodes to the collection point,e.g. in the deployment on
Great Duck Island to monitor the habitat of seabirds [9], and for-
est monitoring [10]. Other applications may only permit sporadic
transfer of data to the data sink, such as vineyard monitoring [11].
In both cases, it is essential to be able to flexibly and efficiently ex-
ploit local storage on the sensor nodes. Even if data relaying occurs
frequently, hardware failure or environmental conditions might also
prohibit timely relaying in some cases. In these cases, it is impor-
tant to have the option of holding onto data locally until a relaying
opportunity arises. This asynchronous communication is shown in
Figure 1. Furthermore, sensor networks often operate with a very
low duty cycle for radio transmission in order to conserve energy.
If the periodicity of radio transmission is significantly longer than
the sensing periodicity, then multiple sensor samples will be accu-
mulated between two transmissions. These data also need to be
stored locally.

There are several candidates for local storage of sensor samples
on micro sensor nodes. While run-time RAM is an option, the run-
time RAM on micro sensor nodes is exceedingly scarce,e.g.4 KB
for today’s motes [12]. This scarce resource can be quickly over-
whelmed by logged sensor data. Moreover, RAM is also needed
for execution of code, besides serving as storage for data. Exces-
sive logging of sensor data could inhibit the ability of both applica-
tions and the operating system to execute as designed. In compar-
ison, persistent storage on micro sensor node offers a more attrac-
tive alternative at the cost of slower read/write speed. Persistent
storage on micro sensor nodes typically offers about two orders
of magnitude more memory than RAM,e.g. 512 KB of external
flash for Berkeley MICA2 motes. In addition, persistent storage
enables the design of reliability mechanisms to recover sensor data
after crashes. Storing sensor data in persistent storage instead of
RAM thus enables larger storage, reduces interference with RAM
executables, and enhances robustness. Currently, most sensor plat-
forms employ solid state flash memory for persistent storage.

An efficient yet reliable file system that handles the details of
interacting with persistent storage on micro sensor platforms can
greatly ease the process of collecting sensor data. There are already
some file-based applications,e.g. TinyDB [13, 14], that are useful

To appear, ACM SenSys 2004

Micro Sensor Node

Event

Flash File
Storage

Current
Sensor
Data

Logged
Sensor
Data

Live
Sensor
Data

Wireless
Routing

Asynchronous Data

Read Write

Synchronous Data

Figure 1: Micro sensor nodes that log sensor data in flash can
asynchronously communicate their data at a later time.

to the sensor network. A rudimentary file abstraction providing
basic file operations such asopen(), read(), write(), anddelete()
would assist these applications in managing local storage. A file
system is also useful for flexibly organizing and partitioning lo-
cal storage,e.g. saving OS configuration parameters or even full
binary system images as required so that sensor nodes can be dy-
namically reprogrammed [15, 9, 5, 16, 17]. Such system-critical
tasks typically have higher reliability requirements than simple data
recording. These reliability and robustness requirements could be
met by a sufficiently capable file system.

The design and implementation of a file system for sensor nodes
faces a variety of challenges. First and foremost, micro sensor
nodes are typically quite resource-constrained in terms of CPU,
memory, radio bandwidth, and energy. These constraints often
arise because of application-dictated cost and/or size requirements.
For example, the MICA2 mote operates using a low power Atmega
microcontroller (4 or 7 MHz, 4 KB RAM, 4 KB internal EEPROM,
128 KB internal flash, 512 KB external flash). The limited run-time
memory available severely inhibits the ability of a file system to
keep large data structures in RAM or use large caches to improve
performance. As a result, many standard file systems that assume
sufficient RAM resources for operation and caching cannot be di-
rectly applied to micro sensor nodes.

Another challenge in the design and implementation of sensor
file systems is that the characteristics of flash memory are far dif-
ferent from the traditional hard disk. Most sensor platforms em-
ploy flash memory for persistent storage because of its high relia-
bility, high density, and relatively low cost. Compared with the con-
ventional hard disk, the flash memory has several unique features.
Flash memory is usually divided into sectors or blocks, which are
further divided into “pages”. The size of each flash memory page
is fairly small,e.g.256 bytes on the mica2 platform with an extra 8
bytes for “out of band” storage space, which is intended to be used
for metadata or error correction codes. Writing to flash memory
is on a per-page basis, and consumes significantly more time and
energy than a read operation. Flash access times are comparable to
disk access times, on the order of tens of milliseconds, but are fixed
rather than variable. Due to these fixed flash access times, many
file system optimizations to reduce disk seek times and rotational
latency, such as geographically collocating files, are no longer ap-
plicable. Flash also exhibits a unique property, in that each flash
memory page can only endure a limited number of rewrites, typ-

ically about 10,000 operations. Repeated writes to the same page
will quickly exhaust the lifetime of a flash page. To ensure that
no single flash page reaches its lifetime limit before the rest of the
flash memory pages, it is important to ensure that erase-write cycles
are evenly distributed around the flash; a process normally called
wear levelling[18]. File systems that handle these issues have been
constructed, but not in the severely resource-constrained context of
sensor nodes.

Our objective in this work is to design and implement an effi-
cient, reliable and flexible file system for micro sensor platforms.
Since solid state flash memory is likely to be used on micro sen-
sor platforms for storage, the design is flash-based. A key design
principle of the ELF sensor file system is to achieve memory and
energy efficiency with a small RAM footprint. ELF employs a log
structured file system in order to manage flash pages so that they
age evenly, thereby promoting wear levelling. The log-structured
system is also leveraged to provide reliable recovery. ELF’s imple-
mentation is based on the mica2 platform although the same design
principles could be applied to other micro sensor platforms.

The paper is organized as follows. Section 2 presents related
work in file systems. Section 3 discusses the design goals and ar-
chitecture for ELF. Section 4 describes the specific implementation
choices of ELF, including how ELF implements common file oper-
ations, allocates space, collects garbage, and maintains consistency
as well as reliability of files. Section 5 presents the performance
evaluation of the ELF file system on the mote micro sensor plat-
form. Section 6 discusses several remaining issues and future work.
Finally, Section 7 concludes.

2. RELATED WORK
ELF draws on concepts and principles in traditional log struc-

tured file systems, flash-based file systems, and existing file sys-
tems used in sensor nodes. In this section, we discuss relevant ex-
amples of prior work in each of these areas.

2.1 Log Structured File Systems
Sprite LFS [19] introduced the concept of log based file system

design. The file system is represented as a log of metadata. One
important feature of LFS is that a large number of data blocks are
gathered in a cache before writing to disk in order to maximize
the throughput of collocated write operations, thereby minimizing
seek time and accelerating the performance of writes to small files.
BSD-LFS [20] enhances the performance of log-structured file sys-
tems by improving upon the block allocation policies of garbage
collection. These log-structured file systems assume that files are
cached in main memory, and that increasing cache sizes will im-
prove performance of read and write requests. For micro sensor
nodes, there is insufficient RAM to support a large write cache.
Also, gathering writes to improve disk seek time is not an appro-
priate motivation for flash memory. Seek time is much less of an
issue for flash memory, though there is still a small, fixed latency
cost to access a new page.

2.2 Flash File Systems
Several flash-based file systems have been designed in the liter-

ature to work with popular operating systems. The flash-memory-
based storage system eNVy [21] tries to provide high performance
in a transaction-type application area. It consists of a large amount
of flash memory, a small amount of battery-backed SRAM for write
buffering, and a large-bandwidth parallel data path between RAM
and SRAM. A controller is used for page mapping and cleaning.
In addition to the hardware support, eNVy uses a combination of
two cleaning policies, i.e. FIFO and locality gathering, in order

To appear, ACM SenSys 2004

to minimize the cleaning costs for both uniform and hot-and-cold
access distribution. Microsoft Flash File System (MFFS) [22] pro-
vides MS-DOS-compatible file system functionality with a flash
memory card. It uses data regions of variable size rather than data
blocks of fixed length. Files in MFFS are chained together by us-
ing address pointers located within the directory and file entries.
Douglis et al. [23] observed that MFFS write throughput decreased
significantly with more cumulative data and with more storage con-
sumed.

The work presented in [18], as well as many other current ap-
plications of flash, utilize the flash to emulate a block device. It
simulates the smaller sector size for write requests by reading the
whole erase block, modifying the appropriate part of the buffer, and
then erasing and rewriting the entire block. Standard file systems
are constructed over the emulated devices. One common practice
is to have sectors of the emulated block device stored in varying
locations on the physical medium, and a “Translation Layer” [22]
is used to keep track of the current location of each sector in the
emulated block device. This approach is inefficient and can result
in insufficient wear levelling.

A far more efficient use of flash technology would be to employ
a file system designed specifically for use on such devices, with
no extra layers of translation in between. JFFS and JFFS2 provide
such native solutions [24]. JFFS and JFFS2 are journaling flash
based file systems that keep journalled metadata in order to avoid
errors and corruption. In order to achieve efficient memory usage,
they do not use an extra layer of indirection, such as a translation
table mapping between virtual blocks and the actual flash memory.
JFFS and JFFS2 are designed for use on flash-based PDA systems,
e.g. the Hewlett Packard iPAQ. As in LFS, each write in JFFS2 cre-
ates a new record in the log. ELF adopts a logging approach similar
to JFFS2, but differs in several important respects. First, ELF does
not create a new node for every write operation. Write-appends do
not generate new nodes, only write-modifies. This reduces runtime
memory consumption for micro sensor platforms. In addition, ELF
provides a best-effort reliability mechanism.

2.3 Sensor Storage and File Systems
Distributed databases and data storage systems such as DCS [25,

26] and Dimension [27, 28] have been studied for sensor networks.
These works focus on providing high level distributed event stor-
age in sensor networks using techniques such as a geographic hash
table [29]. The low-level storage implementation on each sensor
platform is assumed to be a simple circular log structure. In con-
trast, ELF is focused on designing and implementing a storage sys-
tem within a micro sensor platform that provides more capabilities,
essentially a mini file system.

Up until now, the only file system that has been available for
sensor networks, besides ELF, is Matchbox [30]. Matchbox allows
application to open several files simultaneously. Matchbox also
provides rudimentary wear levelling and remote access file man-
agement. The code size is small, e.g. 10 KB, and the minimum
footprint is 362 bytes, which will increase as the number of files
increases. Matchbox provides only append operations and doesn’t
allow random access, such as write modifications, to existing data
in a file, unlike ELF. Matchbox provides a CRC checksum for each
flash memory page that is used to verify the integrity of the file
during recovery from a system crash.

3. DESIGN OVERVIEW

3.1 Design Goals

This work is targeted at providing a practical, efficient, and reli-
able file system for micro sensor nodes that employ flash memory
for persistent storage. The design goals of the ELF file system are
to:

• Allow access to flash memory with simple file operations

• Extend the operational lifetime of the flash with wear level-
ling techniques

• Achieve a small memory footprint

• Optimize common sensor file operations

• Avoid excessive energy consumption

• Provide optional best-effort data reliability

Before describing how ELF achieves these design goals, we will
first discuss the characteristics of the data that ELF expects to han-
dle, the common operations that ELF is tailored to perform on these
data, and the attributes of the flash medium in which the files will
be stored.

3.2 File Access Behavior on Sensor Nodes
ELF expects to encounter three major sources of data: configu-

ration data, binary images, and sensor data. Each source has dif-
ferent expected access patterns and reliability requirements. Gen-
erally, the degree of reliability required for sensor data is likely
to be satisfied by verifying the integrity of the logged data via
CRC/checksum. Greater reliability, such as recovery after a crash,
may also be desirable, though this is not expected for all files. Reli-
ability is far more important for program images and configuration
data.

• Sensor DataThe majority of the data recorded in a sensor
system is likely to be normal sensor readings. These data
are typically written sequentially without modifying prior
records. Also, these data records are likely to be erased peri-
odically in order to make room for newer information.

• Configuration Data Configuration data will experience mod-
ification and updates in the post-deployment stage. However,
the frequency of these changes is unlikely to be high. These
configurations are considered critical to the correct function-
ing of the sensor node and require a higher level of reliability
than data samples.

• Binary Program Image Dynamic reprogramming or retask-
ing of sensor nodes is becoming increasingly important. One
approach is to transmit the whole binary system image dur-
ing reprogramming,i.e. reflash the entire OS. Others only
transmit updates or patches in order to reduce communica-
tion overhead. [16] In either case, a version of the program
image or image diff needs to be stored in flash first before
the system can be rebooted to use the new software. This
type of data is expected to require the highest degree of reli-
ability since an error can easily make the entire sensor node
unusable.

Based on the above analysis, we expect that the most common
operation on files will be sequential appending and reading of sen-
sor data. Write-Modify capability,e.g. for configuration data files,
is provided but expected to occur much less frequently. Likewise,
files that require a higher degree of reliability and crash resistance
than provided by simple data block checksum are important, but
not expected to be the common case. ELF provides an optional
reliability mechanism to guarantee the consistency of such files.

To appear, ACM SenSys 2004

Table 1: Flash Memory Attributes in Motes
Read a page into cache less than 250µs

Page Erase 8ms
Write Limit 10,000 times

Writing a Page 14ms
Erasing and Writing a Page 20ms

Typical Number of Pages 2048
Typical Page Size 264 Byte

Power Consumption 4mA Read Current
2µA Standby Current

Table 2: EEPROM attributes in atmega128
EEPROM Write 8848 cycles (8.5ms at 1Mhz)
EEPROM Read 1 cycle (From CPU)

CPU halted 4 cycles after read
EEPROM Erase about 4 ms

Write Limit 100,000
Power Consumption 2-8mA when programming

3.3 Persistent Storage Capabilities on Sensor
Nodes

ELF is designed for flash memory since it is likely to be the
storage medium for micro sensor nodes. In this section, we use
the mica2’s flash memory as an example to explain important flash
memory characteristics in detail. The general attributes are listed
in Table 1. A flash is usually divided into sectors, and each sector
is divided into 264 bytes per page. Pages can only be erased and
written as a whole. Data in flash memory can be either read out
directly or loaded into an on-chip cache, whose size is 264 bytes,
for later retrieval. In the latter case, a whole page is must be loaded
into the on-chip cache each time. The data in the on-chip cache
can be modified before being flushed to flash memory. Writing
data to a flash memory page consists of two steps. Data is first
written to the on-chip cache. Then a command is sent to flush the
contents of the on-chip cache to a page in flash memory. This op-
eration will first erase all the data in the target flash memory page
and then copy the data in the cache onto this erased page. To mod-
ify a portion of a flash memory page, the whole page must first be
read into the cache, modified, and then written back to flash in its
entirety. Table 1 shows that write time is much larger than the read
time. Flash read throughput is roughly 800 KB/sec while raw flash
write throughput is only 10 KB/sec. Usually, flash memory pro-
hibits concurrent read and write operations. Unlike most magnetic
media, each flash page only has a limited write lifetime, on the or-
der of 10,000 operations. To avoid exhausting a particular page,
wear levelling techniques are needed in order to distribute writes
throughout the flash. These are general properties of flash-based
systems, and ELF will function on any similar flash-based storage
medium.

As stated earlier, ELF provides best effort reliability mechanisms
for certain files. Such reliability can be implemented based on a
persistent storage medium such as flash memory. Instead, the im-
plementation of ELF on themica2 is based on the internal EEP-
ROM. The characteristics of EEPROM are described in Table 2.
The essential general properties of this medium are that it is per-
sistent, is slower than RAM, and is not as plentiful as flash. ELF
takes advantage of this additional EEPROM space on motes to store
the directory structure. This avoids having to store the directory in

limited RAM or in more wear-limited flash. This also reduces boot
time and file access time compared to having to reconstruct a newly
accessed file without a directory. ELF further stores crash recov-
ery data for the file system in EEPROM, leveraging the persistence
of EEPROM to enhance reliability. Though directory updates and
crash recovery metadata may rewrite the same page, wear level-
ling is not as urgent an issue for EEPROM, which has an order
of magnitude greater lifetime than flash. For micro sensor nodes
that lack EEPROM, ELF’s reliability mechanisms can be adapted
to use flash memory instead of EEPROM, with some cost in wear
lifetime.

3.4 Log-Structured File System Techniques in
ELF

A traditional log-structured file system creates a new sequential
log entry foreachwrite operation that occurs. This type of opera-
tion naturally encourages very good wear levelling since the flash
memory may be used sequentially all the way through, only re-
turning to previously used blocks after all of the blocks have been
written to at least once. ELF encourages this even more by keeping
each log entry on a separate flash page,i.e. there are never multiple
log entries on a single flash page. This is designed from reliability
considerations. If multiple log entries are stored in the same page,
any damage to this page will result in the loss of all log entries.

Unlike traditional LFS techniques, ELF does not create a log
entry for each Write-Append operations. This is because the run-
time memory representation of a traditional log-structured file with
many small appends will rapidly grow to unwieldy size if a log
entry is created for each operations. In the interests of lowering
runtime performance and memory consumption, an append opera-
tion in ELF utilizes an existing log entry on a flash page if one is
available. While this may decrease wear levelling to some extent,
wear levelling should still occur naturally since append operations
will eventually fill up a page, requiring a new log entry and flash
page to be used at that point. ELF uses a write cache for each file
to gather appends to the same page so that the number of Write-
Appends is further reduced. The details are explained in the next
section.

For much less frequent Write-Modify operations, ELF does fol-
low a traditional logging approach, i.e. modifications will not be
overwritten to the same flash memory page, which enhances wear
levelling. This takes advantage of the wear levelling property of
write logs without overly extending the run-time representation of
files. Each modification will be written to a new flash page and a
log entry is created. Since Write-Modifies are not expected to be
frequent,e.g. for occasionally changing configuration parameters
or retasking, the file representation should grow only slowly and be
able to fit within RAM in the common case.

Similar to classic log-structured file systems, a simple garbage
collection mechanism is provided by ELF. The garbage collector, or
cleaner, provides another opportunity to implement wear levelling
in the reallocation of free flash pages. A write counter is kept in the
metadata of each page. Using this write counter, the cleaner can
preferentially mark pages with less wear for use.

In addition to Write-Modify and Write-Append operations, other
standard file operations provided by ELF include reading and cre-
ation and deletion of files. ELF does not attempt to provide sophis-
ticated optimization for all forms of file access, due to the resource
constraints imposed by sensor systems. ELF only focuses on pro-
viding basic file operations for common tasks in a sensor system.

3.5 ELF Architecture Overview
Figure 2 illustrates the architecture of the ELF file system. At the

To appear, ACM SenSys 2004

FLASH EEPROM RAM

Maintenance
ELF

Tasks

General
File

Operations

Abstraction
Resource

Figure 2: ELF File System Architecture

top is the ”Resource Abstraction” maintained in run-time memory.
It consists of the in-memory representations of open files, cleaning
policy, and other ELF configuration data. The ”General File Op-
erations” is the logical abstraction of all file/directory operations.
The ”ELF Maintenance Tasks” is the abstraction of system main-
tenance tasks,e.g. maintaining a snapshot of directory structure
and file metadata in EEPROM. It also includes the garbage col-
lection task. When predetermined conditions are met, the garbage
collection task will be posted, though these functions can also be
explicitly called by the users. The cleaning policy is selected at
compile time.

4. IMPLEMENTATION ISSUES

Logical View

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	

Sys Checkpoint
Region Info

File
Abstraction

Abstraction
Node

Node
Header

Info
Page

EEPROM

Physical StorageFLASH MEMORY

RAM

Figure 3: Distribution of data structures used by ELF in RAM,
flash, and EEPROM.

This section begins with a discussion of the implementation of
ELF on the Berkeleymica2platform. It first describes ELF data
structures in RAM, flash, and EEPROM. The high level layout is
presented in Figure 3. Basic file operations are then illustrated with
examples. This is followed by explanations of ELF’s garbage col-
lection and data reliability mechanisms.

4.1 On-Flash Data Structures

4.1.1 Physical Nodes
The high-level layout of ELF in flash follows a single log format.

The log in ELF consists of a sequence of physical nodes. A newly

created node is appended to the end of the log. Currently, ELF
supports three types of physical nodes in flash: file inodes, common
nodes and directory entries. Each physical node is identified by a
unique 16-bit node identifier. A 16-bit version number is associated
with each physical node to indicate the age of the physical node.
Another 32-bit length field identifies the length of this node and the
included data. The three types of physical nodes are:

• ELF DIR

An ”ELF DIR” node represents a directory entry in the file
system. As directory-related operations on a sensor network
file system are expected to be simple, ELF only supports ba-
sic operations and a simple directory structure. In addition
to the fields mentioned earlier, an ”ELFDIR” node also con-
sists of the following fields

– Directory Name

– Number of contained files and subdirectories

– Flags indicating the status of the node

.

• ELF FILE An ”ELF FILE” node includes the metadata nec-
essary for operating on a file. As in traditional UNIX-like file
systems, file inodes are entirely distinct entities from direc-
tory entries in ELF. File content is stored after the metadata
in the node. Similar to ”ELFDIR”, an ”ELF FILE” node
also stores the file’s name, inode number, and flags reflecting
the node status.

• ELF COMMON

An ”ELF COMMON” node normally represents a write mod-
ification, a deletion operation, or a renaming operation. For
these operations, an ”ELFCOMMON” node is created and
appended to end of the list of physical nodes for a given file.
For operations such as write modification, newly added data
is carried in this physical node instead of rewriting over the
original flash pages. An ”ELFCOMMON” node contains
metadata such as the start offset of the data in the file, the
length of the carried data, the inode number of the file it be-
longs to, and the version information of the included data.

Each flash page contains at mostonephysical node that is located
at the very beginning of the page.

4.1.2 Per-Page Metadata
On Berkeley mica2 motes, each page in flash contains 256 bytes

for data, and an extra 8 bytes intended for per-page metadata. Fig-
ure 4 depicts the metadata structure stored in each flash page in
ELF.

uint16_t flags : 5;
uint16_t writeCounter;

uint16_t nextPage : 11;
uint16_t crc;

struct page_info{

uint16_t magicNumber;
}

Figure 4: Per Page Metadata Structure in Flash

A simple CRC checksum is stored in the metadata to verify the
data integrity of the page. ELF provides two different reliability
configurations for the checksum calculation. The user can specify

To appear, ACM SenSys 2004

whether the CRC is the checksum of the whole page or only of
the metadata, excluding the CRC field. The 11-bit nextPage field
provides the pointer to the next data page belonging to the same
physical node. For example, when appended data exceeds the first
page’s capacity, a second page will be allocated. The ”nextPage”
field in the first page’s metadata will then be updated to point to
this newly allocated page. In this approach, allocated flash pages
gradually form a linked list, as is shown in Figure 3. The 5-bit flag
indicates the status of the page, such as free, inuse or dirty. The
field ”writeCounter” indicates how many times this page has been
rewritten, which provides age information for implementing wear-
levelling techniques. The final 16-bit field is reserved for future use.
It is currently serving the purpose of a magic number to identify the
ELF system.

4.2 In-Memory Data Structures
Data structures are created in RAM for run-time support of oper-

ations on opened files. Since a file in ELF consists of a list of phys-
ical nodes, the memory representation of an opened file includes
two parts: a file abstraction and a list of physical node abstractions.
Figure 5 shows the file and physical node abstraction data struc-
tures in RAM. The relationship between these two abstractions is
illustrated in Figure 3.

uint16_t version;
uint32_t beginOffset;
uint32_t locaLen;
uint16_t startPg : 11;
uint16_t flag : 5;

}__attribute__((packed));

struct elf_node_abstract{

struct elf_node_abstract *next;

typedef struct elf_node_abstract elf_node_abstrac_t;

uint16_t version;
uint16_t inodeNumber;
uint32_t totaLen;
uint8_t flag;
uint8_t writeCounter : 4;
uint8_t readCounter : 4;

struct elf_file_abstract{

uint16_t pInode;
elf_node_abstract_t *first;

}__attribute__((packed));

Figure 5: File and Node Abstractions in RAM

4.2.1 File Abstraction
A file abstraction stores the metadata of the file, such as the

length of the file, number of opened handles and a pointer to the
list of physical node abstractions. Modifications to the file are re-
flected in the file abstraction as they occur. Each file abstraction
can be associated with a small write cache in order to improve the
write performance and extend the flash memory lifespan by con-
solidating writes to the same page. The size of the data cache is set
to 64 bytes by default, but is configurable at compile time. As it is
not expected to have a large number of files opened simultaneously
on a sensor platform, ELF only allows a limited number of files to
be opened at the same time. ELF defines a virtual file abstraction
as the root of the whole file system at the start of the system.

4.2.2 Node Abstraction

Each physical node of the file on flash has a corresponding ab-
straction in RAM. The abstraction only contains the necessary sum-
mary information of the physical node in order to keep the memory
footprint to a minimum. Each physical node represents a portion of
the file contents, and also contains the pointer to the next physical
node abstraction in RAM.

4.2.3 File Descriptor
To operate on a file, an application first needs a file descriptor. A

file descriptor in ELF consists of the file abstraction, current offset
in that file and the open mode.

4.3 In-EEPROM Data Structures and Related
Operations

ELF may also exploit EEPROM-style memory where available.
ELF caches its directory in EEPROM for fast access to files. ELF
also stores a snapshot of the system in EEPROM as a means to en-
able file consistency. These allow fast startup after a graceful reboot
and for crash recovery of reliable file operations. The EEPROM is
separated into a checkpoint region and a system information region
containing the directory and other data structures, as shown in Fig-
ure 3.

4.3.1 System Reboot
Normally, a micro sensor system rebooting procedure includes

initial setup and scanning of flash memory to collect file informa-
tion. The in-flash file data structures provide sufficient information
to rebuild the entire directory hierarchy on system start. However,
this rebuilding process requires a complete linear scan through all
of flash memory, and is time-consuming. To improve booting per-
formance, the entire directory structure and file representations in
RAM, are stored in EEPROM before a graceful reboot. Thus, a
system can quickly read the ELF directory structure from the EEP-
ROM instead of scanning all flash pages. This shortens the reboot
time. In addition, if there is a non-graceful involuntary system re-
boot, e.g. a crash, then the non-volatility of EEPROM can be used
to store checkpoint information to improve recovery for reliable
files after a crash.

4.4 File Operations in ELF
ELF provides standard file functions such asopen(), close(), read(),

write(), lseek(), delete()and truncate() and directory operations
such asmkdir()andrmdir() similar to traditional unix file systems.
ELF also supports both random read and write access, which will
be addressed in detail in a later section. We illustrate examples of
typical ELF file operations in the following subsections on a file
called “foo”.

4.4.1 Open and Create
To open “foo”, ELF will first examine whether ”foo”’s file ab-

straction is already loaded into RAM. If ”foo”’s file abstraction is
not found, the system will construct the file abstraction from the
system directory snapshot, which is currently stored in EEPROM.
If a file is to be ”created”, ELF will allocate a free flash page to the
file and create the ”ELFFILE” physical node on it. ELF will then
create the file abstraction and physical node abstraction in RAM.
ELF only keeps a limited number of file-abstractions in RAM. If
all slots for opened files are occupied, the ”open”/”create” function
will return an error. Otherwise, a file descriptor will be assigned to
the application by the system. This file descriptor includes a pointer
to ”foo”’s file abstraction, an 8-bit flag indicating the open modes,
and the offset in the file. The result of opening a file on RAM is
shown in Figure 6(a). ELF also allows clients to specify that a file

To appear, ACM SenSys 2004

DataData

Data

RAM

FLASH

Data

FLASH

RAM

RAMRAM

FLASH

Data

(a) Open (b) Append

(c) Modify (d) Seek

RAM RAM

Data Data Name Data Data
New

FLASH FLASH

FLASH

(f) Rename (g) Delete

metadataFile
Descriptor

Virtual Root

Node Abstraction

File Abstraction

New
Name

Data
A

B

A

B

1 1

1 2 1 2

3 1 2 3 4 1 2

321 3 421

1 2 1 2A’

B’

1 1

Figure 6: File Operations

act as a sized circular buffer. Append operations that would exceed
the specified circular buffer size instead overwrite the bytes at the
beginning of the file. This mode is intended to ease management of
sample storage.

4.4.2 Append
After opening ”foo”, we then append data to it. ELF employs

a policy of delaying updates to a file’s physical node on the flash
given a sequence of appends. Appends to the same file are thus
first cached in the assigned buffer in RAM in order to reduce the
wear on a given page. When the buffer is full, the contents of the
buffer are written to the last flash page in the file, which contains
the tail end of the sensor data. Figure 6(b) illustrates the results of
an append in flash and RAM. If this writing exceeds the available
space on the flash page, then a new flash page is allocated. The
metadata on the old page is updated, namely the nextPage pointer,
to point to the new flash page. In this way, Write-Appends create a
linked list of flash pages containing “foo”’s data.

One aspect of the append operation that has yet to be described
is the updating of the file inode, e.g. to update file length. As is
stated before, ELF uses assigned RAM buffer to aggregate small
writes in order not to wear out the page containing the file’s inode
and improve the write performance. However, the file abstraction
and physical node abstraction in RAM is updated in real time. This
approach leads to temporary inconsistency between the flash and
RAM representations of the file. ELF’s design trades off the re-
quirement for file consistency for an improved lifespan in the flash
based file system. As a means of further improving wear levelling,
ELF copies the page containing the file inode to a free page when
actual updates on the file inode happen. In this case, a new version
number is assigned. Otherwise, during a more typical append oper-

ation, neither the version number of the physical node nor the file’s
version number are updated.

4.4.3 Write(modify)
Suppose now that a user desires to modify an existing portion

of the open file “foo”. The Write-Modify operation is treated dif-
ferently in ELF than a Write-Append. As shown in Figure 6(c),
the offset of the data in ”foo” begins atA and ends atB. ELF
checks the offsetA and finds that this offset overlaps with existing
data. ELF then allocates a new flash page and creates a new phys-
ical node. Corresponding to this new node on flash, a new node
abstraction is created in RAM and appended to the physical node
abstraction list associated with ”foo”. The file version number field
is then increased by one. If there are a series of Write-Modifies,
then each Write-Modify adds a physical node to the log in flash
and RAM, and the physical node abstraction list of the file grows
linearly. This is in contrast to appends, which do not normally add
a new physical node.

4.4.4 Read/Seek
Reading from a file is complicated by the log of multiple phys-

ical nodes in a file. If the log is long, i.e. there are many Write-
Modifies, then the performance of the read operation will degrade.
However, it is not expected that there will be many modifications
on sensor logs in the common case. For a random read operation,
two pointers are used, as a file might consist of multiple nodes. A
read operation may consist of several sub-read operations on each
physical node. When reading each physical node, the first pointer
points to the start position while the second one points to the end
position of this sub-read. For example, consider the read example
shown in Figure 6(d). To read through all the “foo” file, a read
operation should first get bytes from offset 0 toA in node 1, then
read bytesA′ throughB′ in node 2, and then return to node 1 to
finish reading the file. Node 2 must be accessed because the data
betweenA andB in node 1 is obsoleted by node 2. The read oper-
ation will then go back to node 1 to read data fromB till the end of
file. Corresponding to the above description, the first pointer will
first be set to 0 while the second pointer is set to positionA. Thus,
A bytes are read in this sub-read operation. Then ELF will set the
first pointer to offsetA′ and the second pointer toB′ subsequently
to readB′ − A′ bytes. Finally, the first pointer is moved back to
point toB position in node 1 while the pointer 2 is set to the end
of node 1, which is end of the file. The next sub-read operation
reads allEOF − B bytes from offsetB. The performance of this
operation degrades as the number of overlapped physical common
nodes in the file increases. A seek operation is similar to the read
operation except that it doesn’t actually read the data but simply
finds the offsets.

4.4.5 Rename
Renaming a file in ELF results in creating a new physical node

as well as its abstraction. There is no modification to the original
physical node. Renaming a directory in ELF is different. To rename
a directory, a new directory node is allocated. All data structures
within the old directory node are copied to this new dirnode. The
name is changed in the new node. The original directory node is
then set to be deprecated.

4.4.6 Deletion
Similar to the rename operation, the delete operation is also achieved

by adding a physical node to indicate the delete status instead of
real removal. The allocated space will be reclaimed during garbage
collection.

To appear, ACM SenSys 2004

4.4.7 Truncation
ELF provides a ”truncate” operation. In contrast to the tradi-

tional unix ”truncation” command, ”truncate” in ELF allows an
application to delete data from thebeginningof the file. This is
intended to aid the management of sensor data, allowing an appli-
cation to dynamically free segments of the oldest data, which usu-
ally resides at the beginning of the log file. For example, as data
samples are relayed back to a base station their space on flash may
be reclaimed. Also, in sensor networks the latest sensor readings
are generally more important than the outdated data. The truncation
function is currently under implementation and will be included in
the release version.

4.5 Resource Management and Garbage Col-
lection

4.5.1 Resource Management

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2000 4000 6000 8000 10000

m
em

or
y

us
ag

e

Number of Bytes

Bitmap
Block List Naive(1 file)

Block Lisk Improved(1 file)
Block List Improved(2 file)

Figure 7: Flash Memory Resource Management

Traditionally, free/dirty/used blocklists are used in the file sys-
tem to manage the storage space. For the environment in which
ELF operates though, abitmap is a better fit. Figure 7 illustrates
the comparison between the bitmap approach and the traditional
block-list approach. The size of the bitmap needed to keep track of
all pages of size 256 bytes in 512 KB of flash amounts to 256 bytes.
The size of the block list needed to keep track of blocks of size 256
bytes, assuming 16 bytes of metadata associated with each allo-
cated block, varies depending on the number of allocated blocks.
We conducted experiments based on three different settings. In the
first setting, there is only one file in the flash. This file is created
before the experiment. Data is then continuously appended to the
end until the flash memory is used up. The figure shows that the
memory usage of the block-list based scheme exceeds the bitmap
approach when around 6500 bytes are allocated. Since the size of
the flash memory is 512 KB, then the memory consumption of the
list-based approach is not acceptable.

In order to further investigate different resource management
schemes, we made some optimizations for the list-based approach.
With this optimization, the newly allocated blocks are combined
with existing blocks if possible. For a single file, the performance
shows significant reduction in memory consumption, albeit at the
cost of additional processing. However, when there are two or more
files opened simultaneously for writing, this optimization does not
perform as well. Figure 7 shows that this improved scheme con-
sumes more memory than a bitmap when fewer than 4000 bytes
are allocated.

It is possible to utilize other optimizations to improve the linked
list performance at the cost of greater management overhead. For
example, each block can be increased to include several memory
pages. This will reduce memory usage in a block-list based ap-
proach. However, such a scheme suffers from space inefficiency.
Also, a block larger than a page increases the difficulty in provid-
ing an effective wear-levelling mechanism.

We chose the bitmap as the resource management scheme for
ELF for its efficiency and simplicity. A bitmap based approach
does not require sophisticated mechanisms, yet at the same time al-
lows allocation of data blocks on a per page basis. Furthermore, by
storing portions of the bitmap into persistent storage, such as inter-
nal EEPROM, the RAM resident space requirement of the bitmap
can be decreased. Another reason for choosing a bitmap is its fixed
memory size. A linked list based approach requires dynamic al-
location of buffers. At present, TinyOS is only capable of static
memory allocation in order to avoid memory overflow. [31]

4.5.2 Garbage Collection
For most log-based file systems, a garbage collection mechanism

is important for efficient operation. In ELF, only a simple garbage
collection mechanism is implemented. The number of free pages
is tracked. Whenever the number of free pages drops below a pre-
set threshold, the “cleaner” task is posted. As discussed in prior
work [20], implementing a cleaner in user space allows for flexi-
bly changing or adding a cleaning policy or algorithm. For event-
driven embedded systems such as TinyOS, there is no such differ-
ence between user space and kernel space. During execution, the
cleaner reclaims the pages occupied by deleted, renamed or obso-
lete files. The cleaner traces the link inside the file pages and sets
the corresponding bits in the bitmap. If there is still not enough free
space after scavenging, then files can be de-fragmented to reclaim
more pages. The cleaner also eliminates pages whose write lifetime
has been exceeded. In ELF, any page with more than 9000 writes
will be marked as unusable, assuming a lifetime of 10000 writes.
In contrast to the relatively memory-intensive segment cleaning in
LFS, a ”cleaner” task in ELF simply reads the flash page meta-
data and flips the corresponding bits in the bitmap. There is no
data copied into the RAM. Thus, the RAM consumption for the
ELF cleaner is fairly low: typically fewer than 10 bytes without
defragmentation, and fewer than 40 bytes when defragmentation is
required.

4.6 Crash Recovery
Since certain files require reliable file operations, e.g. binary

images and configuration settings, ELF provides optional crash re-
covery. ELF allows the user to specify whether a given file should
use crash recovery. ELF uses a two-pronged approach to recov-
ery: checkpoints, which define consistent states of a file, and roll-
forward, which is used to recover as much data as possible. A
checkpoint is normally defined as a position in the log at which
all file system structures are consistent and complete. However,
a checkpoint doesnot provide such guarantees in ELF. An ELF
checkpoint only stores the status of a file. In order to roll-forward
to the error free record, ELF tracks both the current operation and
a list of past operations on a reliable file. Each operation must be
documented in addition to the modified data.

A crash can happen when updating either the metadata or the
data contained in the file. It is useful to find the failure point. Cal-
culating the checksum can detect whether the data in a flash page is
damaged, but does not reveal any further information. A traditional
LFS scheme is insufficient for a flash based file system. In flash,
even if a checkpoint is committed in the middle of a page, the write

To appear, ACM SenSys 2004

failureafter the checkpoint in the same page will still result in loss
of information. For example, ELF always appends data to the end
of the file instead of creating a new node. When such an append
fails, all data contained in the same page as the failure point will be
seen as invalid. Thus the checkpoint fails to achieve consistency.

ELF implements a best effort crash recovery mechanism for reli-
able files. For write operations, ELF records a number of snapshots
of recent actions. It also keeps a snapshot of the current action.
These snapshots are represented by a tuple

{inodeNum, action, cur version, highest version}

An action may be one of the following:

• Append: includes the starting offset and length of the ap-
pended data

• Modify: includes the starting offset and length of modified
data

• Rename: includes a version number

• Obsolete: includes a version number

The typical length of a tuple is about 15 bytes. For each opera-
tion on a reliable file, ELF needs to write data to the file, modify the
RAM representation, update metadata and then store the snapshot
in the EEPROM. Before an operation occurs, a snapshot of this ac-
tion is recorded in the EEPROM as the current operation. If the
system crashes during this action, ELF compares the last finished
action and the current action during the recovery stage. If they
match and the CRC checksum is correct, this file will be treated
as a file with confirmed integrity. Otherwise, ELF will roll back
checkpoints, attempting to find a checked operation happening in a
page different from the current operation. If there is no such snap-
shot, the file will be considered damaged and marked obsolete.

5. PERFORMANCE EVALUATION
ELF is implemented on TinyOS, which runs on mica2 motes [2].

In this section, we will first evaluate the performance of common
file operations in ELF. Then we present ELF’s performance with
respect to wear levelling and reliability. We also compare ELF with
Matchbox since Matchbox is currently the only openly available
sensor file system for the motes.

5.1 Sequential Read Performance
The goal of the sequential read performance test was to measure

the maximum read throughput for the most common files: sensor
data logs. We expect the majority of the read operations of sen-
sor files to be sequential reads since the content of a sensor file is
likely to be read sequentially and transmitted through the radio for
relay to the base station. In this experiment, we first filled the en-
tire memory with a 500 KB log file and then performed sequential
reads on this sensor log file. We gradually increase the number of
bytes read each time and compare the performance between ELF
and Matchbox. Each run is repeated fifty times, and the average
result is plotted in the graph.

Figure 8 illustrates the sequential read performance of Matchbox
and ELF on a large continuous file. For sequential reading, the
performance of both ELF and Matchbox are stable. In general, ELF
achieves better performance than Matchbox by about 5 KB/second.
However, this is due to a device driver implementation detail. The
driver used in Matchbox will first data into the cache on the flash
chip. It then reads the data from this internal cache. ELF improves
performance by reading data directly from the flash memory. This
reduces the latency for reading data from each page by about 250
microseconds.

Number of Bytes Read(KBytes)
0 50 100 150 200 250

R
ea

d
Th

ro
ug

hp
ut

 (K
B

yt
e/

s)

0

10

20

30

40

50

60

Matchbox
ELF − Continuous File
ELF−Fragmented File

Figure 8: Sequential read performance

5.2 Sequential Write Performance
Write-Append is another major file operation in ELF expected to

be used for sensor data. The size of each sensor reading is normally
one or two bytes. For example, the Mica weather board used on
Great Duck Island for habitat monitoring [9] contains seven differ-
ent sensors: a photo-resistor,I2C temperature sensor, barometric
pressure, humidity, thermopile and thermistor. Each sensor sample
is between 10-16 bits. Even if all sensors are read simultaneously
during a sampling period, the total data size is only7 × 2 = 14
bytes.

M E
1

E
1’ E
2

E
2’ E
3

E
3’ E
4

E
4’

W
rit

e
Th

ro
ug

hp
ut

 (K
B

yt
e/

s)

0

2

4

6

8

10

12

14

Figure 9: Sequential Write Throughput

M E
1

E
1’ E
2

E
2’ E
3

E
3’ E
4

E
4’

M
em

or
y

C
on

su
m

pt
io

n
(B

yt
es

)

0

100

200

300

400

500

600

Figure 10: Sequential Write Memory Consumption

In order to examine the performance of ELF’s log appending
operations, a file is first created in the flash memory. Then 16 bytes
of sensor data are appended to the file in each write until the whole
flash is consumed, making a total of 512KB of data. Figure 9 plots

To appear, ACM SenSys 2004

the average write throughput while Figure 10 presents the memory
consumption. ExperimentM corresponds to the maximum write
throughput or memory consumption of the Matchbox system.

In our experiments, several different ELF file system configura-
tions are examined by varying the amount of RAM used. Experi-
mentE1 corresponds to the append performance of ELF without
RAM buffering of append operations, and with the entire free space
bitmap stored in RAM (256 bytes). ExperimentE1′ is identical to
E1 except that only a quarter of the bitmap, 64 bytes, is resident in
RAM, with the whole bitmap being stored in EEPROM. After all
pages in the 64 bytes have been allocated, the next 64-byte portion
of the bitmap is loaded into the RAM. We then varied the amount
of buffering by ELF of appends in RAM:E1 andE1′ have 0 bytes
of buffering; E2 andE2′ have 32 bytes of buffer;E3 andE3′

have 64 bytes; andE4 andE4′ have 128 bytes in each trial. The
experiment is repeated fifty times for each different setting and the
average is shown.

When there is no buffer assigned to ELF, both ELFE1 and
MatchboxM exhibit similar performance in these raw write op-
erations. This is because ELF falls in the same category as Match-
box by directly appending the data to the end of the file in the
flash memory. Matchbox writes at about 9.21 KB/second while
the throughput of ELF is 9.03 KB/sec forE1.

Comparing variation across bitmap storage in RAM,E1’s 9.03
KB/sec is marginally higher than the 8.86 KB/sec throughput of
E1′. This is because inE1′ ELF needs to write the used up bitmap
in memory back to EEPROM and read in the next 64 bytes of the
whole bitmap. This swapping time affects the performance when
a large continuous sequence of writes occurs. This difference in
write throughput is reflected for all cases. However, the memory
consumption savings of the quarter-bitmap approach ofE1′ com-
pared toE1 is significant, as shown in Figure 10.

As the data buffer size used to aggregate small writes increases,
the performance of ELF improves significantly, and exceeds the
performance of Matchbox. This is because a Write-Append in-
volves several different steps. The target page is first loaded into
the internal cache in flash chip in order to prevent data loss. By
aggregating multiple small writes, ELF avoids loading the page re-
peatedly, which also includes time for erasing and rewriting. A
drawback of this scheme is reduced reliability. A power failure oc-
curing before the buffer is dumped to the flash memory results in a
loss of the data in the buffer.

5.3 Random Read Performance
Random read access is designed to address the case when there

is a request to read a portion of the data in the middle of the log.
For example, in an application such as TinyDB, a query may be
sent out from the base station to the sensor nodes to retrieve sen-
sor data collected during certain time periods. Another such case
is dynamic reprogramming. Allowing nodes to retransmit specific
portions of a program image requires random reads from a file and
receiving packets (potentially out of order due to dropped packets)
requires random writes. This experiment is designed to evaluate
the performance of ELF in such cases. Figure 11 illustrates the
performance of ELF in two different scenarios. In the first case,
there is a large continuous log file stored in the flash. This file is
composed of a single physical node. In the second case, four modi-
fications have been applied to this file, which results in the creation
of a fragmented file with an additional four physical nodes. The ex-
periment is repeated fifty times with different randomly generated
fragmented files created each time. The averages are plotted. In
each experiment, the file pointer is set to several different offsets.
The number of bytes read from each offset is fixed at 20 KB.

Begin Offset (KByte)
0 50 100 150 200 250

R
ea

d
Th

ro
ug

hp
ut

 (K
B

yt
e/

s)

0

10

20

30

40

50

60

70

Continuous File
Fragmented File

Figure 11: Random Read Performance

As is illustrated in Figure 11, the performance of random reads
in ELF is worse for the fragmented file than for the continuous file.
This is because a read might run across several different physical
nodes. Matchbox is not shown for comparison because it does not
support random reads. For the case of the fragmented file, large
offsets can again span several different physical nodes. ELF’s read
performance also decreases modestly when the data offset increases
because the seek time is also counted.

5.4 Random Write Performance

Number of Bytes Write(KByte)
50 100 150 200 250 300 350

W
rit

e
Th

ro
ug

hp
ut

 (K
B

yt
e/

s)

0

2

4

6

8

10

ELF Random Write

Figure 12: Random write performance

This experiment is designed to evaluate the case when there is a
request to overwrite existing data in a file,i.e. a Write-Modify op-
eration. For example, dynamic reprogramming might require the
update of a local configuration file. In this experiment, we first
write a 100 KB log file to the flash. After its creation, a portion
of the file is randomly selected and overwritten with0 − 300KB
of new data. No data buffer is used in this experiment. Figure 12
illustrates the random write throughput as a function of cumulative
written data. As expected, ELF’s performance for overwriting or
modifying data doesn’t significantly vary depending on the amount
of overwritten data. This is because each write results in the cre-
ation of a new physical node after a simple comparison between the
begin offset of new data and the file length.

5.5 Wear Levelling Performance
We use a simulator to examine the wear levelling performance

of ELF. Wear levelling is a primary goal of an effective flash file
system. In our experiment, four files are created:

To appear, ACM SenSys 2004

Figure 13: Wear Levelling Performance

• One 4 KB file is created and rarely updated. This represents
sensor node configuration information.

• Two log files are created to evaluate wear levelling when log-
ging data from two different sensors. 64 bytes of data are
appended to each file alternately.

• For every 10,000 writes, a file of 20KB is created and then
erased. This is designed to simulate basic dynamic repro-
gramming behavior.

Whenever the flash memory is full, one of the sensor logs is ran-
domly deleted. The occupied space is reclaimed by the cleaner. A
new sensor log file will be created after the erasure.

This experiment continues running until the total number of era-
sures exceeds 10,240,000. Each of the 2000 256-byte pages in the
512 KB flash are expected to be written exactly 5000 times if ab-
solutely uniform wear levelling is achieved. Figure 13 shows a
binned distribution function of the wear on each page following
this experiment. ELF manages to achieve close to uniform wear
levelling. Most pages’ write counts are close to 5000. The number
of pages with a write count fewer than 4000 is less than 10% of the
total pages. We conclude that ELF’s proposed mechanisms, though
simple, achieve reasonable wear levelling. The pages that were
significantly younger than the other pages belonged to the simu-
lated sensor configuration files. Since these files are unlikely to be
touched in a long time, there is little opportunity for wear levelling.

5.6 Energy Consumption
Here we summarize energy consumption in ELF. The major ap-

proach followed by ELF is through write aggregation. According to
Table 1, it takes 4-10 mA to read the flash and 15-35 mA to program
the flash. A whole flash page is erased and rewritten even for 1-byte
change. Thus, aggregating small writes on the same page will help
to reduce the energy consumed. This can be illustrated by a sim-
ple calculation. Assuming 16 bytes are appended to a log file each
time in logging applications, it takes 16 writes to fill a 256-byte
flash page. By allocating a 32-byte buffer to cache the writes, the
power consumption can be roughly cut by half since there will be
only 8 writes. Table 2 provides the detail for the EEPROM power
consumption. In ELF, EEPROM read/write mainly takes place at
the start/shutdown of the system and at the read/write operation on
reliable files such as a program image. As these are not frequent
practices for sensor networks, the operations on EEPROM are not
expected to be a major source of energy consumption.

6. DISCUSSION AND FUTURE WORK
ELF seeks to meet the need for a more advanced file system for

sensor networks. Several previous works on distributed storage in
sensor networks have employed the circular buffer as the lowest
level medium management approach in a distributed storage archi-
tecture. [32, 33]. With the evolution of sensor networks, this simple
management technique is no longer able to satisfy the needs of var-
ious applications, e.g. the Mate virtual machine. Moreover, appli-
cations such as TinyDB also require more flexible and reliable low
level storage systems. ELF is designed to meet this emerging desire
for complexity. The ELF file system provides a complete file sys-
tem uses atomic write operations for operating with file metadata,
and provides support for simple garbage collection and best effort
crash recovery. ELF also provides convenient APIs similar to the
unix system call interface for applications.

ELF is designed with efficiency and sensor network characteris-
tics in mind. Although it’s quite different from the traditional LFS
in both design and motivation, ELF is still a log-structured file sys-
tem in the sense that new data is always written to new space, which
achieves wear levelling for sensor flash-based systems. For sensor
database-like applications, there will be the need to retrieve data
from the middle of the file in facing a query. ELF enables file read
random access for such applications. ELF also allows the creation
of a simple directory in order to preserve the flexibility of cate-
gorizing files. Considering the characteristics of sensor networks,
ELF is not designed to handle the frequent occurrence of operations
such as rebooting, file opening and creation. These issues will be
addressed in the future if they prove desirable.

Buffering is important to both the performance and efficiency
of ELF. The performance evaluation section has illustrated the im-
provement of write throughput by using modest buffers to aggre-
gate writes. Furthermore, caching the writes also increases the
flash’s memory lifetime and saves energy by effectively reducing
the number of actual writes to the physical flash medium. How-
ever, such performance enhancement is obtained at the cost of the
loss of reliability, since a system crash before the actual write op-
erations will result in the data loss of the cached writes.

A more detailed study of the reliability of ELF to a host of fail-
ure conditions is needed. At present, our study of ELF’s resilience
to crashes has been rudimentary. Further study is needed to test
the capability of ELF to withstand failure at any point in the open,
read, write, close process, in addition to garbage collection clean-
ing. This paper also has not explored the energy cost or latency
cost of ensuring reliability for a subset of the files on a micro sen-
sor node.

Data compression, although incurring a computational cost, can
be very useful to the deployed sensor network since it effectively
increases the storage capacity on each micro sensor node. Typi-
cal lossless data compression techniques include Huffman, arith-
metic encodings, the Lempel-Ziv coder, etc. Studies shows that
these techniques could increase the space usage by 2-4 times. [9]
A future direction of ELF includes implementing a suitable com-
pression algorithm for sensor data in order to increase the storage
capacity on flash.

7. CONCLUSION
ELF is a full, reliable and efficient file system designed and im-

plemented for micro sensor nodes such as the mote. ELF is tailored
to the resource constraints of sensor nodes, e.g. limited RAM and
energy. ELF is also tailored to the behavior of sensor networks,
i.e. ELF is optimized for write-append operations characteristic of
logging sensor data to a file. ELF is further adapted to the storage

To appear, ACM SenSys 2004

medium of choice on micro sensor nodes, namely non-volatile flash
memory. In particular, the log-structured nature of ELF enables
wear-levelling across flash, so that writes are evenly distributed
across flash pages with limited write lifetimes. ELF also meets a
variety of other sensor networking needs, such as crash recovery for
reliable configuration files and binary images. To our best knowl-
edge, ELF is the first log-structured file system for sensor networks
that provides garbage collection and a best effort recovery mecha-
nism.

8. ACKNOWLEDGMENTS
Many thanks to Charles Morrey, Brian Shucker, Anmol Sheth

and Jing Deng for their suggestions concerning ELF.

9. REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. A survey on sensor networks.IEEE
Communications Magazine, Aug 2002.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for network sensors.
In ACM Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 93–104, 2000.

[3] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The
cricket location-support system. InMobile Computing and
Networking, pages 32–43, 2000.

[4] N. B. Priyantha, A. K. L. Miu, H. Balakrishnan, and S. J.
Teller. The cricket compass for context-aware mobile
applications. InMobile Computing and Networking, pages
1–14, 2001.

[5] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth,
B. Shucker, J. Deng, and R. Han. Mantis: System support for
multimodal networks of in-situ sensors. In2nd ACM
International Workshop on Wireless Sensor Networks and
Applications (WSNA), 2003.

[6] The smart-its project, http://www.smart-its.org/.
[7] The eyes project, http://eyes.eu.org/.
[8] M. Leopold, M. Dydensborg, and P. Bonnet. Bluetooth and

sensor networks: a reality check. InProceedings of the first
international conference on Embedded networked sensor
systems, pages 103–113. ACM Press, 2003.

[9] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson. Wireless sensor networks for habitat
monitoring. InWSNA, Atlanta, GA, September 2002.

[10] James reserve extensible sensing system,
http://www.cens.ucla.edu/ eoster/tinydiff/.

[11] New computing frontiers - the wireless vineyard,
http://www.intel.com/labs/features/rs01031.htm.

[12] Crossbow motes, http://www.xbow.com/.
[13] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and

W. Hong. Tag: a tiny aggregation service for ad-hoc sensor
networks. InOSDI Conference, December 2002.

[14] S. Madden, R. Szewczyk, M. Franklin, and D. Culler.
Supporting aggregate queries over ad-hoc wireless sensor
networks. 2002.

[15] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation. In
Proceedings of the First USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI),
2004.

[16] N. Reijers and K. Langendoen. Efficient code distribution in
wireless sensor networks. InWSNA, pages 60–67. ACM
Press, 2003.

[17] Crossbow in network programming,
http://www.xbow.com/support/supportpdf files/motetraining/xnp.pdf.

[18] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-memory
based file system. InUSENIX Winter, pages 155–164, 1995.

[19] M. Rosenblum and J. Ousterhout. The design and
implementation of a log-structured file system. In
Proceedings of the thirteenth ACM symposium on Operating
systems principles, pages 1–15. ACM Press, 1991.

[20] M. I. Seltzer, K. Bostic, M. McKusick, and C. Staelin. An
implementation of a log-structured file system for UNIX. In
USENIX Winter, pages 307–326, 1993.

[21] M. Wu and W. Zwaenepoel. envy: a non-volatile, main
memory storage system. InASPLOS, pages 86–97. ACM
Press, 1994.

[22] Flash memory, intel corporation, 1994.
[23] F. Douglis, R. Caceres, M. Frans Kaashoek, K. Li, B. Marsh,

and J. A. Tauber. Storage alternatives for mobile computers.
In Proceedings of the First Symposium on Operating Design
and Implementation (OSDI), November 1994.

[24] D. Woodhouse. Jffs : The journalling flash file system.
[25] S. Ratnasamy, D. Estrin, R. Govindan, B. Karp, S. Shenker,

L. Yin, and F. Yu. Data-centric storage in sensornets. 2002.
[26] Sylvia Ratnasamy, Brad Karp, Scott Shenker, Deborah

Estrin, Ramesh Govindan, Li Yin, and Fang Yu. Data-centric
storage in sensornets with ght, a geographic hash table.Mob.
Netw. Appl., 8(4):427–442, 2003.

[27] Deepak Ganesan, Ben Greenstein, Denis Perelyubskiy,
Deborah Estrin, and John Heidemann. An evaluation of
multi-resolution storage for sensor networks. InProceedings
of the first international conference on Embedded networked
sensor systems, pages 89–102. ACM Press, 2003.

[28] D. Ganesan, D. Estrin, and J. Heidemann. Dimensions: Why
do we need a new data handling architecture for sensor
networks. InFirst Workshop on Hot Topics in Networks
(Hotnets-I), 2002.

[29] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker. Ght: A geographic hash table
for data-centric storage in sensornets. InFirst ACM
International Workshop on Wireless Sensor Networks and
Applications (WSNA), 2002.

[30] D. Gay, P. Levis, R. v. Behren, M. Welsh, E. Brewer, and
D. Culler. The nesc language: A holistic approach to network
embedded systems. InProceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and
Implementation (PLDI), 2003.

[31] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
A. Woo, E. Brewer, and D. Culler. The emergence of
networking abstractions and techniques in tinyos. InNSDI,
2004.

[32] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and
D. Estrin. Data-centric storage in sensornets.SIGCOMM
Comput. Commun. Rev., 33(1):137–142, 2003.

[33] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and
J. Heidemann. An evaluation of multi-resolution storage for
sensor networks. InProceedings of the ACM SenSys
Conference, pages 89–102, Los Angeles, California, USA,
November 2003. ACM.

