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Abstract. Caches impose a major problem for predicting execution times of real-time systems since the cache
behavior depends on the history of previous memory references. Too pessimistic assumptions on cache hits can
obtain worst-case execution time estimates that are prohibitive for real-time systems.

This paper presents a novel approach for deriving a highly accurate analytical cache hit function for C-programs
at compile-time based on the assumption that no external cache interference (e.g. process dispatching or DMA
activity) occurs. First, aymbolic tracefileof an instrumented C-program is generated baseslyarbolic evalu-
ation, which is a static technique to determine the dynamic behavior of programs. All memory references of a
program are described by symbolic expressions and recurrences and stored in chronological order in the symbolic
tracefile. Second, a cache hit function for several cache architectures is computed basediu evaluation
technique Our approach goes beyond previous work by precisely modelling program control flow and program
unknowns, modelling large classes of cache architectures, and providing very accurate cache hit predictions.

Examples for the SPARC architecture are used to illustrate the accuracy and effectiveness of our symbolic cache
prediction.

Keywords: cache hit prediction, symbolic evaluation, static analysis, worst-case execution time

1. Introduction

Due to high-level integration and superscalar architectural designs the computational capa-
bility of microprocessors has increased significantly in the last few years. Unfortunately the
gap between processor cycle time and memory latency increases. In order to fully exploit
the potential of processors, the memory hierarchy must be efficiently utilized.

To guide scheduling for real-time systems, information about execution times is required
at compile-time. Modelling caches presents a major obstacle towards predicting execution
times for modern computer architectures. Worst-case assumptions—e.g. every memory
access results in a cache misan cause very poor execution time estimates. The focus
of this paper is on accurate cache behavior analysis. Note that modelling caches is only one
performance aspect that must be considered in order to determine execution times. There
are many other performance characteristics (Blieberger, 1994, Blieberger and Lieger, 1996;
Blieberger, 1997; Fahringer, 1996; Park, 1993; Healy, Whalley, and Harmon, 1995) to be
analyzed which however are beyond the scope of this paper.
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Figure 1. Overview of predicting cache performance.

In this paper we introduce a novel approach for deriving a highly accurate analytical
function of theprecisenumber of cache hitsmplied by a program. Our approach is based
onsymbolic evaluatioicf. e.g. Fahringer and Scholz, 1997) which at compile-time collects
runtime properties (control and data flow information) of a given program. The number of
cache hits is described by symbolic expressions and recurrences defined over the program’s
input data so as to maintain the relationship between the cache cost function and the input
data.

Figure 1 depicts an overview of our framework described in this paper. The C-program
is compiled which results in an instrumented C-program. The source-code level instru-
mentation inserts code at those points, where main memory data is referenced (read or
written). Then, the instrumented source-code is symbolically evaluated aychiaolic
tracefileis created. All memory references of a program are described by symbolic ex-
pressions and recurrences which are stored in a symbolic tracefile. Based on the cache
parameters, which describe the cache architecture, an analytical cache hit function is com-
puted by symbolically evaluating the symbolic tracefile. Note that our model strictly sep-
arates machine specific cache parameters from the program model which substantially
alleviates portability of our approach to other cache architectures and programming lan-
guages.

Performing a worst-case cache analysis according to our approach can be divided into the
following steps:

1. Build the symbolic tracefile based on the instrumented program sources by using sym-
bolic evaluation.
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2. Compute an analytical cache hit function by symbolically evaluating the symbolic
tracefile.

3. Find a closed form expression for the cache hit function.

4. Determine a lower bound of the cache hit function in order to derive the worst-case
caching behavior of the program.

Steps 1 and 2 are treated in this paper. These steps guarantee a precise description of the
cache hits and misses.

Step 3 requires to solve recurrence relations. We have implemented a recurrence solver
which is described in Fahringer and Scholz (1997), Fahringer and Scholz (1999). The
current implementation of our recurrence solver handles recurrences of the following kind:
linear recurrence variables (incremented inside a loop by a symbolic expression defined
over constants and invariants), polynomial recurrence variables (incremented by a linear
symbolic expression defined over constants, invariants and recurrence variables) and geo-
metric recurrence variables (incremented by a term which contains a recurrence variable
multiplied by an invariant). Our algorithm (Fahringer, 1998b) for computing lower and up-
per bounds of symbolic expressions based on a set of constraints is used to detect whether
a recurrence variable monotonically increases or decreases. Even if no closed form can be
found for a recurrence variable, monotonicity information may be useful, for instance, to
determine whether a pair of references can ever touch the same address. The currentimple-
mentation of our symbolic evaluation framework models assignments, GOTO, IF, simple
I/O and array statements, loops and procedures.

The result of Step 3 is a conservative approximation of the number of exact cache hits
and misses, i.e., the computed upper and lower bounds are used to find a lower bound
for the cache hit function. The output form of Step 3 (suitably normalized) is a case-
structure that possibly comprises several cache hit functions. The conditions attached to
the different cases correspond to the original program structure and are affected by the
cache architecture.

In Step 4 we only have to determine the minimum of the cache hit functions of the case-
structure mentioned above. Note that it is not necessary to determine the worst-case input
data because the program structure implies the worst-case cache behavior.

Steps 3 and 4 are described in detail in Fahringer and Scholz (1997), Fahringer and Scholz
(1999), and Fahringer (1998b).

The rest of the paper is organized as follows. In Section 2 we discuss our architecture
model for caches. In Section 3 we describe symbolic evaluation and outline a new model
for analyzing arrays. Section 4 contains the theoretical foundations of symbolic tracefiles
and illustrates a practical example. In Section 5 symbolic cache evaluation techniques are
presented for direct mapped and set associative caches. In Section 6 we provide experimental
results. Although our approach will be explained and experimentally examined based on the
C-programming language, it can be similarly applied to most other procedural languages
including Ada and Fortran. In Section 7 we compare our approach with existing work.
Finally, we conclude this paper in Section 8.
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Figure 2. CPU, cache and main memory.

2. Caches

The rate at which the processor can execute instructions is limited by the memory cycle time.
This limitation has in fact been a significant problem because of the persistent mismatch
between processor and main memory speeds. Caches—which are relatively small high-
speed memories—have been introduced in order to hold the contents of most recently used
data of main memory and to exploit the phenomenon of locality of reference (see Hennessy
and Patterson, 1990). The advantage of a cache is to improve the average access time for
data located in main memory. The concept is illustrated in Figure 2.

The cache contains a small portion of main memory. A cache hit occurs, when the
CPU requests a memory reference that is found in the cache. In this case the reference
(memory word) is transmitted to the CPU. Otherwise, a cache miss occurs which causes a
block of memory (a fixed number of words) to be transferred from the main memory to the
cache. Consequently, the reference is transmitted from the cache to the CPU. Commonly
the CPU is stalled on a cache miss. Clearly, memory references that cause a cache miss are
significantly more costly than if the reference is already in the cache.

In the past, various cache organizations (Hennessy and Patterson, 1990) were introduced.
Figure 3(a) depicts a general cache organization. A cache consissslots. Each slot
can holdn cache linesand one cache line contains a block of memory consistingsof
contiguous bytes and a tag that holds the first address bits of the memory block. Figure 3(b)
shows how an address is divided into three fields to find data in the cachdlottie
offsetfield used to select the desired data from the block,itidex field to select the
slot and the tag field used for comparison. Note that not all bits of the index are used if
n>1.

A cache can be characterized by three major parameters. Firsapaeityof a cache
determines the number of bytes of main memory it may contain. Second, the lirgdssize
gives the number of contiguous bytes that are transferred from memory on a cache miss.
Third, the associativity determines the number of cache lines in a slot. If a block of memory
can reside in exactly one location, the cache is calieect mappecand a cache set can
only contain one cache line. If a block can reside in any cache location, the cache is called
fully associativeand there is only one slot. If a block can reside in exactigcations and
n is the size of a cache set, the cache is calleday set associative

In case of fully associative or set associative caches, a memory block has to be se-
lected for replacement when the cache set of the memory block is full and the processor
requests further data. This is done according te@acement strateggSmith, 1982).
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Common strategies ateRU (Least Recently Used),FU (Least Frequently Used), and
random

Furthermore, there are two common cache policies with respect to write accesses of the
CPU. First, thewrite throughcaches write data to memory and cache. Therefore, both
memory and cache are in line. Secowtite backcaches only update the cache line where
the data item is stored. For write back caches the cache line is marked diitty &it.

When a different memory block replaces the modified cache line, the cache updates the
memory.

A write access of the CPU to an address that does not reside in the cache is called a
write miss There are two common cache organizations with respect to write misses. First,
the write-allocatepolicy loads the referenced memory block into the cache. This policy
is generally used for write back caches. Second, the no-write-allocate policy updates the
cache line only if the address is in cache. This policy is often used for write through cache
and has the advantages that memory always contains up-to-date information and the elapsed
time needed for a write access is constant.

Caches can be further classified. A cache that holds only instructions isicaiiadttion
cache A cache that holds only data is callddta cache A cache that can hold instructions
and data is called mixedor unified cache

Cache design has been extensively studied. Good surveys can be foundin Altetal. (1996),
Mueller (1997), Ottosson and Sjoedin (1997), Li, Malik, and Wolfe (1996), Li, Malik, and
Wolfe (1995), Healy, Whalley, and Harmon (1995), Arnold et al. (1994), Nilsen and Rygg
(1995), Liu and Lee (1994), Hennessy and Patterson (1990).
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3. Symbolic Evaluation

Symbolic evaluatioh (Cheatham et al., 1979, Ploedereder, 1980; Fahringer and Scholz,
1997; Fahringer and Scholz, 1990)is a constructive description of the semantics of a
program. Moreover, symbolic evaluation is not merely an arbitrary alternative semantic
description of a program. As in the relationship between arithmetic and algebra the specific
(arithmetic) computations dictated by the program operators are generalized and “delayed”
using the appropriate formulas. The dynamic behaviprésiselyrepresented.

Symbolic evaluation satisfies a commutativity property.

Symbolic Evaluation

Set parameteri Jrsubstitu!en
toi into result

. Conventional Execution .

Sondpli ———— > rIrli

If a programyp is conventionally executed with the standard semarfigshd p] over a

given inputi, the result of the symbolically evaluated prograrp] instantiated byi is the

same. Clearly, symbolic evaluation can be seen as a compiler, that translates a program
into a different language. Here, we use as a target langsyagéolic expressionand
recurrencego model the semantics of a program.

The semantic domain of our symbolic evaluation is a novel representation paidm
context(Fahringer and Scholz, 1997; Fahringer and Scholz, 1999). Every statement is
associated with a program contexhat describes the variable values, assumptions regarding
and constraints between variable values and a path condition. The path condition holds for
a given input if the statement is executed. Formally, a contesdefined by a tripleq, t, p]
wheres is a statef a state condition ang a path condition.

— The states is described by a set of variable/value pdiss = e, ..., v, = €,} where
vj IS a program variable angl a symbolic expression describing the valuevpfor
1 <i = n. For all program variableg there exists exactly one pair = g in states.

— The state condition contains constraints on variable values such as those implied by
loops, variable declarations and user assertions.

— Path condition is a predicate, which is true if and only if the program statement is
reached.

Note that all components of a context—including state information—are described as sym-
bolic expressions and recurrences. An unconditional sequence of statép{értsj <r)
is symbolically evaluated bys{, to, po] €1 [S1, t1, p1] - .. & [S, tr, pr]- The initial context
[s0, to, po] represents the context that holds beférand |5, t;, pr] the context that holds
after¢,. If ¢; in the sequence.. [s, ti, pi] & [S+1, tiv1, Pis1] -.. does not contain any
side effects (implying a change of a variable value) thea s ;.

Furthermore, a context = [s, t, p] is a logical assertiot = s At A p, whereCis a
predicate over the set of program variables and the program input which are free variables.
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If for all input valuest_1 holds before executing the stateménthent is the strongest
post condition (Dijkstra, 1976) and the program variables are in a state satisfafigr
executingy; .

For further technical details we refer the reader to (Fahringer and Scholz, 1997; Fahringer
and Scholz, 1999; Blieberger and Burgstaller, 1998; Blieberger, Burgstaller, and Scholz,
1999). In the following we discuss a novel approach to evaluate arrays.

3.1. Arrays

Leta be a one-dimensional array within > 1) array elements. Consider the simple array
assignmendfil=v . The element with indekx is substituted by the value of Intuitively,

we may think of an array assignment being an array operation that is defined for an array.
The operation is applied to the array and changes its internal state. The arguments of such
an array operation are a value and an index of the new assigned array element. A sequence
of array assignments implies a chain of operations. Formally, an array is represented as an
element of ararray algebraA. The array algebra is inductively defined as follows.

1. If nis a symbolic expression then, € A.
2. Ifa e A anda, 8 are symbolic expressions thar («, 8) € A.
3. Nothing else is irA.

In the state of a context, an array variable is associated with an element of the array
algebraA. Undefined array states are denotedlhy wheren is thesizeof the array and
determines the number of array elements. An array assignmentis modellgdfoyation
The semantics of th@-function is given by

ad(a,B)=(v1,...,V8-1,Q, Vg1, ..., Upn)

where(vy, .. ., vy) represents the elements of areegndp denotes the index of the element
with a new valuex. For the following general array assignment

[scai={...,a=a,...}.t_1, p_4]
Giroalpl = a
[s={..a=a®@p)....}.t =t_1.p=p_i

[s_1,ti_1, pi_1] is the context before ands| ti, pi] the context after statemeit. The
symbolic value of variable before evaluating the stateménis denoted bg. Furthermore,
an elemena in A with at least oneb-function is ad-chain Every@-chain can be written
as.l, @E‘zl(ak, Bk). Thelength of a chairja| is the number ofb-functions in chaira.

The C-program fragmentin Figure 4 illustrates the evaluation of several array assignments.
The context of statemeidf is represented by, = [...]. Atthe beginning of the program
fragment the value of variabjeis a symbolic expression denotedhyArraya is undefined



188 BLIEBERGER, FAHRINGER, AND SCHOLZ

int a[100],x;

cg = [s0 = {z =z,a = Ligo},to = true,po = true]
£y alx]=1;
c1 = [s1 =8 (spja = Lioo ® (1,2)),t1 = to,p1 = po)

£y : alx+1l=1-x;

c2 = [s2 =6(s15a=L1go® (1, 2)® (1 —z,z+1)),t2 = t1,p2 = p1]
l3: alx]=x;
cg =[s3 =6(s25a=Lip0® (L, ) ® (1 ~z,2+1)® (z,2)),t3 = ta, p3 = pa]

£y alx+1]=1+x;
cs =[sa =6(s350=L1go®(L,z)® (1 -2,2+1)B(z,2) & (1 +z,z+1)),

t4 = t3,pa = p3}

Figure 4. C-program fragment.

(L100). For all array assignment statements the state and path conditions ardrset to
because the code fragment implies no branches.

Most program statements imply a change of only a single variable’s value. In order to
avoid large lists of variable values in state descriptions only those variables whose value
changes after evaluation of the associated statement are explicitly specified. For this reason
we introduce a functioa,

S =4(§;v1=¢6,...,u=8)

which specifies a stagewhose variable binding is equal to that of stgtexcept for variable
vi (1 <i <1). Variablev; is assigned a new valu.

Therefore, in the previous example, statés the same as statgexcept for the symbolic
value of arraya.

After the last statement arrayis symbolically described bt = 1100® (1, X) ® (1 —

X, X+1 @ X X)D(L+X, x+1). The left-mosth-function relates to the first assignment
of the example program—the right-most one to the last statement.

Note that the last two statements overwrite the values of the first two statements. There-
fore, a simplified representation afis given by L100® (X, X) ® (1 + X, X + 1).

Although the equivalence of two symbolic expressions is undecidable (Fahringer, 1998;
Haghighat and Polychronopoulos, 1996), a wide class of equivalence relations can be solved
in practice. The set of conditions among the used variables in the context significantly
improves the evaluation of equivalence relations. A pastialplification operatord is
introduced to simplify®-chains. Operatd? is defined as follows.

T L@ty i, ), if3L<i<j<m g =g
o Ln 8] = =1,
( IE:BI(O{I ﬂl)) {J-n Dz (a, B),

otherwise
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L z=pla,z) =z

z, fy=z
4 z=pla,y)=<z+1, ify=z+1
1, otherwise

Figure 5. Examples ofo.

The partial simplification operater seeks for two equad expressions in &-chain. If a

pair exists, the result &f will be the initial &-chain without theb-function, which refers to

the 8 expression with the smaller indexIf no pair exists, the operator returns the initial

chain; the chain could not be simplified. Semantically, the right-riastpression relates

to the latest assignment and overwrites the value of the previous assignment with the same
symbolic index

The partial simplification operatar reduces only one redundaat-function. In the
previous examplé must be applied twice in order to simplify tkiechain. Moreover, each
@-function in the chain is a potentially redundant one. Therefore, the chain is potentially
simplified in less tharja| applications of6. A partially complete simplification is an
iterative application of the partial simplification operator and it is writtet*ga). If 6*(a)
is applied taa, further applying ob will not simplify a anymore:0(6*(a)) = 6*(a).

In order to access elements of an array we need to model a symbolic access function.
Operator p in a symbolic expressions (described by @b-chain) reads an element with
indexi of an arraya. If indexi can be found in theé-chain, p yields the corresponding
symbolic expression otherwigds the undefined valug. Inthe latter case itis not possible
to determine whether the array element with indeas written. Let be an element of
anda = 1, @,mzl(oq, B1). The operatop is defined as

m . .
. a, fAl=max{l | 1<l <mAg =i}
P (J‘“ Ie_?(“"ﬂ')’ ') - {L, otherwise

wherei is the symbolic indexof the array element to be found. In general determining
whether the symbolic indek matches with ab-function is undecidable. In practice a
wide class of symbolic relations can be solved by our techniques for comparing symbolic
expressions (Fahringer, 1998). If our symbolic evaluation framework cannot prove that
the result ofp is B or L thenp is not resolvable and remains unchanged in symbolic
expressiore.

We present four examples in Figure 5, which are based on the vatuatdfie end of the
program fragment in Figure 4. For every example we insert one of the following statements
at the end of the code fragment shown in Figure 4. Fox€g[x]; (2) x=a[x+1];
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(3)x=a[x-1]; and (4)x=aly]; wherey is a new variable with the symbolic value pf
The figure shows the symbolic valuextfter the inserted statement. B

Note that in the first equation the element with indeis uniquely determined. The
second equation is resolved as well. In the third example the irdeg does not exist in
the®-chain. Therefore, the access returns the undefined syibol the last equation we
do not have enough information to determine a unique value for array element with index
i. Here, we distinguish between several cases to cover all possibilities.

3.2. Array Operations Inside of Loops

Modelling loops implies a problem witfecurrence variables We will use functions to
model recurrences as followstk + 1) = i (k) + 1 wherei (k + 1) is the value of a scalar
variablei at the end of iteratiok + 1.

Our symbolic evaluation framework detects recurrence variables, determines the recur-
rence system and finally tries to find closed forms for recurrence variables at the loop exit
by solving the recurrence system. Tieeurrence systeris given by theboundary condi-
tions(initial values for recurrence variables in the loop preheader)git@rence relations
(implied by the assignments to the recurrence variables in the loop body) aedtinence
condition(loop or exit condition).

We have implemented a recurrence solver (Scheibl, Celic, and Fahringer, 1996) written on
top of Mathematica. The recurrence solver tries to determine closed forms for recurrence
variables based on their recurrence system which is directly obtained from the program
context. The implementation of our recurrence solver is largely based on methods described
in (Gerlek, Stoltz, and Wolfe, 1995; Lueker, 1980) and improved by our own techniques
(Fahringer and Scholz, 1997; Fahringer and Scholz, 1999).

Similar to scalar variables the array manipulation inside of loops are described by re-
currences. A recurrence system oyeconsists of a boundary condition and a recurrence
relation

a0)=hb,be A
ak+1) = ak) P k), fK)
1=1

whereq, (k) and g, (k) are symbolic expressions akds the recurrence index witk > 0.
Clearly, every instance of the recurrence is an elemefit ¥ithout changing the semantics
of an array recurrencé;* can be applied to simplify the recurrence relation.

Operatorp needs to be extended for array recurrences, such that arrays written inside of
loops can be accessed, eoga(z),i). The symbolic expressionis the number of loop
iterations determined by the loop exit condition arisl the index of the accessed element.
Furthermore, the recurrence indexs bounded to O< k < z. To determine a possible
@-function, where the accessed element is writteppgntial index set Xi) of thel-th
@-function is computed.

Vi<l<m X(i)={k|pak =ir0<k=1z
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int n,i;
char a[100],s=0;

co=[sp={n=n,i=1,a=gq,s =0}, = true,pg = true]
£y : for(i=0;i<n-1;i++){
c1 = [s1 =8 (s0;1 =i(k),a =a(k),s =s(k)),t1 = (i(0) =0Aa(0) =a A s(0) =0),

p1 =i(k) <n-—1)

ly: s=s+alil;

co = [s2 =8 (8158 = s(k) + p(a(k),i(k))), t2 =t1,p2 = p1]
l3: alil=al[il+al[i+1];

c3 = [s3 =6 (s2;a = a(k) © (p(a(k),i(k)) + pla(k),i(k) + 1),i(k))), t3 = t2,p3 = p2]
ly: }

cq = [s4 = 6(sp;% = max(0,n — 1), ¢ = a(maz(0,n - 1))),
ta = (a(0) =aAa(k+1) =a(k) @ (plalk), k) +pla(k), k +1),k) A
3(0) =0 A s(k +1) = s(k) + p(a(k), k),

pgy = true]

Figure 6. C-program fragment.

X, (i) contains all possibleg (k), 0 < k < z equal to the index. If an index set has
more than one element, the array elemdatwritten in different loop iterations by tHeth
@-function. Only the last iteration that writes array elemieistof interest. Consequently,
we choose the element with the greatest index. Jipremum i) of an index selX| (i)

is the greatest index such that

Vi<l <m: x(@)=maxX(i)
Finally, we define operatqgr as follows.

(X (1)), if3L<I <m x@)=max<<mx(@)

p(@@),i) = {p(a(O), i), otherwise

The maximum of the supremum indicegi) determines the symbolic value(x (i)). If
no supremum index existg,returns the access to the value before the loop.

The example code of the program in Figure 6 shows how to symbolically evaluate an array
access. The recurrenceid@k) is resolved in state; of £3. Due to the missing information
abouta the recurrence of arrayis not resolvable but our symbolic evaluation still models
the dynamic behavior of the example code.
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sethi %hi(n),%o03

1d [%o3+4lo(n)],%g5; read &n
mov 0,%o1

add %g5,-1,%g5

cmp %ol,%gh

bge .LL3

sethi %hi(s),%o02

sethi %hi(a),%g2

or %g2,%lo(a),%g2

add Y%g2,1,%04

mov %g2,%00

.LL5:
ldub [%o02+%lo(s)],%g2; read &s
ldub [%00],%g3; read &ali]
add Yg2,%g3.%g2
stb %g2, [ho2+4lo(s)]; write &s
1dub [%00],%g2; read &ali]
1ldub [%olt+%o4],%g3; read &ali+1]
add %g2,%g3,%g2
stb %g2, [%o01; write &[i]
cmp %ol,%gb
bl .LLS

add %00,1,%00
.LL3:
retl

Figure 7. SPARC code of example in Figure 6.

4. Symbolic Tracefile

Tracing is the method of generating a sequence of instruction and data references encoun-
tered during program execution. The trace data is commonly stored in a tracefile and
analyzed at a later point in time. For tracing, instrumentation is needed to insert code at
those points in a program, where memory addresses are referenced. The tracefile is cre-
ated as a side-effect of execution. Tracing requires a careful analysis of the program to
ensure that the instrumentation correctly reflects the data or code references of a program.
Moreover, the instrumentation can be done at the source-code level or machine code level.
For our framework we need a source-code level instrumentation. In the past a variety of
different cache profilers were introduced, e.g. MTOOL (Goldberg and Hennessy, 1991),
PFC-Sim (Callahan, Kennedy, and Portfield, 1990), CPROF (Lebeck and Wood, 1994).

The novelty of our approach is to compute the trace data symbolically at compile-time
without executing the program. gymbolic tracefilés a constructive description for all pos-
sible memory references in chronological order. It is represented as symbolic expressions
and recurrences.

In the following we discuss the instrumentation of the program in Figure 6. The SPARC
assembler code is listed in Figure 7. The first part of the code is a loop preparation phase. In
this portion of code the contents of variablés loaded into a work register. Additionally,
the address o4 is built up in registeog2 Inside the loop, the storage locationrofs
not referenced anymore and there are four read accesafs ,afi] ,ali+1] andtwo
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int n,i;
char a[100],s=0;

co=[sp={n=ni=L,0=g,0=01t=L}to=rtrue pg = true]
¢1: rref(&n,d);
1 =[s1 =6(s0,t=L & M&n,4)).t1 = to,p1 = po)
£ for(i=0;i<n-1;i++){
co = [s2 = 8(s1;1 = i(k), a = a(k), t = t(k)),
t2 = (i(0) =0Aa(0) =aAt(0) =L@ A&n,4)),p2=ik)<n-1]
f3: rref(¥%s,1); rref(&alil,1); wref(ks,1);
ca =[s3 =6 (s2,t =t{k) ® A(&s, 1) ® M&alil,1) ® o(&s, 1)) ,t3 = to,p3 = pa]
fy:  s=s+alil;
s = [oa =6 (s3i0 = s(k) + p(a(k), (k) ta = 13, P4 = Pa
Os: rref(&alil,1); r ref(&ali+1],1); wref(&kalil,1);
5 = [s5 =6 (sa,t = (k) ® A(&3,1) @ N(&alil, 1) © 0 (&3, 1)0
A&ali], 1) @ A(&alt +1),1) © o (&ali), 1)) ,t5 = tg,p5 = p4]
fg: alil=alil+ali+1];
cg = [sg =3 (3510 = a(k) ® (pla(k),i(k)) + plalk),i(k) + 1),i(k))) . te = t5,p6 = P5
{7}
o7 = [a7 = 8(s0;i = max(0, 2 - 1)),a = a(max(0, 2 - 1)),
s = s(max(0,n — 1)), t = t(max(0, 1 — 1)),
t7 =(a(0) =aAalk+1) =a(k)© (plalk), k) + plalk), k + 1), k) A
3(0) =0 A sk + 1) = s(k) + pla(k), k)A
0) = L © A(&n,4) Atlk + 1) = t(k) © A(&s, 1) ® A(&alil, 1) @ o (&3, 1)
OM&alil, 1) ® A(&ali + 11, 1) ® o (&ali], 1)),

pr = true]

Figure 8. C-program fragment with symbolic tracefile.

write accesses, afi] . Furthermore, the variabie is held in a register. Based on this
information we can instrument the example program. In Figure 8 the instrumented program
is shown where function_ref( r, nb) denotes a read reference of addresgh the length
of nbbytes. For a write reference the functiemref()  is used.

A symbolic tracefilés created by using a chain algebra. The references are stored as a
chain. A symbolic trace filé € T is inductively defined as follows.

1. L eT.

2. Ift € T andr andnb are symbolic expressions thew o (r, nb) € T.
3. Ift € T andr andnb are symbolic expressions them A(r, nb) € T.
4. Nothing else is irT.

Semantically, function is awrite reference to the memory with symbolic addreskereby
the number of referenced bytes is denotednlly We have similar semantics for read
references., wherer is the address antb is the number of referenced bytes.

For instance, a 32-bit bus between the cache and CPU can only transfet geferences
with 4 bytes. Therefore, double data item (comprises 8 bytes)r, 8) must be loaded in
two consecutive steps byr, 4) & A(r + 4, 4). For a word reference we do not need the
number of referenced bytes anymore because it is constant. In the example above itis legal
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to rewriter(r, 8) asA(r) ® A(r + 4). This notation is extensively used in the examples of
Section 5.
For loops we need recurrences

t(0) =t teT
tk+1) = Pk
=1

wherey, (k) is a read or write reference (, (k), nb) or A(r, (k), nb)).

Symbolic evaluation is used to automatically generate the symbolic tracefile of a C-
program. Instead of symbolically evaluating instrumentation calls we asseciafe and
r ref with specific semantics. A pseudo variable T is added to the program. A read
referencer ref( r, nb) is translated td @ A(r, nb), wheret is the state of the pseudo
variablet before evaluating the instrumentation. The same is done for write references
except that is replaced by .

Let us consider the example in Figure 8. Before entering the lageds to log reference
r ref(&n,4) . Thereforet is equal tol & A(&n, 4) where & denotes the address of
variablen. Inside the loop a recurrence is used to descriggmbolically. The boundary
conditiont(0) is equal tal @ A(&n, 4) and reflects the state before the loop. The recurrence
relation is given by

tk+1) = t(k) ®r(@&s, 1)@ r&ak], 1) ®o(&s, 1)
@ A(&a[k], 1) ® A(&a[k + 1], 1) @ o (&a[k], 1).

Note that an alternative notation ofegk] is a + k wherea is the start address of array
Finally, the last value ok in the recurrencé(k) is max0, n — 1) which is determined by
the loop condition.

For the symbolic tracefile only small portions of the final program context are needed.
Therefore, we extract the necessary parts from the final context to describe the symbolic
tracefile. Here, the state condition and symbolic valaee of relevance. For example in
Figure 8 the symbolic tracefile is given by

t = t(max0,n—-1)),

t0) = L@A@&NHA
tk+1) = (k) ®Ar&s 1) dr&alk], ) ®o(&s, 1) ®r&alk], 1)
@ r&a[k+ 1], 1) @ o(&a[k], 1) (1)

The length of the symbolic tracefile corresponds to the number of read/write references.
If either the number of reads or the number of writes are of interest we selectively count
elementsi ando). Forinstance the number of read referencé$is= 1+4 max0, n—1),

the number of write referenceg|t, = 2 max0, n— 1), and the overall number of memory
references is given bif| = 1+ 6 max0, n — 1).
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5. Symbolic Evaluation of Caches

A symbolic tracefile of a program describes all memory references (issued by the CPU) in
chronological order. Based on the symbolic tracefile we can derive an analytical function
over the input, which computes the number of hits. The symbolic tracefile contains all
information to obtain the hit function. Moreover, the symbolic cache analysis is decoupled
from the original program. Thus, our approach can be used to tailor the cache organization
due to the needs of a given application. In the following we introduce two formalisms to
compute a hit function for direct mapped and set associative data caches. To symbolically
simulate the cache hardware, hit sets are introduced. Hit sets symbolically describe which
addresses are held in the cache and keep track of the number of hits.

5.1. Direct Mapped Caches

Direct mapped caches are the easiest cache organization to analyze. For each item of data
there is exactly one location in a direct mapped cache where it can be péambthe cache
containsnscache lines. The size of a cache links, determines the amount of data that is
moved between main memory and the cache. In the following we introduce the symbolic
cache evaluation of direct mapped caches with write through and no-write-allocate policy.
Compare Section 2.

A new cache evaluation operatap is defined to derive &it setfor a given tracefilg,
where a hitsetisapail = (C, h). The first component dfl is asymbolic cachewhich is
element ofA—the second component represents the number of cache hits and is a symbolic
expression.

Symbolic cach€ of a hit setH hasnselements and each element corresponds to a cache
line of the cache. More formally, the algebraic operatiomp (r, 8) loads the memory
block with start address into the cache wherebg is the index of the cache line. Note
that when the CPU issues addresshe start address of the corresponding memory
block must be selected to describe the reference. Moreowactze placement function
x maps a reference to an index of cagheuch that the load operation of referemcis
written asC & (T, x (r)). In the following we assume that functignis a modulo operation
x (r) =r mod(nsx cls).

5.1.1. Definition of the Cache Evaluation Operator

Let Hi ® t = H¢, whereH; = (Lns, 0) denotes the initial hit seHs = (Cs, hs) the final
hit set, and the tracefile. The final hit séd; is the analytical description of the number
of cache hits and the final state of the cache. In the following we describe the operator
inductively.

First, for an empty tracefilg. the hit set is

Hol=H.
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Second, if a write reference is the first reference in the tracefile, it does not change the hit
set at all and is to be removed.

H@(L@a(r)ém>=H®(Lém) (@)
=1 =1

wherey, is either a read referenégr,) or write reference (r;). Third, for read references
a new hit set must be computed

H@(J_eak(r)@m>=(C/,h/)®(J_@u|> )
1=1

1=1

whereh’ = h+d and

_ 1 i pCox(r) =T
d= {O, otherwise 4)
and
,_JCe (@ x(r), ifd=0
c= {C, otherwise ()

Incrementd is 1 if reference is in the cache. Otherwisé, is zero and the reference
must be loaded. For loading data item with addreisgo the cache, C’ is assigned the new
symbolic valueC & (T, x (r)).

In order to symbolically describe the conditional behavior of caches (data item is in the
cache or not), we introducejafunction (see (Fahringer and Scholz, 1997)).

Y€ xi=en....xk=86; X1 = f1,....x = f) (6)

wherey(c; X1 =e€q,...,Xk = &; X1 = f1,..., X = fx) is semantically equivalent to
CAXi =€ A AXxk=6)V(—CAXL = fiA---AXc = fy). cis a conditional
expression anehc the negation ot. Moreover,x; (1 < i < k) represent variable values
ande, f; are symbolic expressions.

Based on the definition of (6) we can aggregate formulas given in (3),(4), and (5).
Depending on conditiop (C, x (r)) = F either the number of cache hhsis incremented
by one or the symbolic cache is assigned a new symbolic @&lee C & (T, x (r)).

H@(J_eak(r)@u|>:(C/,h/)Q(J_@m), )
=1

1=1
y(p(C,x(r)=F;C'=C,h=h+1C' =Ca&(, x(r)),h" =h)
Similarto tracefiles, hitsets are written as a pair. The firstcomponent of the pair symbolically

describes the hit set. The second component contains constraints on variable values such
as conditionals and recurrences stemming from loops.
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Furthermore, for recursively-defined tracefiles we need to generalize hit sets to hit set
recurrences. Ltk + 1) = t(k) ", (k) be the tracefile recurrence relation arndhe
initial hit set, the hit set recurrence is expressed by

H@O) = H ot @®

Hk+1) = H(k)®<l@m(k)>
1=1

5.1.2. Example

For the sake of demonstration, we study our example of Figure 6 with a cache size of 4
cache lines and each cache line comprises one byte. The cache placement fuggtien
r mod 4. It maps the memory addresses to slots of the cache. Moreover, all references are
already transformed to word references and refere@og&s, and&a0] are aligned to
the first cache line. Note that in our example a word reference can only transfer one byte
from the CPU to the cache and vice versa.

The initial hit set isH; = (14, 0). Based on the symbolic tracefile given in (1) the hit
set recurrence is to be derived. First of all we apply operatdo the hit set recurrence
according to (8).

Hi = H(2,
H(0) H o L®A&N & A&N+1) ®A&N+2) @ A(&N+ 3))
Hk+1) = HK © (L& Ar&S) ®A(&a[k]) ® o (&S)
@ r(&alk]) @ A&alk + 1]) @ o (&a[k]))

The final hit set is given byi; = H (z) wherez = max0, n — 1) is the highest indek of
the recurrence and is determined by the loop condition. In the following we evaluate the
boundary condition of the hit set recurrence. We successively apply the evaluation rule (7)
of operator® to the initial hit set(_L4, 0).

HO) = (14,000 (L®AM&N) BA&N+1) B A&N+2) D A(&N+ 3))
(La® (&N, 0,00 (LOAEN+D D A&N+2) D A(&N+ 3))
(Lsa®(&n,0)®(&N+1,1),0 0 (LS A&N+2) B A(&N+3I))
(Ls® &N, 0B @&N+11)d &N+22),0 0 (L A&N+3)
(Ls® &N 0B &N+1,1D) P &N+2,2)H (&N+3,3),00 0 L
(La® (&N, 00 @ &N+1,1) D (&N+2,2) B (&N+3,3),0)

Note that condition (C, x (r)) = T of rule (7) is false for all read references in the boundary
condition. After evaluating the boundary condition there is still no cache hit and the cache
is fully loaded with the contents of variahte In the next step we analyze the loop iteration.
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We continue to apply operat@y to the recurrence relation.

Hk+1)
= (Ci. hy) © (L @ A(&alK]) ® 0 (&S) & A(&a[K]) ® A(&a[k + 1]) @ o (&a[K])

Ay (p(Ck, 0) = &s; Cy = Cy, hy =he 4+ 1, G = G & (&s,0), hy = hy)

whereCy andhy denote symbolic cache and number of hits in ktieiteration of the hit

set recurrence. The global variatdeis mapped to the first cache line. If the first slot

of the cache contains the addresssahen a cache hit occurs and the number of hits is
incremented, otherwise the new element is loaded and the number of hits remains the same.
We further apply operatap and obtain

H(k+1) = (C/,h) © L & (&S) ® A(&alk]) ® r(&a[k + 1]) ® o (&a[K]))
Ay (p(Ck, 0) = &s; Cy = Cy, hy = he + 1, C; = Cy & (&S, 0), hy = hy)
Ay (p(Ci, kmod 4 = k; C = Cy, hy = hi +1;
C/ =C, @ (k, kmod 4, h] = h}).

In the next step we eliminate the write referemu@& s) according to rule (2) and further
apply operato® to A(&a[K]).

Hk+1 = (C'.h)o L& r&ak+ 1) & o(&alk]))
Ay (p(Ck, 0) = &s; C = Cy, hj = h + L; Ci = Cy @ (&S, 0), hj = hy)
Ay(p(Cy, kmod 4 =k; C/ = C, hy = h +1;
C/ =C. @ (k, kmod 4, h} = h})
Ay (p(C{, kmod 4 =k; Cf = C, hy = hi + 1;
C/ =C/ & (k, kmod 4, h! = hy)
= (C,hy+1) o (L @r&ak+1]) & o(&alk]))
Ay(p(Ck, 0) = &s; C; = Cy, hy =g+ 1, C = C @ (&s,0), hy = hy)
Ay(p(Cy,kmod 4 =k; C/ = C, hy =h; +1;
C/ =C. & (k. kmod 4, h{ = hy)

Here, we can simplify the -function. The contents of symbolic cac@¢ atk mod 4 isk
because the referenceafk] is loaded from the step before the previous one. Note that the
write referencer (&s) does not destroy the referencaj&]. In the last step the references
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A&al[k + 1]) ando (&a[K]) are evaluated. We continue with

Hk+ 1)
= (C/, hY) Ay (p(Ck, 0)=8&S; Ci = Cy, hiy=hy + 1; C{ =Cyx®(&s, 0), hy=hy)

Ay (p(Ci, kmod 4 =k; C = Cy, hy =h + 1;
Ci = Ci @ (k, k mod 4, hy = hj)
Ay(p(C.k+1mod4 =k+ 1 C' =Cp h =h+2;
G =Ci® (k+1k+1mod4, h'=hi+1)
= (C/®(K+1k+1mod4,h!+1)
Ay (p(Cy, 0) = &s; Cy = Ci, hi = he + 13
Ci = Ck @ (&s,0), hj = hy)
Ay (p(Cy, kmod 4 =k; C = C, hy =h + 1;
C/ =C, @ (k, k mod 4, h/ = h}).

The third y-function can be reduced since elem&nt 1 has never been written before
because conditiop(C/, k + 1 mod 4 = k + 1 is false. The hit set recurrence is still
conditional. Further investigations are necessary to derive a closed form for the number of
hits. We know that the number of cache lines is four. We consider all four modulo classes
of indexk which for the given example results in an unconditional recurrence.

— kmod 4 = 0: The conditionp(Cy, 0) = &s of the firsty-function is false since
p(Cx, 0) can be rewritten ak, if k > 1 or L otherwise. The condition of second
y-functionp(Cy, k mod 0 = k is false as well because the cache line has been loaded
with the reference &before. For the cademod 4= 0 the hit set recurrence is reduced
to an unconditional recurrence.

HKk+1)=Ci®&s,0d Kk 0dk+1,1),h+1) (9)

— kmod 4= 1: In the firsty-function the conditiorp(Cy, 0) = &s can never be true
because in the previous step of the recurrence the cache line 1 has been loaded with
the contents of &[k — 1]. Furthermore, the elementafk] has been fetched in the
previous step and, therefore, the condition of the segoffuhction evaluates to true
and the hit set recurrence can be written as

Hk+1=(Ck®&s 00 k+1,1),h+2) (20)
— kmod 4= 2,k mod 4= 3: For both cases the conditions of thdunctions are true.
The load reference &does not interfere with & k] and &a[k + 1]. The recurrence is

given by

Hk+1)=(Ckd(&s, 0 (k+1,1),he+3) (11)
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Now, we can extract the number of hits from hit sets (9), (10), (11). The modulo classes
can be rewritten such thitis replaced by 4and the modulo class.

ho = 0
hg = hgi_1+1
hgt1 = hg +2

Nsit2 = hgiy1+3
hsirs = hgp2+3

The boundary conditions stem from the number of hit$i@D). The recurrence is linear
and after resolving it, we obtain

9 if 3i: z=4i,
9 +1 ifdi: z=4i +1,

hy= {0 TL A=A (12)
9 +3 ifdi: z=4i + 2,

9i + 6 otherwise.

The indexz of the final hit setH; = H(2) is determined by = max0,n — 1). The
analytical cache hit functioh,, given by (12), can be approximated %ynax(o, n-1 =
2.25max0,n —1).

In the example above the conditional recurrence collapsed to an unconditional one. In
general, we can obtain closed forms only for specific-although very important—classes
of conditional recurrences. If recurrences cannot be resolved, we employ approximation
techniques as described in Fahringer (1998a).

5.2. Set Associative and Fully Associative Caches

In this section we investigate-way set associative write through data caches with write-
allocate policy and least recently used replacement (LRU) strategy. The organization of
set-associative is more complex than direct mapped data caches due to placing a memory
block ton possible locations in a slot (compare Section 2).

Similar to direct mapped caches we define a cache evaluation operavaderive a hit
set for a given tracefile For set associative caches a hit set is a tiple- (C, h, t™®)
whereC is a symbolic cache) the number of hits, and™® is a symbolic counter that is
incremented for every read or write reference. Note that the symbolic counter is needed to
keep track of the least recently used reference of a slot. Figure 9 illustrates the symbolic
representation of for set associative cacheS.is an array ofisslots. Each slot, denoted
asS(1) where 0< ¢ < ns— 1, can holdh cache lines. ArrafC and slotsS(:) are elements
of array algebra\.

More formally, algebraic operatioB & ((r, ), 8) loads the memory block with start
address into setSwherebyg is the index(0 < 8 < n) andt the current symbolic value
of t™®  Reading value from Sis denoted byp, (S, 8) while reading the time stamp is
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n-1 n-1 n-1 n-1
©o o o
2 2 2 2
1 1 1 1
0 0 0 0
S(0) S(1) S(2) S(ns-1)

Figure 9. An n-way set associative cache.

written p, (S, ). Awhole setisloaded into cacleviaC & (S, ¢). Note that when the CPU
issues address the start addregsof the corresponding memory block must be selected
to describe the reference. Similar to direct mapped caches, a cache placement function
maps a memory reference to s®such that the load operation of referemds written as

Co (p(C, x(r) & ((r, 7), v(r))) wherev(r) is a function determining the index of sIst
according to the LRU strategy and is defined by

) = min,(t | p(S, 1) = L), if there exists a such thato(S, ) = L
T ming (¢ | p:(S, 1)),  otherwise.

Note that the first case determines if there is a spare location i®slbso, the first spare
location is determined by. The second case computes the least recently used cache line
of slot S.

5.2.1. Definition of the Cache Evaluation Operator

Let Hi ® t = H¢, whereH; = (Lns, 0, 0) denotes the initial hit setl; = (Cs, hs, 74)
the final hit set, and the tracefile. The final hit séi¢ is the analytical description of the
number of cache hits and the final state of the cache. In the following we describe the
operator® inductively.

First, for an empty tracefile_ the hit set is

Hol=H.

Second, if a read or write operatipi(r) is the first memory reference in the tracefile, a
new hit set is deduced as follows

Ho (L ® u(r)@w) =(C, N, ™+ 0o (L m) (13)
|

1=1 =1
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whereh’ = h + d. The symbolic countet™® is incremented by one. Furthermore, the
slot of reference is determined bys = p (C, x(r)) and incrementl is given by

_ L Ve (pCox()) D =T
d= {O, othelrwise. 4

If there exists an element in sI& which is equal t@", a cache hit occurs and increment
d = 1 and reference must be updated with a new time stamp.

C'=Ca (S, xm) (15)
where
S =S (T, "), 7). (16)

Functionr (r) looks up the index, where referencis stored in slo§; r (r) can be described
by a recurrence. Ifi = 0, a cache miss occurs and the reference is loaded into the cache

C'=Ca (S, xMn) 17
where
S =S (T, "), v(r)). (18)

We can aggregate formulas (13)—(18) withfunctions. Depending on condition
\/J_2=lpr (p(C, x(r)), j) =T anew elementis updated with a new time stamp or loaded into
the cache.

Ho (L@u(r)@m> =(C, N, ™+ 0o (L m) ,
=1 1=1
C'=C & (S, 1) AS=p(CxO) Ay (Vi (p(C. x(O), ) =T;
h/ = h + 1, S/ == S@ ((r_a Tmax)s ﬂ(r)) 5 h/ = hv S = S@ ((r9 ‘Cmax)v V(r)) 9
Y@ p(S.0 = Liv() =min | p(S,0 = i v() =minG | pe(S0)))  (19)

Note thaty functions are nested in formula (19). A nesteds recursively expanded
(compare (6)) such that the expanded boolean expression is added to the corresponding
true or false term of the higher-levgtfunction. Furthermore, for recursively-described
tracefiles we need to generalize hit sets to hit set recurrences (compare (8)).

5.2.2. Example

We symbolically evaluate the example of Figure 6 with a 2-way set associative cache and
two slots and a cache line size of one byte. For this cache organization a word reference
can transfer one byte from the CPU to the cache and vice versa. Thus, the cache size is
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the same as in Section 5.1, only the cache organization has changed. The cache placement
function x (r) isr mod 2. We assume that the references of the symbolic tracefile are
already transformed to word references and refere@oe&s, and&a[0] are aligned to

the first slot.

The initial hit set isH; = (L,,0,0). Based on the tracefile given in (1) the hit set
recurrence is to be derived. Similar to example in Section 5.1 we apply operatothe
hit set recurrence according to (8).
@ (L0 ((&Nn+1,1),0 & ((&n+3,3),1)),0,4).
For all read references in the boundary no cache hit occurred. The cache is loaded with the

contents of variabla and the number of cache hits is zero. In the next step we evaluate the
recurrence relation. We continue to apply operaiaccording to rule (19).

Hik(éﬁ,l) o &+ DO (Ldr(&alk]) do(&s)dr(&alk) @r(&alk + 1)) do (&a[k])
ACr=Cy® (S, 00 AS=p(Ck, 0)
Ay (VEamr (0(Ci, 01, 1) =8S; hie=hit1, § =S (&S, 1), 7,(0);
k=hk, §=S®(&s, w), % (0)),
Y (@ p(Se =1 w(0)= rqin(tlp(&, v=21);

V(0= min(t| pe (S, ) (20)

whereCy, hy, andri denote symbolic cache, number of hits and time stamp counter of the
kth iteration of the hit set recurrence. In order to keep the description of hit set recurrences
as small as possible we rewrite the oytefunction of (20) as?. We further apply operator
©® and obtain
Hk+1) = (C, h, w+2) O (L@o(&s)@r(&alk]))@r(&alk + 1)) o (&a[K])
AP AC!=Ci® (S, kmod2 A S = p(Cy,kmod 2
Ay (Vizae (Gl kmod 2, ) =k;
hi=h+1 =5 (K x+D, rK);
hi=h. S =5 (k w+D. %K),
y(3: p(S. 0 = Liw(0 = min( | p(S 0 = L);

V() = min( | pe(S. 0)))-
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In the next step we evaluate write referend& s) and get

Hk+1 = (C/,h, 5+ 3 © (L& r&alk]) & r(&alk + 1]) & o (&a[K]))
AP AP'AC! =Cl®(S/,0 A S =p(C{0)

A V(ijzlpr (p(CL,0), j) =&s;

S =90 (@&s w+2),70);
S =S & ((&s, w+2), %/ (0),
vy (3 p(§.0 = Liw'(© = min( | p(§.0) = 1)
W0 = mine | pe(/, )
Here, we can simplify the-function because variabkhas been read within the current
iteration of the loop without being overwritten in the cache, the condition of the outer

y-function evaluates to true. Hence, we obtain
Hk+1) = (C/, h,+3 O (LdAr(&ak]) ®r(&alk + 1]) & o (&a[k]))
AP AP AC! =C/® (.0 A S/ =p(C[,0)
NS =5 @ (&s w+2),7,(0)
Similar to the previous step we can reduce bptfunctions.
Hk+D = (C".h". 5+ 4) © (L@ r@&alk+ 1)) @ o (&alK])
AP AP"AP"ACH =C! @ (Si'”), k mod 2)
AS =pCl kmod2 AN =h! +1
AV =5 e (ka+3), 7" ()
Read reference &k + 1] produces a cache miss. Thus, the next step can be simplified too.
Hk+1) = (c,i”, he, 7 + 5) O (L@ o&alk]) A P' AP A P” A POV
ACY =c e (Sﬁ”), k mod 2) ASY =p (Cﬁ'”), k mod 2)
AR =h, 80 = 8" @ (knc+ 91" ().
y(EIL: o (Sﬂ'v), L) =1Lk = mlin (L | p (Siw), l) = J_) ;
= mn(s15.(7.1)
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In the last step the operator is applied to write references&it is a cache hit and we can
eliminate they functions.

H(k—|— 1) = (Clivl)’ h|(<v)7 T + 6) o (J_) AP AP' AP A P(Iv) A P(v)
AC =@ (S kmod 2) A §” = p (. k mod 2)
k= %k ) =p|\L, KMo

A =8"® ((k, ™+ 95), ”lﬁvl)(k)>

Arguments similar to those in Section 5.1 show that the conditions of thejptiterction in
P’andP” are true fok > 1 and false fok = 0. Therefore, we can derive an unconditional
recurrence relation for the number of cache Hits-(1).

ho = 0O,
h; = 1,
hyr = he+3.
A closed form solution is given byk(> 1)
ho = 0,
he = 3k—2

The indexz of the final hit setHs = H () is determined by = max0, n — 1). Thus, the
analytical cache hit function is

0, forn <1,

27 13n—5, otherwise

which shows that for our example the set associative cache performs better than the direct
mapped cache of the same size.

6. Experimental Results

In order to assess the effectiveness of our cache hit prediction we have chosen a set of C-
programs as a benchmark. We have adopted the symbolic evaluation framework introduced
in Fahringer and Scholz (1997) and Fahringer and Scholz (1999) for the programming
language C and the cache evaluation. The instrumentation was done by hand although
an existing tool such as CPROF (Lebeck and Wood, 1994) could have instrumented the
benchmark suite. Our symbolic evaluation framework computed the symbolic tracefiles
and symbolically evaluated data caches. In order to compare predictions against real values
we have measured the cache hits for a given cache and problem size. For measuring
the empirical data we used the ACS cache simulator (Hunt, 1997). The programs of
the benchmark suite were amended by the instrumentation routines of a provided library
bin2pdt . The generated tracefiles were stored as PDATS (Johnson and Ha, 1994) files
and later read by the ACS cache simulator.
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Table la. Experiments of the C-pro- Table Ib.D-Cache256/4.
gram in Figure 10.
ProblemSize n M-Miss  M-Hit  P-Hit
10 4 15 15
n R-Ref. W-Ref. T-Ref. 100 2 173 173
10 19 9 28 1000 251 1748 1748
100 199 99 298 10000 2501 17498 17498

1000 1999 999 2998
10000 19999 9999 29998

Table Ic. D-Cachel6K/8. Table Id. D-Cache64K/16.
n M-Miss  M-Hit  P-Hit n M-Miss  M-Hit  P-Hit
10 3 16 16 10 2 17 17
100 14 185 185 100 8 181 181
1000 126 1873 1873 1000 64 1935 1935
10000 1251 18748 18748 10000 626 19373 19373

The first program of the benchmark suite is example program in Figure 10. In con-
trast to Section 5 we have analyzed a direct mapped data cache with a cache line size
greater than one byte. Furthermore, the first byte of aaréy aligned to the first byte
of an arbitrary cache line and the cache has more than one cache line. Our frame-
work computes a cache hit function, where the number of cache hits is determined by
2n—-1) — [%1 andcls is the cache line size of 4, 8 and 16 bytes. Intuitively, we get
2(n — 1) potential cache hits. For every new cache line a miss is implied. Therefore,
we have to subtract the number of touched cache Ih%ﬁ from the number of read
references.

Table la describes problem sizegn—first column), number of readr¢Ref—second
column) and write\W-Ref—third column) references, and sum of read and write references
(T-Ref—fourth column). Tables Ib—Id compare measured with predicted cache hits for
various data cache configurations (capacity/cache line size). For instance, D-Cache 256/4
corresponds to a cache with 256 bytes and a cache line size of 4 bytes. Every table comprises
four columns. M-Miss tabulates the measured cache misdéslits the measured cache
hits, andP-Hits the predicted cache hits. In accordance with our accurate symbolic cache
analysis we observe that the predicted hits are identical with the associated measurements
for all cache configurations considered.

The same benchmark program was taken to derive the analytical cache hit function for
set associative data caches. Note that the result is the same as for direct mapped caches.
Even the empirical study with two way data caches of the same capacity delivered the same
measurements given in Tables Ib—Id.

The second programcnt of the benchmark suite counts the number of negative elements
of ann x m-matrix. The counter is held in a register and does not interfere with the memory
references of the matrix. Again, we analyzed the program with three different direct mapped
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int n; char a[100];

void sum()
{ int i;

for(i=0;i<n-1;i++)
alil=alil+ali+1];

Figure 10.Benchmark program.

Table Ila. Experiment ofncnt

Problem Size

nxm R-Ref.  W-Ref. T-Ref.

10x10 100 0 100

50x50 2500 0 2500
100x100 10000 0 10000
150x150 22500 0 22500
100x200 200000 0 200000

Table IIb. D-Cache 64K/16

nxm  M-Miss M-Hit P-Hit

10x10 50 50 50

50%x50 1250 1250 1250
100x100 5000 5000 5000
150x150 11250 11250 11250
100x200 100000 100000 100000

cache configurations 256/4, 16K/8 and 64K/16. For the data cache sizes 256/4 and 16K/8
the cache hit function is zero. This is due to the usaggoable elements of the matrix.

Only for the 64K/16 configuration the program can benefit from a data cache and the cache
hits are given b){%} In Tables lla and IllIb the analytical function is compared to the
measured results. Similar to the first benchmark the cache hit function remains the same
for set associative data caches with the same capacity and the measurements are identical
to Table Iid.

The third programacobi _relaxation in Figure 11 calculates the Jacobi relaxation
ofann x nfloat matrix. In a doubly nested loop the value of the resulting matix is
computed. Both loop variablésandj are held in registers. Therefore, for direct mapped
data caches interference can only occur between the read references of amays We
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Table llla. Experiment of Jacobi relax- Table llIb. D-Cache 256/4
ation.
Problem Size nxn M-Miss M-Hit P-Hit
nxn R-Ref. W-Ref.  T-Ref. 10x10 222 98 98
30x30 2462 1458 1458
10x10 320 64 384 50x50 11332 188 188
30x30 3920 784 4704 90x90 48020 0 0

50x50 11520 2304 69120
90x90 48020 9604 288120

Table llic. D-Cache 512/4 Table Illd. D-Cache 1K/4

nxn M-Miss M-Hit P-Hit nxn M-Miss M-Hit P-Hit
10x10 222 98 98 10x10 222 98 98
30x30 2462 1458 1458 30x30 2462 1458 1458
50x50 7102 4418 4418 50x50 7102 4418 4418
90x 90 47672 348 348 90x90 32882 15138 15138

investigated the Jacobi relaxation code with a cache configuration of 256/4, 512/4 and 1K/4.
The number of cache hits is given by

2n-1372, f4<n<?
4n-3), if¥+1l<n<ns-3
20—3), ifn=ns—-2

hy = (n—32, ifn=ns—1
(n—23), ifns<n<ns+1
0, otherwise

according to Section 4 wheresis the number of cache lines. We compared the measured
cache hits with the values of the cache hit function. The results of our experiments are
shown in Tables llla—llld.

The fourth prograngauss _jordan in Figure 12 is a linear equation solver. Note
that this program contains an if-statement inside the loop. Variahlgs, j , andk are
held in registers. For direct mapped data caches interference can only occur between the
read references of arra, We have analyzed the Gauss Jordan algorithm with a cache
configuration of 256/4.

We could classify three different rangesoivhere the behavior of the hit function varies.

n2n?—n-2), if2<n<32
hi = {C(n), if33 <n <128
P(n), if n> 129

C(n) must be described for eaahn the range. Furthermor®,(n) is a function containing
64 cases. Note that the number 64 stems from the number of cache lines. For sake of
demonstration we only enlist some cases.
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float £[N][N], ulN][N], new[N][N];

void jacobi_relaxation()

{
int 1,j;
for(i=1;i<N-1;i++){
for(j=1;j<N-1;i++){
new[il[j] = 0.25 * (£[il1[j]1 + w[il[j-1] +
ulil [j+11 + wli-11[5] + uwli+1]1[jD);
}
}
}

Figure 11.Jacobi relaxation.

2n” —2n if n =0 mod 64
8303 1225002 | 529694%y _ 807183 if n = 1 mod 64
e G s 28 i 2mad o
P(n) = | 5383n° 4 12252 4 5755805, _ 1095833 jf n = 3 mod 64
295n° 4 322 4 229 58077 if n =4 mod 64
181503 4 1225602 | 5547181, _ 2989859 jf h = 63 mod 64

float al[N,N];

void gauss_jordan(void)

{
int i,ip,j,k;
for(i=0;i<N;i++)q{
for (ip=0;ip < N*(N-i);ip ++){
j=1ip / (N-i) ;
k=1i+ip - (ip / (N-i)) * (N-i);
if (1 1= 1
alj,k1 = alj,k] -
(alj,i] * ali,k1) * ali,i];
}
}
}
}

Figure 12. Gauss Jordan.
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Table IVa.Experiment of Gauss Jordan

Problem Size

nxn R-Ref. W-Ref. T-Ref.

200x200 15999600 3999900 19999500

400x400 127999200 31999800 159999000

600x600 431998800 107999700 539998500
20002000 15999996000 3999999000 19999995000

Table IVb.D-Cache 256/4
D-Cache 256/4

nxn M-Hit P-Hit

200x200 7060901 7060901

400x400 47324017 47324017

600x600 184781660 184781660
2000x2000 5825464317 5825464317

In Tables IVa and IVb we compare the measured results with function values of the hit
function.

The ability to determine accurate number of cache hits depends on the complexity of
the input programs. The quality of our techniques to resolve recurrences, analyse complex
array subscript expressions, loop bounds, branching conditions, interprocedural effects,
and pointer operations impacts the accuracy of our cache hit function. For instance, if
closed forms cannot be computed for recurrences, then we introduce approximations such
as symbolic upper and lower bounds (Fahringer, 1998a). We have provided a detailed
analysis of codes that can be handled by our symbolic evaluation in Fahringer and Scholz
(1999).

7. Related Work

Traditionally, the analysis of cache behavior for worst-case execution time estimates in
real-time systems (Park, 1993; Puschner and Koza, 1989; Chapman, Burns, and Wellings,
1996) was far too complex. Recent research (Arnold et al., 1994) has proposed meth-
ods to estimate tighter bounds for WCET in systems with caches. Most of the work has
been successfully applied to instruction caches (Liu and Lee, 1994) and pipelined architec-
tures (Healy, Whalley, and Harmon, 1995). Lim et al. (1994) extend the original timing
schemas, introduced by Puschner and Koza (1989), to handle pipelined architectures and
cached architectures. Nearly all of these methods rely on frequency annotations of state-
ments. If the programmer provides wrong annotations, the quality of the prediction can be
doubtful. Our approach does not need user (programmer) interaction since it derives all
necessary information from the program’s cbdad it does not restrict program structure
such as (Ghosh et al., 1997).
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A major component of the framework described in Arnold et al. (1994) is a static cache
simulator (Mueller, 1997) realized as a data flow analysis framework. In Alt et al. (1996) an
alternate formalization which relies on the technique of abstract interpretation is presented.
Both of these approaches are based on data-flow analysis but do not properly model control
flow. Among others, they cannot deal with dead paths and zero-trip loops all of which are
carefully considered by our symbolic evaluation framework (Fahringer and Scholz, 1997;
Blieberger, 1997).

Implicit path enumeration (IPET) (Li, Malik, and Wolfe, 1995; Li, Malik, and Wolfe,
1996) allows to express semantic dependencies as constraints on the control flow graph by
using integer linear programming models, where frequency annotations are still required.
Additionally, the problem of IPET is that it only counts the number of hits and misses
and cannot keep track of the history of cache behavior. Only little work has been done
to introduce history variables (Ottosson and Sjoedin, 1997). While IPET can model if-
statements correctly (provided the programmer supplies correct frequency annotations), it
lacks adequate handling of loops. Our symbolic tracefiles exactly describe the data and
control flow behavior of programs which among others enables precise modeling of loops.
In Theiling and Ferdinand (1998) IPET was enriched with information of the abstract
interpretation described in Alt et al. (1996).

A graph coloring approach is used in Rawat (1993) to estimate the number of cache misses
for real-time programs. The approach only supports data caches with random replacement
strategy. It employs standard data-flow analysis and requires compiler support for plac-
ing variables in memory according to the results of the presented algorithm. Alleviating
assumptions about loops and cache performance improving transformations such as loop
unrolling make their analysis less precise than our approach. Itis assumed that every mem-
ory reference that is accessed inside of a loop at a specific loop iteration causes a cache
miss. Their analysis does not consider that a reference might have been transmitted to the
cache due to a cache miss in a previous loop iteration.

Much research has been done to predict cache behavior in order to support performance
oriented program development. Most of these approaches are based on estimating cache
misses for loop nests. Ferrante, Sarkar, and Trash, (1991) compute an upper bound for the
number of cache lines accessed in a sequential program which allows them to guide various
code optimizations. They determine upper bounds of cache misses for array references
in innermost loops, the inner two loops, and so on. The number of cache misses of the
innermost loop that causes the cache to overflow is multiplied by the product of the number
ofiterations of the overflow loop and all its containing loops. Their approximation technique
may entail polynomial evaluations and suffers by a limited control flow modeling (unknown
loop bounds, branches, etc.).

Lam, Rothberg, and Wolf (1991) developed another cache cost function based on the
number of loops carrying cache reuse which can either be temporal (relating to the same
data element) or spatial (relating to data elements in the same cache line). They employ
a reuse vector space in combination with localized iteration space. Cross interference
(elements from different arrays displace each other from the cache) and self interferences
(interference between elements of the same array) are modeled. Loop bounds are not
considered even if they are known constants.
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Temam, Fricker, and Jalby (1994) examine the source code of numerical codes for cache
misses induced by loop nests.

Fahringer (1996, 1997) implemented an analytical model that estimates the cache be-
havior for sequential and data parallel Fortran programs based on a classification of array
references, control flow modeling (loop bounds, branches, etc. are modeled by profiling),
and an analytical cache cost function.

Our approach goes beyond existing work by correctly modeling control flow of a program
even in the presence of program unknowns and branches such as if-statements inside of
loops. We cover larger classes of programming languages and cache architectures, in par-
ticular data caches, instruction caches and unified caches including direct mapped caches,
set associative, and fully associative caches. We can handle most important cache replace-
ment and write policies. Our approach accurately computes cache hits, whereas most other
methods are restricted to approximations.

Closed form expressions and conservative approximations can be found according to the
steps described in Section 1.

Symbolic evaluation can also be used for WCET analysis without caching (Blieberger,
1997), thereby solving the dead paths problem of program path analysis (Park, 1993; Al-
tenbernd, 1996). In addition, it can be used for performing “standard” compiler optimiza-
tions, thus being an optimal framework for integrating optimizing compilers and WCET
analysis (compare Engblom et al. (1998) for a different approach).

8. Conclusion and Future Work

In this paper we have described a novel approach for estimating cache hits as implied
by programs written in most procedural languages (including C, Ada, and Fortran). We
generate aymbolic tracefildor the input program based @ymbolic evaluatiomvhich is
a static technique to determine the dynamic behavior of programs. Symbolic expressions
and recurrences are used to describe all memory references in a program which are then
stored chronologically in the symbolic tracefile. A cache hit function for several cache
architectures is computed based areahe evaluation technique

In the following we describe the contributions of our approach: While most other research
targets upper bounds for cache misses, we focus on deriving the accurate number of cache
hits. We can automatically determine an analytical cache hit function at compile-time
without user interaction. Symbolic evaluation enables us to represent the cache hits as a
function over program unknowns (e.g. input data). Our approach allows a comparison of
various cache organizations for a given program with respect to cache performance. We
can easily port our techniques across different architectures by strictly separating machine
specific parameters (e.g. cache line sizes, replacement strategies, etc.) from machine-
independent parameters (e.g. loop bounds, array index expressions, etc.). A novel approach
has been introduced to model arrays as part of symbolic evaluation which maintains the
history of previous array references.

We have shown experiments that demonstrate the effectiveness of our approach. The
predicted cache behavior for our example codes perfectly match with the measured data.
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Although we have applied our techniques to direct mapped data caches with write through
and no write-allocate policy and set associative data caches with write through and write-
allocate policy, it is possible to generalize our approach for other cache organizations as
well. Moreover, our approach is also applicable for instruction and unified caches.

In addition our work can be extended to analyze virtual memory architectures. A com-
bined analysis of caching and pipelining via symbolic evaluation will be conducted in the
near future (compare Healy et al. (1999) for a different approach).

The quality of our cache hit function depends on the complexity (e.g. recurrences, in-
terprocedural effects, pointers, etc.) of the input programs. If, for instance, we cannot
find closed forms for recurrences, then we employ approximations such as upper bounds.
We are currently extending our symbolic evaluation techniques to handle larger classes of
input programs. Additionally, we are building a source-code level instrumentation system
for the SPARC processor architecture. We investigate the applicability of our techniques
for multi-level data and instruction caches. Finally, we are in the process to conduct more
experiments with larger codes.

Notes

. A cache miss occurs if referenced data is not in cache and needs to be loaded from main memory.
. Acache hit occurs if referenced data is in cache.
. Symbolic evaluation is not to be confused with symbolic execution (see e.g. King, 1976)).

. A slot consists of one cache line. See Section 2.

1
2
3
4. All variables which are written inside a loop—including the loop variable—are called recurrence variables.
5
6. Clearly our approach cannot bypass undecidability.

7

Random replacement seems very questionable for real-time applications because of its indeterministic
behavior.
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