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Abstract

The doubling of microprocessor performance every three years has been
the result of two factors: more transistors per chip and superlinear scaling
of the processor clock with technology generation. Our results show that,
due to both diminishing improvements in clock rates and poor wire scal-
ing as semiconductor devices shrink, the achievable performance growth of
conventional microarchitectures will slow substantially. In this paper, we
describe technology-driven models for wire capacitance, wire delay, and
microarchitectural component delay. Using the results of these models, we
measure the simulated performance—estimating both clock rate and IPC—
of an aggressive out-of-order microarchitecture as it is scaled from a 250nm
technology to a 35nm technology. We perform this analysis for three clock
scaling targets and two microarchitecture scaling strategies: pipeline scal-
ing and capacity scaling. We find that no scaling strategy permits annual
performance improvements of better than 12.5%, which is far worse than
the annual 50-60% to which we have grown accustomed.

1 INTRODUCTION

For the past decade, microprocessors have been improving in over-
all performance at a rate of approximately 50–60% per year. These
substantial performance improvements have been mined from two
sources. First, designers have been increasing clock rates at a rapid
rate, both by scaling technology and by reducing the number of
levels of logic per cycle. Second, designers have been exploiting
the increasing number of transistors on a chip, plus improvements
in compiler technology, to improve instruction throughput (IPC).
Although designers have generally opted to emphasize one over
the other, both clock rates and IPC have been improving consis-
tently. In Figure 1, we show that while some designers have cho-
sen to optimize the design for fast clocks (Compaq Alpha), and
others have optimized their design for high instruction throughput
(HP PA-RISC), the past decade’s performance increases have been
a function of both.

Achieving high performance in future microprocessors will be
a tremendous challenge, as both components of performance im-
provement are facing emerging technology-driven limitations. De-
signers will soon be unable to sustain clock speed improvements at
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the past decade’s annualized rate of 50% per year. We find that the
rate of clock speed improvement must soon drop to scaling linearly
with minimum gate length, between 12% and 17% per year.

Compensating for the slower clock growth by increasing sus-
tained IPC proportionally will be difficult. Wire delays will limit
the ability of conventional microarchitectures to improve instruc-
tion throughput. Microprocessor cores will soon face a new con-
straint, one in which they are communication bound on the die in-
stead of capacity bound. As feature sizes shrink, and wires become
slower relative to logic, the amount of state that can be accessed in
a single clock cycle will cease to grow, and will eventually begin
to decline. Increases in instruction-level parallelism will be limited
by the amount of state reachable in a cycle, not by the number of
transistors that can be manufactured on a chip.

For conventional microarchitectures implemented in future
technologies, our results show that, as wire delays grow relative
to gate delays, improvements in clock rate and IPC become di-
rectly antagonistic. This fact limits the performance achievable by
any conventional microarchitecture. In such a world, designers are
faced with a difficult choice: increase the clock rate aggressively at
the cost of reducing IPC, or mitigate the decline in IPC by slowing
the rate of clock speed growth.

In this paper, we explore the scalability of microprocessor cores
as technology shrinks from the current 250nm feature sizes to the
projected 35nm in 2014. With detailed wire and component models,
we show that today’s designs scale poorly with technology, improv-
ing at best 12.5% per year over the next fourteen years. We show
that designers must select among deeper pipelines, smaller struc-
tures, or slower clocks, and that none of these choices, nor the best
combination, will result in scalable performance. Whether design-
ers choose an aggressive clock and lower IPC, or a slower clock
and a higher IPC, today’s designs cannot sustain the performance
improvements of the past decades.

In Section 2, we describe trends in transistor switching and wire
transmission time, as well as our analytical wire delay model. The
delay model is derived from capacitance extracted from a 3D field
solver, using technology parameters from the Semiconductor Indus-
try Association (SIA) technology roadmap [22]. We use the model
to estimate microarchitectural wiring delays in future technologies.

In Section 3, we describe our microarchitecture component
models, which are based on the Cacti cache delay analysis tool [30].
These models calculate access delay as a function of cache param-
eters and technology generation. We model most of the major com-
ponents of a microprocessor core, such as caches, register files, and
queues. We show that the inherent trade-off between access time
and capacity will force designers to limit or even decrease the size
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Figure 1: Processor clock rates and normalized processor performance (SpecInt/Clock rate), 1995-2000.

of the structures to meet clock rate expectations. For example, our
models show that in a 35nm implementation with a 10GHz clock,
accessing even a 4KB level-one cache will require 3 clock cycles.

In Section 4, we report experimental results that show how the
projected scaling of microarchitectural components affects over-
all performance. Using the results of our analytical models as in-
puts to SimpleScalar-based timing simulation, we track the perfor-
mance of current microarchitectures when scaled from 250nm to
35nm technology, using different approaches for scaling the clock
and the microarchitecture. We measure the effect of three differ-
ent clock scaling strategies on the microarchitecture: setting the
clock at 16 fanout-of-four (FO4) delays, setting the clock at 8 FO4
delays, and scaling the clock according to the SIA roadmap pro-
jections. We also measure two different microarchitecture scal-
ing strategies: pipeline scaling and capacity scaling. In pipeline
scaling, we hold the size of the microarchitectural structures to be
constant across technology generations, and measure a deeper pipe
caused by longer delays to access core structures. In capacity scal-
ing, we reduce the sizes of the microarchitectural structures at each
technology generation, attempting to limit the depth of the pipeline.

Our results show that no scaling strategy permits more than a
factor of 7.4 improvement in performance over a seventeen-year
period, compared to the 1720-fold improvement that would result
from 55% annual performance improvements over the same period.
Finally, in Section 5, we draw conclusions from our results and
describe the implications for future microprocessor designs.

2 TECHNOLOGY TRENDS

Microprocessor performance improvements have been driven by
developments in silicon fabrication technology that have caused
transistor sizes to decrease. Reduced feature sizes have provided
two benefits. First, since transistors are smaller, more can be placed
on a single die, providing area for more complex microarchitec-
tures. Second, technology scaling reduces transistor gate length
and hence transistor switching time. If microprocessor cycle times
are dominated by gate delay, greater quantities of faster transistors
contribute directly to higher performance.

However, faster clock rates and slower wires will limit the num-

ber of transistors reachable in a single cycle to be a small fraction
of those available on a chip. Reducing the feature sizes has caused
wire width and height to decrease, resulting in larger wire resistance
due to smaller wire cross-sectional area. Unfortunately, wire capac-
itance has not decreased proportionally. Even though wire surface
area is smaller, the spacing between wires on the same layer is also
being reduced. Consequently, the decreased parallel-plate capac-
itance is offset by increased coupling capacitance to neighboring
wires. In this section we use simple first-order models to demon-
strate the effect of technology scaling on chip-wide communication
delays and clock rate improvements. We use these models to reason
about how future microarchitectures can expect to be scaled.

2.1 Wire Scaling

Our source for future technology parameters pertinent to wire de-
lay is the 1999 International Technology Roadmap for Semiconduc-
tors [22]. Although the roadmap outlines the targets for future tech-
nologies, the parameters described within are not assured. Nonethe-
less, we assume that the roadmap’s aggressive technology scaling
predictions (particularly those for conductor resistivity � and di-
electric permittivity � ) can be met. We also use the roadmap’s con-
vention of subdividing the wiring layers into three categories: (1)
local for connections within a cell, (2) intermediate, or mid-level,
for connections across a module, and (3) global, or top-level, for
chip-wide communication. To reduce communication delay, wires
are both wider and taller in the mid-level and top-level metal lay-
ers. In our study of wire delay, we focus on mid-level and top-level
wires, and use the the wire width, height, and spacing projected in
the roadmap.

Since the delay of a wire is directly proportional to the product
of its resistance and capacitance, we developed models for these
parameters across all of the technology generations of interest. To
compute wire resistance per unit length, ( ������� ) we use the sim-
ple equation, 	�
 �
���� , where � is wire resistance, � is wire
width, and � is wire height. Computing capacitance per unit length
( ��������� ) is more complex; we use a model based on empirical re-
sults obtained from Space3D, a three-dimensional field solver [28].
Wire capacitance includes components for conductors in lower and
higher metal layers as well as coupling capacitance to neighboring
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Gate Mid-Level Metal Top-Level Metal
Length Dielectric Metal � Width Aspect �������	� 
������	� Width Aspect �������	� 
������
�
(nm) Constant � ( ��� - �	� ) (nm) Ratio ( ��� / ��� ) ( ��� / ��� ) (nm) Ratio ( ��� / ��� ) ( ��� / ��� )
250 3.9 3.3 500 1.4 107 0.215 700 2.0 34 0.265
180 2.7 2.2 320 2.0 107 0.253 530 2.2 36 0.270
130 2.7 2.2 230 2.2 188 0.263 380 2.5 61 0.285
100 1.6 2.2 170 2.4 316 0.273 280 2.7 103 0.296
70 1.5 1.8 120 2.5 500 0.278 200 2.8 164 0.296
50 1.5 1.8 80 2.7 1020 0.294 140 2.9 321 0.301
35 1.5 1.8 60 2.9 1760 0.300 90 3.0 714 0.317

Table 1: Projected fabrication technology parameters.

wires in the same layer. For each fabrication technology, we pro-
vided Space3D with the geometry for a given wire with other wires
running parallel to it on the same layer and perpendicular on the
layers above and below. We vary wire height, width, and spacing
in the Space3D input geometries, and use least-mean-squared curve
fitting to derive the coefficients for the model. By assuming that all
conductors other than the modelled wire are grounded, and thus not
accounting for Miller-effect coupling capacitance, our capacitance
model is optimistic compared to the environment of a wire in a real
system.

In Table 1, we display the wire parameters from 250nm to 35nm
technologies. Our derived wire resistance per unit length ( 	 �����
� )
and capacitance per unit length ( � �����	� ) are shown for both mid-
level and top-level metal layers. 	 �����	� increases enormously across
the technology parameters, with notable discontinuities at the tran-
sition to 180nm, due to copper wires, and 70nm, due to an antici-
pated drop in resistivity from materials improvements projected in
the SIA roadmap. However, to keep pace with shrinking wire width,
wire aspect ratio (ratio of wire height to wire width) is predicted to
increase up to a maximum of three. Larger aspect ratios increase
the coupling capacitance component of � �����
� , which is somewhat
mitigated by reductions in the dielectric constant of the insulator
between the wires. Even with the advantages of improved materi-
als, the intrinsic delay of a wire, 	 �����	��� � �����	� , is increasing with
every new technology generation. These results are similar to those
found in other studies by Horowitz [11] and Sylvester [27].

The derived values for 	 �����	� and � �����	� form the core of our
wire delay model. Given the fabrication technology, and the wire
length, width, and spacing, our model computes the end-to-end wire
transmission delay. For the load on the remote end of the wire, we
assume a minimum-size inverter, which has a small gate capaci-
tance relative to the wire capacitance. We assume optimal repeater
placement in our model to reduce the delay’s dependence on wire
length from quadratic to linear. Each repeater is an inverter with
PFET and NFET sizes chosen to minimize overall wire delay. We
use a � circuit to model each wire segment in a repeated wire, as
described in [3], and calculate the overall delay as a function of wire
length � using Equation 1.

� �����	� �
!
"$#&% � # % 
&'�()
 �+* (-,.(/� � % 
 �0 ()
&' *1* (1)

	 # is the on-resistance of the repeater, � ' is the gate capaci-
tance of the repeater, 2 # is the length of a wire segment between
repeaters, 3 is the intrinsic delay of a repeater, and 	 � and � � are

the resistance and capacitance of the wire segment between two re-
peaters. Using this equation, the transmission delay for a 5mm top-
level wire more than doubles from 170ps to 390ps over the range of
250nm to 35nm technologies. When possible, increasing the wire
width is an attractive strategy for reducing wire delay. Increasing
the wire width and spacing by a factor of four for top level metal
reduces the delay for a 5mm wire to 210ps in a 35nm process, at a
cost of four times the wire tracks for each signal. In this study, we
assume the wire widths shown in Table 1.

2.2 Clock Scaling
While wires have slowed down, transistors have been getting dra-
matically faster. To first order, transistor switching time, and there-
fore gate delay, is directly proportional to the gate length. In this
paper we use the fanout-of-four (FO4) delay metric to estimate cir-
cuit speeds independent of process technology technologies [11].
The FO4 delay is the time for an inverter to drive four copies of
itself. Thus, a given circuit limited by transistor switching speed
has the same delay measured in number of FO4 delays, regard-
less of technology. Reasonable models show that under typical
conditions, the FO4 delay, measured in picoseconds (ps) is equal
to 46587 � �:9 �<;=��> , where �:9 �<;=��> is the minimum gate length for a
technology, measured in microns. Using this approximation, the
FO4 delay decreases from 90ps in a 250nm technology to 12.6ps in
35nm technology, resulting in circuit speeds improving by a factor
of seven, just due to technology scaling.

The FO4 delay metric is important as it provides a fair means
to measure processor clock speeds across technologies. The num-
ber of FO4 delays per clock period is an indicator of the number of
levels of logic between on-chip latches. Microprocessors that have
a small number of FO4 delays per clock period are more deeply
pipelined than those with more FO4 delays per clock period. As
shown by Kunkel and Smith [14], pipelining to arbitrary depth in
hopes of increasing the clock rate does not result in higher perfor-
mance. Overhead for the latches between pipeline stages becomes
significant when the number of levels of logic within a stage de-
creases too much. Pipelining in a microprocessor is also limited by
dependencies between instructions in different pipeline stages. To
execute two dependent instructions in consecutive clock cycles, the
first instruction must compute its result in a single cycle. This re-
quirement can be viewed as a lower bound on the amount of work
that can be performed in a useful pipeline stage, and could be rep-
resented as the computation of an addition instruction. Under this
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Figure 2: Clock scaling measured in FO4 inverter delays. The ag-
gressive (8 FO4) and conservative (16 FO4) clocks are constant
across technologies, but the SIA roadmap projects less than 6 FO4
delays at 50nm and below.

Gate Chip Area 16FO4 Clk 8FO4 Clk SIA Clk
(nm) ( � � �

) ����� (GHz) ��� (GHz) �	��

� (GHz)
250 400 0.69 1.35 0.75
180 450 0.97 1.93 1.25
130 567 1.34 2.67 2.10
100 622 1.74 3.47 3.50
70 713 2.48 4.96 6.00
50 817 3.47 6.94 10.00
35 937 4.96 9.92 13.50

Table 2: Projected chip area and clock rate.

assumption, a strict lower bound on the clock cycle time is 5.5 FO4
delays, which is the minimal computation time of a highly opti-
mized 64-bit adder, as described by Naffziger [17]. When account-
ing for latch overhead and the time to bypass the output of the adder
back to the input for the next instruction, reducing the clock period
to eight FO4 delays will be difficult. Fewer than eight may be im-
possible to implement.

In Figure 2, we plot microprocessor clock periods (measured
in FO4 delays) from 1992 to 2014. The horizontal lines represent
the eight FO4 and 16 FO4 clock periods. The clock periods pro-
jected by the SIA roadmap shrink dramatically over the years and
reach 5.6 FO4 delays at 50nm, before increasing slightly to 5.9 FO4
delays at 35nm. The Intel data represent five generations of x86
processors and show the reduction in the number of FO4 delays
per pipeline stage from 53 in 1992 (i486DX2) to 15 in 2000 (Pen-
tium III), indicating substantially deeper pipelines. The isolated cir-
cles represent data from a wider variety of processors published in
the proceedings of the International Solid State Circuits Conference
(ISSCC) from 1994 to 2000. Both the Intel and ISSCC data demon-
strate that clock rate improvements have come from a combination
of technology scaling and deeper pipelining, with each improving
approximately 15-20% per year. While the trend toward deeper
pipelining will continue, reaching eight FO4 delays will be diffi-
cult, and attaining the SIA projected clock rate is highly unlikely.

In this paper, we examine microprocessor performance when
scaling the clock conservatively at 16 FO4 delays ( � ��� ), aggres-
sively at eight FO4 delays ( � � ), and to absolute limits with the SIA
projections ( � ��
�� ). In Table 2, we show the resulting clock rates
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Figure 3: Reachable chip area in top-level metal, where area is mea-
sured in six-transistor SRAM cells.

across the spectrum of technologies we measure.

2.3 Wire Delay Impact on Microarchitecture
The widening gap between the relative speeds of gates and wires
will have a substantial impact on microarchitectures. With increas-
ing clock rates, the distance that a signal can travel in a single
clock cycle decreases. When combined with the modest growth
in chip area anticipated for high-performance microprocessors, the
time (measured in clock periods) to send a signal across one dimen-
sion of the chip will increase dramatically. Our analysis below uses
the clock scaling described above and the projected chip areas from
the SIA Roadmap, as shown in Table 2.

Based on the wire delay model, we compute the chip area that is
reachable in a single clock cycle. Our unit of chip area is the size of
a six-transistor SRAM cell, which shrinks as feature size is reduced.
To normalize for different feature sizes across the technologies, we
measure SRAM cell size in

�
, which is equal to one-half the gate

length in each technology. We estimate the SRAM cell area to be
� 787 � � , which is the median cell area from several recently pub-
lished SRAM papers [4, 23, 31]. Our area metric does not include
overheads found in real SRAM arrays, such as the area required for
decoders, power distribution, and sense-amplifiers. Additionally,
it does not reflect the size of a single-cycle access memory array;
the area metric includes all bits reachable within a one-cycle, one-
way transmission delay from a fixed location on the chip, ignoring
parasitic capacitance from the SRAM cells.

Figure 3 shows the absolute number of bits that can be reached
in a single clock cycle, which we term span, using top-level wires
for � ��� , � � , and � ��
�� clock scaling. The wire width and spacing
is set to the minimum specified in the SIA Roadmap for top-level
metal at each technology. Using � ��� clock scaling, the span first in-
creases as the number of bits on a chip increases and the entire chip
can still be reached in a single cycle. As the chip becomes commu-
nication bound at 130nm, multiple cycles are required to transmit
a signal across its diameter. In this region, decreases in SRAM
cell size are offset equally by lower wire transmission velocity, re-
sulting in a constant span. Finally, the span begins to decrease at
50nm when the wire aspect ratio stops increasing and resistance
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Figure 4: Fraction of total chip area reachable in one cycle.

becomes more significant. The results for � � are similar except that
the plateau occurs at 180nm and the span is a factor of four lower
than that of � ��� . However, in � ��
�� the span drops steadily after
180nm, because the clock rate is scaled superlinearly with decreas-
ing gate length. These results demonstrate that clock scaling has
a significant impact on architectures as it demands a trade-off be-
tween the size and partitioning of structures. Using high clock rates
to meet performance targets limits the size of pipeline stages and
microarchitectural structures, while tightly constraining their place-
ment. If lower clock rates can be tolerated, then microarchitects can
give less consideration to the communication delay to reach large
and remote structures.

Figure 4 shows the fraction of the total chip area that can be
reached in a single clock cycle. Using � � in a 35nm technology,
less than 0.4% of the chip area can be reached in one cycle. Even
with � ��� , only 1.4% of the chip can be reached in one cycle. Similar
results have been observed in prior work [16]. If microarchitectures
do not change over time, this phenomenon would be unimportant,
since the area required to implement them would decrease with fea-
ture size. However, microarchitectures have become more complex
because architects acquired more transistors with each new fabri-
cation technology, and used them to improve overall performance.
In future technologies, substantial delay penalties must be paid to
reach the state or logic in a remote region of the chip, so microar-
chitectures that rely on large structures and global communication
will be infeasible.

2.4 Summary
While transistor speeds are scaling approximately linearly with fea-
ture size, wires are getting slower with each new technology. Even
assuming low-resistivity conductors, low-permittivity dielectrics,
and higher aspect ratios, the absolute delay for a fixed-length wire
in top-level metal with optimally placed repeaters is increasing with
each generation. Only when the wire width and spacing is increased
substantially can the wire delay be kept constant. Due to increasing
clock frequencies, wire delays are increasing at an even higher rate.
As a result, chip performance will no longer be determined solely
by the number of transistors that can be fabricated on a single in-
tegrated circuit (capacity bound), but instead will depend upon the

amount of state and logic that can be reached in a sufficiently small
number of clock cycles (communication bound).

The argument made by Sylvester and Keutzer [27] that wire
delays will not affect future chip performance holds only if wire
lengths are reduced along with gate lengths in future technologies.
Traditional microprocessor microarchitectures have grown in com-
plexity with each technology generation, using all of the silicon area
for a single monolithic core. Current trends in microarchitures have
increased the sizes of all of the structures, and added more execu-
tion units. With future wire delays, structure size will be limited
and the time to bypass results between pipeline stages will grow.
If clock rates increase at their projected rates, both of these effects
will have substantial impact on instruction throughput.

3 COMPONENT MODELS

In addition to reducing the chip area reachable in a clock cycle,
both the widening gap between wire and gate delays and superlin-
ear clock scaling has a direct impact on the scaling of microarchi-
tectural structures in future microprocessors. Clock scaling is more
significant than wire delay for small structures, while both wire de-
lay and clock scaling are significant in larger structures. The large
memory-oriented elements, such as the caches, register files, in-
struction windows, and reorder buffers, will be unable to continue
increasing in size while remaining accessible within one clock cy-
cle. In this section, we use analytical models to examine the ac-
cess time of different structures from 250nm to 35nm technologies
based on the structure organization and capacity. We demonstrate
the trade-offs between access time and capacity that are necessary
for the various structures across the technology generations.

3.1 Analytical Model
To model the various storage-oriented components of a modern mi-
croprocessor, we started with ECacti [19], an extended version of
the original Cacti cache modeling tool [30]. Given the capacity,
associativity, number ports, and number of data and address bits,
ECacti considers a number of alternative cache organizations and
computes the minimum access time. ECacti automatically splits
the cache into banks and chooses the number and layout of banks
that incurs the lowest delay. When modeling large memory arrays,
ECacti presumes multiple decoders, with each decoder serving a
small number of banks. For example with a 4MB array, ECacti
produces 16 banks and four decoders in a 35nm technology. Note
that this model is optimistic, because it does not account for driving
the address from a central point to each of the distributed decoders.

We extended ECacti to include technology scaling, using the
projected parameters from the SIA roadmap. SRAM cell sizes
and transistor parasitics, such as source and drain capacitances, are
scaled according to their anticipated reduction in area for future
technologies. We assume that the word-lines are run from a de-
coder across its neighboring banks in mid-level metal, and that the
bit-rline in mid-level metal does not increase the size of the SRAM
cell. Unlike Amrutur and Horowitz [3] we further make the op-
timistic assumption that the sense-amplifier threshold voltage will
decrease linearly with technology. The access times from the an-
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alytical model were verified against those obtained from a SPICE
simulation of the critical path, and matched within 15% for all tech-
nologies. This level of accuracy is comparable to the accuracy of
the original CACTI model. A full description of the modeling and
validation can be found in [1].

Apart from modeling direct-mapped and set associative caches,
we used our extended version of ECacti to explore other microar-
chitectural structures. For example, a register file is essentially a
direct mapped cache with more ports, but fewer address and data
bits than a typical L1 data cache. We use a similar methodology to
examine issue windows, reorder buffers, branch prediction tables,
and TLBs.

3.2 Caches and Register Files
Using our extended ECacti, we measured the memory structure ac-
cess time, while varying cache capacity, block size, associativity,
number of ports, and process technology. While cache organization
characteristics do affect access time, the most critical characteristic
is capacity. In Figure 5, we plot the access time versus capacity for
a dual-ported, two-way set associative cache. The maximum cache
capacities that can be reached in 3 cycles for the � ��� , � � and � ��
��
clocks are also plotted as “isobars”. Note that the capacity for a
three cycle access cache decreases moderately for � ��� and � � , but
falls off the graph for � � 
�� .

We compared our analytical model to other models and related
implementations. In a 250nm technology, we compute the access
time for a 64KB L1 data cache to be 2.4ns. This access time is
comparable to that of the 700MHz Alpha 21264 L1 data cache.
Furthermore, for a 4Mb cache in a 70nm technology, our model
predicts an access time of 33 FO4 delays which matches the 33
FO4 access time generated by Amrutur and Horowitz for a similar
cache [3].

For each technology, the access time increases as the cache ca-
pacity increases. Even with substantial banking, the access time
goes up dramatically at capacities greater than 256KB. For a given
cache capacity, the transition to smaller feature sizes decreases the
cache access time, but not as fast as projected increases in clock
rates. In a 35nm technology, a 32KB cache takes one to six cy-
cles to access depending on the clock frequency. One alternative to
slower clocks or smaller caches is to pipeline cache accesses and
allow each access to complete in multiple cycles. Due to the non-
linear scaling of capacity with access time, adding a small number
of cycles to the cache access time substantially increases the avail-
able cache capacity. For example, increasing the access latency
from four to seven cycles increases the reachable cache capacity by
about a factor of 16 in a 35nm technology. The results shown in
Figure 5 apply to all of the cache-like microarchitectural structures
that we examine in this study, including L1 instruction and data
caches, L2 caches, register files, branch target buffers, and branch
prediction tables.

While our cache model replicates current design methodologies,
our register file model is more aggressive in design. Although
register files have traditionally been built using single-ended full
swing bit lines [20], larger capacity register files will need faster ac-
cess provided by differential bit-lines and low-voltage swing sense-
amplifiers similar to those in our model. For our register file mod-

4 10 100 1000 4096

Cache Capacity (KB)

0.1 ns

1 ns

10 ns

100 ns

A
cc

es
s 

T
im

e

250 nm
180 nm
130 nm
100 nm
70 nm
50 nm
35 nm

f SIA

f8

f16

Figure 5: Access time for various L1 data cache capacities.

eling, the cache block size is set to the register width, which in our
case is eight bytes. For a large ported register file, the size of each
cell in the register file increases linearly in both dimensions with
the number of ports.

Our capacity results for the register file are similar to those seen
in caches. The most significant difference between a cache and a
register file is the number of ports. Our results show that register
files with many ports will incur larger access times. For example,
in a 35nm technology, going from ten ports to 32 ports increases
the access time of a 64-entry register file from 172ps to 274ps. In-
creased physical size and access time makes attaching more exe-
cution units to a single global register file impractical. The alter-
natives of smaller register files versus multi-cycle access times are
examined quantitatively in Section 4.

3.3 Content Addressable Memories
The final set of components that we model are those that require
global address matching within the structure, such as the instruction
window and the TLB. These components are typically implemented
as content addressable memories (CAMs) and can be modelled as a
fully associative cache. Our initial model of the instruction window
includes a combination of an eight-bit wide CAM and a 40-bit wide
direct mapped data array for the contents of each entry. The issue
window has eight ports, which are used to insert four instructions,
write back four results, and extract four instructions simultaneously.
Since we assume that the eight-ported CAM cell and correspond-
ing eight-ported data array cell are port-limited, we compute the
area of these cells based on the width and number of bit-lines and
word-lines used to access them. Note that we model only the struc-
ture access time and do not consider the latency of the instruction
selection logic.

Figure 6 shows the access time for this configuration as a func-
tion of the number of instructions in the window. As with all of the
memory structures, the access time increases with capacity. The
increase in access time is not as significant as in the case of the
caches, because the capacities considered are small and all must
pay an almost identical penalty for the fully associative match on
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Figure 6: Access time vs. issue window size across technologies.

Structure Name �	��

� � � � ���
L1 cache
64K (2 ports) 7 5 3
Integer register file
64 entry (10 ports) 3 2 1
Integer issue window
20 entry (8 ports) 3 2 1
Reorder buffer
64 entry (8 ports) 3 2 1

Table 3: Projected access time (cycles) at 35nm.

the tag bits. Thus, in this structure, once the initial tag match delay
has been computed, the delay for the rest of the array does not in-
crease significantly with capacity. A 128-entry, eight-port, eight-bit
tag instruction window has an access time of 227ps in a 35nm pro-
cess, while a 12-bit tag raises the access time of a same size window
to 229ps. A 128-entry, 32-port, eight-bit tag instruction window (as
might be required by a 16-issue processor) has an access time of
259ps in a 35nm technology. Note that all of these results ignore
the increase in complexity of the selection logic as we increase the
issue window size and the port count in the issue window. We an-
ticipate that the capacity and port count of the register file and the
complexity of the selection logic will ultimately place a limit on the
issue width of superscalar microarchitectures [18].

3.4 Summary
Because of increasing wire delays and faster transistors, memory-
oriented microarchitectural structures are not scaling with technol-
ogy. To access caches, register files, branch prediction tables, and
instruction windows in a single cycle will require the capacity of
these structures to decrease as clock rates increase. In Table 3, we
show the number of cycles needed to access the structures from the
Compaq Alpha 21264, scaled to a 35nm process for each of the
three methods of clock scaling. With constant structure capacities,
the L1 cache will take up to seven cycles to access, depending on
how aggressively the clock is scaled.

Another factor not explored in our analysis is the communica-

tion delay between execution units in wider-issue superscalar pro-
cessors. If the number of execution units is increased, the distance
between the extreme units will also increase. Consequently, the by-
pass logic complexity and bypass data transmission delay will be
substantial barriers to improved performance [18, 20].

4 PERFORMANCE ANALYSIS

As communication delays increase relative to computation delays,
superlinear clock rate scaling and today’s techniques for exploiting
ILP work against one another. Aggressively scaling the clock re-
duces the amount of state that can be used to exploit ILP for a fixed
pipeline depth. The designer is faced with two interacting choices:
how aggressively to push the clock rate by reducing the number
of levels of logic per cycle, and how to scale the size and pipeline
depth of different microarchitectural structures. For a given target
frequency, we define two approaches for scaling the microarchitec-
ture to smaller technologies:

� Capacity scaling: Shrink the microarchitectural structures
sufficiently so that their access penalties are constant across
technologies. We define access penalty as the access time for
a structure measured in clock cycles.

� Pipeline scaling: Hold the capacity of a structure constant and
increase the pipeline depth as necessary to cover the increased
latency across technologies.

While these trade-offs of clock versus structure size scaling
manifest themselves in every design process, their importance will
grow as communication delay creates more interference between
clock speed and ILP optimizations.

In this section, we explore the effect of capacity and pipeline
scaling strategies upon IPC and overall performance. For each scal-
ing strategy, and at three different clock scaling rates ( � ��� , � � , and
� ��
�� projections), we measure IPC for our target microarchitecture
at technologies ranging from 250nm to 35nm. The methodology
uses microarchitectural simulation that incorporates the results of
our technology and structure models described in Sections 2 and 3.
Our goal is to find the balance among capacity, pipeline, and clock
rate scaling that achieves the best overall performance.

4.1 Experimental Methodology
We perform our microarchitectural timing simulations with an ex-
tended version of the SimpleScalar tool set [6], version 3.0. We also
use the SimpleScalar memory hierarchy extensions, which simulate
a one-level page table, hardware TLB miss handling, finite miss
status holding registers (MSHRs) [13], and simulation of bus con-
tention at all levels [7].

4.1.1 Target Microprocessor

The SimpleScalar tools use a Register Update Unit (RUU) [24] to
track out-of-order issue of instructions. The RUU acts as a unified
reorder buffer, issue window, and physical register file. Because of
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the large number of ports required for the RUU in a four-wide ma-
chine, implementing it is not feasible at high clock frequencies. We
therefore split the structures logically in SimpleScalar, effectively
simulating a separate reorder buffer, issue window, and physical
register file.

We also modified SimpleScalar’s target processor core to model
a four-wide superscalar pipeline organization roughly comparable
to the Compaq Alpha 21264 [12]. Our target is intended to model a
microarchitecture typical of those found in current-generation pro-
cessors; it is not intended to model the 21264 microarchitecture
itself. However, we chose as many parameters as possible to resem-
ble the 21264, including the pipeline organization and microarchi-
tectural structure capacities. Our target processor uses a seven-stage
pipeline for integer operations in our simulated base case, with the
following stages: fetch, decode, map, queue, register read, execute,
and writeback. As in the 21264, reorder buffer accesses occur off of
the critical path, physical registers are read after instruction issue,
and instructions are loaded into the issue queues in program order.

Our target differs from the 21264 in the following respects. We
assume that the branch target buffer is a distinct structure, as op-
posed to a line predictor embedded in the instruction cache. We
simulate a two-level gshare predictor instead of the 21264’s local
history, global history, and choice predictors. We remove instruc-
tions from the issue queue immediately after they are issued, rather
than implementing load-use speculation and waiting two cycles for
its resolution. We simulate a combined floating-point and integer
issue queue (they are split in the 21264), but model them from a
timing perspective as if they were split. We do not implement the
functional unit and register file clustering found in the 21264. In-
stead of the six instructions per cycle that the 21264 can issue (four
integer and two floating-point), we permitted only four. We use the
default SimpleScalar issue prioritization policy, which issues ready
loads with highest priority, followed by the oldest ready instruc-
tions. The 21264 always issues the oldest ready instruction regard-
less of its type. Finally, we do not simulate the 21264 victim cache,
which contains an eight-entry victim buffer.

4.1.2 Simulation Parameters

Our baseline processor parameters include the following: a four-
way issue superscalar processor with a 40-entry issue window for
both integer and floating point operations, a 64-entry load/store
queue, commit bandwidth of eight instructions per cycle, an eight-
entry return address stack, and a branch mispredict rollback latency
equal to the reorder buffer access delay plus three cycles. We set the
number and delays of the execution units to those of the 21264 [12].
We show the default sizes of the remaining structures in Table 4.

In our baseline memory system, we use separate 64KB, two-way
set associative level-one instruction and data caches, with a 2MB,
four-way set-associative, unified level-two cache. The L1 caches
have 64-byte lines, and the L2 cache has 128-byte lines. The L1/L2
cache bus is 128 bits wide, requires one cycle for arbitration, and
runs at the same speed as the processing core. Each cache contains
eight MSHRs with four combining targets per MSHR.

We assume a DRAM system that is aggressive by today’s stan-
dards. The L2/memory bus is 64 bits wide, requires one bus cycle
for arbitration, and runs at half the processor core speed. That speed

Capacity (bits) # entries Bits/entry Ports

Branch pred. 32K 16K 2 1
BTB 48K 512 96 1

Reorder buffer 8K 64 128 8
Issue window 800/160 20 40 8

Integer RF 5K 80 64 10
FP RF 5K 80 64 10

L1 I-Cache 512K 1K 512 1
L1 D-Cache 512K 1K 512 2

L2 Cache 16M 16K 1024 2
I-TLB 14K 128 112 2
D-TLB 14K 128 112 2

Table 4: Capacities of structures used in delay calculations

ratio, assuming a tightly coupled electrical interface to memory, is
similar to modern Rambus memory channels. We assumed that the
base DRAM access time is 50ns, plus a somewhat arbitrary 20ns
for the memory controller. That access time of 70ns is typical for
what was available in 1997. For each year beyond 1997, we reduce
the DRAM access time by 10%, using that delay and the clock rate
for a given year to compute the DRAM access penalty, in cycles,
for the year in question. We model access time and bus contention
to the DRAM array, but do not model page hits, precharging over-
head, refresh cycles, or bank contention. The benchmarks we use
exhibit low miss rates from the large L2 caches in our simulations.

We simulate each of the SPEC95 benchmarks [26] for 500 mil-
lion instructions. We use the std input set; a combination of differ-
ent SPEC inputs that run for less time than the reference data sets,
but have equivalent data sets and are not dominated by initialization
code for runs of this length [5].

4.1.3 Modeling Deeper Pipelines

To simulate pipeline scaling in SimpleScalar, we added the capa-
bility to simulate variable-length pipelines by specifying the access
latency for each major structure as a command-line parameter. We
assume that all structures are perfectly pipelined, and can begin
� accesses every cycle, where � is the number of ports. We do
not account for any pipelining overheads due to latches or clock
skew [14]. Furthermore, we assume that an � -cycle access to a
structure will cause an ���

�
cycle pipeline stall as specified below.

We perform the following accounting for access delays in which
���

�
:

� I-Cache: pipeline stalls affect performance only when a
branch is predicted taken. We assume that fetches with no
changes in control flow can be pipelined.

� Issue window: additional cycles to access the issue window
cause delays when instructions are removed from the queue
(wakeup and select), not when instructions are written into
the issue window.

� Reorder buffer: as in the 21264, writes to the reorder buffer
and commits occur off the critical path. We therefore add re-
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order buffer delays only to the rollback latency, which in turn
is incurred only upon a branch misprediction.

� Physical register file: register access penalties are paid only
on non-bypassed register file reads. Register file writes are
queued and bypassed to dependent instructions directly.

� Branch predictor and BTB: multi-cycle predictor accesses
create pipeline bubbles only when a prediction must be made.
Multi-cycle BTB accesses cause the pipeline to stall only
when a branch is predicted taken. We assume that the two
structures are accessed in parallel, so that pipeline bubbles
will be the maximum, rather than the sum, of the two delays.

4.2 Pipeline versus Capacity Scaling
We use the simulated microarchitecture described above to measure
IPC across the benchmark suite. The access latencies for the mi-
croarchitectural structures are derived from the models described in
Section 3. From the access latencies, we compute the access penal-
ties for each of the three clock scaling rates ( � ��� , � � , and � ��

� ).

In Table 4, we show both the number of bits per entry and the
number of ports for each of the baseline structures. These param-
eters are used to compute the delay as a function of capacity and
technology as well as the capacity as a function of access penalty
and technology. In the issue window entry, we show two bit ca-
pacities, one for the instruction queue and one for the tag-matching
CAM.

In the third column of Table 4, we show the baseline structure
sizes that we use for our pipeline scaling experiments. In Table 5,
we show the actual access penalty of the structures for the fixed
baseline capacities. Note that as the feature size decreases, the ac-
cess penalty to the fixed size structures increases, and is dependent
on the clock rate. Consequently, deeper pipelines are required as a
fixed-capacity microarchitecture is scaled to smaller technologies.

In Table 6, we show the parameters for the capacity scaling ex-
periments. Because the access penalties are held nearly constant,
the capacities of the structures decrease dramatically as smaller
technologies and higher clock rates are used. For each technology
generation, we set each structure to be the maximum size possible
while ensuring that it remains accessible in the same number of cy-
cles as our base case (one cycle for most of the structures, and ten
cycles for the L2 cache).

In future technologies, some of the structures become too small
to be useful at their target access penalty. In such cases, we in-
crease the access penalty slightly, permitting a structure that is large
enough to be useful. The access penalties are shown in the sub-
scripts in Table 6. Note that for technologies smaller than 130nm,
no structure can be accessed in less than two cycles for the � � and
� � 
�� frequency scales. Note that all of the L2 cache access penal-
ties are ten cycles except for � � and � ��
�� , for which we increased
the access penalty to 15 cycles at 50nm and 35nm.

4.3 Performance Measurements
Table 7 shows the geometric mean of the measured IPC values
across all 18 of the SPEC95 benchmarks. The results include both

pipeline scaling and capacity scaling experiments at each of the
three clock scaling targets.

In general, the IPC decreases as the technology is scaled from
250nm to 35nm. For linear clock scaling ( � ��� and � � ), this effect
is caused by longer structure access penalties due to sublinear scal-
ing of the wires. For � ��

� , the superlinear reduction in cycle time
causes a larger increase in access penalty than � ��� or � � , resulting
in a sharper drop in IPC.

There are several cases in which IPC increases when moving
from a larger technology to a smaller one. These small increases are
caused by discretization limitations in our model: if the structure
capacity at a given technology becomes too small to be useful, we
increase the access penalty by one cycle. This increase occasionally
results in a larger structure than in the previous technology, causing
a small increase in IPC. One example of this effect is evident for
capacity scaling at � � 
�� clock rates when moving from 130nm to
100nm. In Table 6, the branch predictor, L1 I-Cache, and L1 D-
Cache all become noticeably larger but one cycle slower. A similar
effect occurs for � � 
�� capacity scaling at the transition from 70nm
to 50nm.

With the slower clock rates ( � ��� and � ��
�� ), the IPCs at 250nm
for capacity scaling are considerably higher than those for pipeline
scaling. While the capacity scaling methodology permits structure
sizes larger than chips of that generation could contain, the pipeline
scaling methodology sets the sizes to be roughly equivalent to the
21264. The capacity scaling results at 250nm and 180nm thus show
the IPCs if the chip was not limited by area. As the wires grow
slower in the smaller technologies, and the core becomes communi-
cation bound rather than capacity bound, the capacity scaling strat-
egy loses its advantage. The pipeline scaling shows higher IPC
than capacity scaling for fast clocks at the smallest technologies.
The highest IPC at 35nm, unsurprisingly, is for capacity scaling at
the slowest clock available–that point is the one at 35nm for which
the microarchitectural structures are the largest. Even with capacity
scaling at the � ��� clock scale, however, IPC decreases by 20% from
250nm to 35nm.

For either scaling strategy, of course, IPC decreases as clock
rates are increased for smaller technologies. However, performance
estimates must include the clock as well. In Table 8, we show
the geometric mean performance of the SPEC95 benchmarks, mea-
sured in billions of instructions per second (BIPS), for each of the
microarchitectural and clock scales. Most striking about the results
is the similarity in performance improvements across the board, es-
pecially given the different clock rates and scaling methodologies.
Also remarkable are the small magnitudes of the speedups, ranging
from five to seven for 35nm (for all our normalized numbers, the
base case is pipeline scaling performance at � ��� and 250nm).

For all technologies through 50nm and for both scaling strate-
gies, faster clocks result in uniformly greater performance. For ca-
pacity scaling at 35nm, however, the faster clocks show worse per-
formance: � ��� has the highest BIPS, � � is second, and � ��
�� has the
lowest performance. This inversion is caused mainly by the mem-
ory system, since the 35nm cache hierarchy has considerably less
capacity for the faster clocks.

For pipeline scaling, the caches all remain approximately the
same size regardless of clock scaling, and the benefit of faster
clocks overcome the setbacks of higher access penalties. Thus at
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250nm 180nm 130nm 100nm 70nm 50nm 35nm
Structure ����� / ��� / ���	��
 ����� / ��� / ���	��
 ����� / ��� / ���	��
 ����� / ��� / ���
��
 ����� / ��� / ���
��
 ����� / ��� / ���
��
 ����� / ��� / ���	��


Branch pred. 1/2/2 2/3/2 2/3/2 2/3/3 2/3/3 2/3/4 2/3/4
BTB 1/2/1 1/2/2 1/2/2 1/2/2 1/2/3 1/2/3 1/2/3

Reorder buffer 1/2/1 1/2/2 1/2/2 1/2/2 1/2/3 1/2/3 1/2/3
Issue window 1/2/1 1/2/2 1/2/2 1/2/2 1/2/3 1/2/3 1/2/3

Integer RF 1/2/1 1/2/2 1/2/2 1/2/2 1/2/2 1/2/3 1/2/3
FP RF 1/2/1 1/2/2 1/2/2 1/2/2 1/2/2 1/2/3 1/2/3

L1 I-Cache 2/3/2 2/3/2 2/3/3 2/3/3 2/3/4 2/4/5 2/4/5
L1 D-Cache 2/4/2 2/4/3 2/4/3 2/4/4 2/4/5 3/5/7 3/5/7

L2 Cache 11/21/11 10/19/12 11/21/17 11/23/23 12/24/29 17/34/49 19/38/52
I-TLB 2/3/2 2/3/2 2/3/3 2/3/3 2/3/4 2/3/4 2/3/4
D-TLB 2/3/2 2/3/2 2/3/3 2/3/3 2/3/4 2/3/4 2/3/4

Table 5: Access times (in cycles) using pipeline scaling with � ��� , � � , and � ��
�� clock scaling.

250nm 180nm 130nm 100nm 70nm 50nm 35nm
Structure ����� / ��� / ���
��
 ����� / ��� / ���
��
 ����� / ��� / ���	��
 ����� / ��� / ���
��
 ����� / ��� / ���	��
 ����� / ��� / ���	��
 ����� / ��� / ���	��


BPred 8K � /8K � /8K � 8K � /8K � /1K � 4K � /8K � /256 � 4K � /4K � /4K � 4K � /4K � /2K � 4K � /4K � /256 � 4K � /4K � /512 �
BTB 1K � /1K � /512 � 512 � /512 � /4K � 512 � /512 � /2K � 512 � /512 � /512 � 512 � /512 � /128 � 256 � /256 � /512 � 256 � /256 � /512 �
ROB 256 � /512 � /128 � 128 � /128 � /8K � 128 � /128 � /2K � 128 � /128 � /128 � 128 � /128 � /2K � 64 � /64 � /256 � 64 � /64 � /256 �
IW 512 � /512 � /128 � 64 � /64 � /8K � 64 � /64 � /2K � 64 � /64 � /64 � 64 � /64 � /2K � 64 � /64 � /128 � 64 � /64 � /256 �

Int. RF 256 � /256 � /128 � 256 � /256 � /35 � 128 � /128 � /512 � 128 � /128 � /128 � 128 � /128 � /64 � 128 � /128 � /128 � 128 � /128 � /128 �
FP RF 256 � /256 � /128 � 256 � /256 � /35 � 128 � /128 � /512 � 128 � /128 � /128 � 128 � /128 � /64 � 128 � /128 � /128 � 128 � /128 � /128 �
L1 I$ 256K � /64K � /256K � 256K � /64K � /64K � 256K � /64K � /16K � 256K � /64K � /64K � 128K � /64K � /16K � 128K � /32K � /32K � 128K � /32K � /32K �
L1 D$ 64K � /32K � /64K � 64K � /16K � /32K � 64K � /16K � /2K � 64K � /16K � /16K � 64K � /16K � /4K � 32K � /8K � /4K � 32K � /8K � /8K �
L2 ��� 2M/256K/1M 2M/256K/1M 1M/256K/1M 1M/256K/256K 1M/256K/128K 512K/256K ��� /128K ��� 512K/256K ��� /128K ���
I-TLB 32K � /512 � /32K � 32K � /512 � /4K � 32K � /512 � /4K � 16K � /512 � /2K � 16K � /512 � /4K � 16K � /256 � /1K � 16K � /256 � /1K �
D-TLB 32K � /512 � /32K � 32K � /512 � /4K � 32K � /512 � /4K � 16K � /512 � /2K � 16K � /512 � /4K � 16K � /256 � /1K � 16K � /256 � /1K �

Table 6: Structure sizes and access times (in subscripts) using capacity scaling with � ��� , � � , and � ��

� clock scaling.

Scaling Clock Rate 250nm 180nm 130nm 100nm 70nm 50nm 35nm

f ��� 1.25 1.16 1.15 1.15 1.17 1.08 1.06
Pipeline f � 0.77 0.73 0.72 0.72 0.71 0.64 0.63

f ��
�� 1.18 0.89 0.83 0.73 0.62 0.49 0.48
f ��� 1.63 1.55 1.48 1.48 1.46 1.30 1.30

Capacity f � 0.89 0.82 0.81 0.81 0.80 0.68 0.63
f ��
�� 1.52 1.03 0.69 0.86 0.49 0.50 0.45

Table 7: Geometric mean of IPC for each technology across the SPEC95 benchmarks.

Scaling Clock Rate 250nm 180nm 130nm 100nm 70nm 50nm 35nm Speedup

f ��� 0.87 1.11 1.54 2.01 2.90 3.73 5.25 6.04
Pipeline f � 1.07 1.41 1.93 2.49 3.54 4.44 6.23 7.16

f ��
�� 0.89 1.11 1.74 2.58 3.70 4.85 6.49 7.46
f ��� 1.12 1.49 1.98 2.58 3.63 4.50 6.42 7.38

Capacity f � 1.24 1.58 2.18 2.81 3.99 4.71 6.28 7.21
f ��
�� 1.14 1.28 1.44 3.02 2.92 4.97 6.04 6.95

Table 8: Geometric mean of performance (billions of instructions per second) for each technology across the SPEC95 benchmarks.
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Figure 7: Performance increases for different scaling strategies.

35nm, the best-performing clock scale is the most aggressive scale
( � � 
�� ).

Figure 7 graphs total performance scaling with advancing tech-
nology. The six lines represent pipeline or capacity scaling for each
of the three clock scaling rates. All performance numbers represent
the geometric mean of the SPEC95 benchmarks, and are normal-
ized to our baseline.

Although the various scaling strategies perform differently for
the intermediate technologies, the overall performance at 35nm is
remarkably consistent across all experiments. Capacity scaling at
� � 
�� shows a high variance; this effect is due to the oscillating
size of the L1 instruction cache, caused by the discretization issue
described earlier. The pipeline scaling at � ��� is the only strategy
that performs qualitatively worse than the others. The � ��
�� and
� ��� clocks differ by nearly a factor of three at 35nm, and yet the
overall performance for both clocks at both scaling methodologies
is nearly identical. The maximal performance increase is a factor of
7.4, which corresponds to a 12.5% annual improvement over that
17-year span.

While careful selection of the clock rate, specific structure size,
and access penalty would result in small performance improve-
ments above what we have shown here, the consistency of these
results indicates that they would not be qualitatively superior. For a
qualitative improvement in performance growth, microarchitectures
significantly different than those we measured will be needed.

5 CONCLUSION

In this study, we examined the effects of technology scaling on wire
delays and clock speeds, and measured the expected performance
of a modern aggressive microprocessor core in CMOS technolo-
gies down to 35nm. We found that communication delays will be-
come significant for global signals. Even under the best conditions,
the latency across the chip in a top-level metal wire will be 12–32
cycles, depending on clock rate. In advanced technologies, the de-
lay (in cycles) of memory oriented structures increases substantially
due to increased wire latencies and aggressive clock rates. Conse-
quently, even a processor core of today’s size does not scale well
to future technologies. In Figure 8, we compare our best measured
performance over the next 14 years with projected scaling at recent
historical rates (55% per year). While projected rates for 2014 show
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Figure 8: Projected performance scaling over a 17-year span for a
conventional microarchitecture.

performance exceeding one TRIPS, our best-performing microar-
chitecture languishes at 6.5 BIPS. To reach a factor of thousand in
performance improvement at an aggressive clock of 8 FO4 (10GHz
in 35nm), a chip must sustain an execution rate of 150 instructions
per cycle.

While our results predict that existing microarchitectures do not
scale with technology, we have in fact been quite generous to poten-
tial microprocessor scaling. Our wire performance models conser-
vatively assume very low-permittivity dielectrics, resistivity of pure
copper, high aspect ratio wires, and optimally placed repeaters. Our
models for structure access time further assume a hierarchical de-
composition of the array into sub-banks, word-line routing in mid-
level metal wires, and cell areas that do not depend on word-line
wire width. In our simulation experiments of sample micoarchi-
tectures, we further assumed that all structures could be perfectly
pipelined, that routing delay between structures is insignificant, and
that latch and clock skew overheads are negligible.

With these assumptions, the best performance we were able to
obtain was a speedup of 7.4 from a 250nm chip to 35nm chip, which
corresponds to an annual gain of 12.5%. Over the same period, the
clock improves by either 12%, 17%, or 19% annually, depending on
whether a clock period at 35nm is 16, 8, or 5.9 FO4 delays, respec-
tively. That result means that the performance of a conventional,
out-of-order microprocessor is likely to scale worse than the clock
rate, even when given an effectively unlimited transistor budget. If
any of the optimistic scaling assumptions of our models are not met,
actual microprocessor scaling will be poorer than we report.

Our models show that dense storage structures will become con-
siderably slower relative to projected clock rates, and will adversely
affect instruction throughput. While structure access time remains
effectively constant with the clock rate up to 70nm technologies,
at 50nm and below, wire delays become significant. If clocks
are scaled superlinearly relative to decreases in gate length, access
times for these structures increases correspondingly. For example,
when designing a level-one data cache in a 35nm technology, an
engineer will be faced with several unattractive choices. First, the
engineer may choose an aggressive target clock rate, and attempt to
design a low access penalty cache. At the aggressive SIA projec-
tion of 13.5 GHz (which is likely unrealistic), even a single-ported
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512 byte cache will require three cycles to access. Second, the de-
signer may opt for a larger cache with a longer access time. Given
our conservative assumptions about cache designs, a 64KB L1 data
cache would require at least seven cycles to access at the aggressive
clock rate. Finally, the designer may choose a slower clock but a
less constrained cache. At 5 GHz (16 FO4 delays), a 32KB cache
can be accessed in two cycles.

None of these choices are ideal. The first two alternatives re-
duce IPC substantially, while the third incurs a 2.7-fold penalty in
clock rate. Optimizing for any one of clock rate, pipeline depth, or
structure size will force significant compromises in the other design
points for future ultra-small gate-length technologies. While other
work has proposed to vary the clock rate and effective structure ca-
pacity dynamically [2], those trade-offs are still within the context
of a conventional microarchitecture, which is unscalable no mat-
ter which balance between clock rate and instruction throughput is
chosen.

Based on this study, future microprocessors will be subject to
much more demanding constraints than today if performance is to
improve faster than technology scaling rates. We draw the follow-
ing four conclusions from our results:

� Large monolithic cores have no long-term future in deep
submicron fabrication processes. Microarchitectures that re-
quire increases in the sizes of their components—such as
register files in wide-issue superscalar processors or high-
performance SMT processors—will scale even more poorly
than the microarchitecture used in this study.

� Of the structures we studied, the on-chip memory system is
likely to be a major bottleneck in future processors. With ag-
gressive clock rates, level-one caches that are not substantially
smaller than those of today will have access times of three to
seven cycles. For level-two caches with capacities up to 2MB,
access delays ranged from thirty to fifty cycles with aggres-
sive clock rates, even with ideal partitioning into sub-banks.
For caches that use an even larger fraction of the die that the
area of a 2MB structure, the access penalties will be substan-
tially higher. Because future workloads will certainly have a
larger memory footprint than SPEC95, the drop in IPC due to
longer average memory access times will be larger than that
measured in this study.

� Technology constraints for high-performance microproces-
sors will affect future designs much more so than those of
today. Technology-based analysis will become a necessity for
all architecture research. Distance, area, and delay models
must be incorporated into the high-level performance simula-
tions that are currently the norm. Research that fails to con-
sider these factors will grow increasingly inaccurate as tech-
nology progresses.

� Future microprocessors must be partitioned into independent
physical regions, and the latency for communicating among
partitions must be exposed to the microarchitecture and pos-
sibly to the ISA. This observation is not new; a number of
researchers and product teams have proposed or implemented

partitioned architectures [8, 9, 10, 12, 15, 21, 25, 29]. How-
ever, many of these architectures use conventional communi-
cations mechanisms, or rely too heavily on software to per-
form the application partitioning. The best combination of
static and dynamic communication and partitioning mecha-
nisms, which lend themselves to the high-bandwidth, high-
latency substrate, has yet to be demonstrated.

The results of this study paint a bleak picture for conventional
microarchitectures. Clock scaling will soon slow precipitously to
linear scaling, which will force architects to use the large transis-
tor budgets to compensate. While it is likely that research innova-
tions will allow conventional microarchitectures to scale better than
our results show, we believe that the twin challenges—of recent di-
minishing returns in ILP and poor scaling of monolithic cores with
technology—will force designers to consider more radical alterna-
tives.

One challenge is to design new ways of mapping applications
with varying granularities of parallelism onto the partitioned sub-
strate, and to tolerate the variance in both application and total
workload behavior with efficient dynamic mechanisms. The other
key challenge is to design cores within each partition that can sus-
tain high ILP at fast clock rates. These cores will need structures
that maximize information density, different logical clocks for dif-
ferent components of the microarchitecture, and a physical layout
that supports fast execution of multiple independent instructions
along short wires.
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