
User- and Process-Driven Dynamic Voltage and Frequency Scaling

Bin Lin Arindam Mallik Peter Dinda Gokhan Memik Robert Dick
{b-lin,arindam,pdinda,g-memik,dickrp}@northwestern.edu

Department of EECS, Northwestern University

Abstract

We describe and evaluate two new, independently-applicable
power reduction techniques for power management on proces-
sors that support dynamic voltage and frequency scaling (DVFS):
user-driven frequency scaling (UDFS) and process-driven volt-
age scaling (PDVS). In PDVS, a CPU-customized profile is de-
rived offline that encodes the minimum voltage needed to achieve
stability at each combination of CPU frequency and tempera-
ture. On a typical processor, PDVS reduces the voltage below
the worst-case minimum operating voltages given in datasheets.
UDFS, on the other hand, dynamically adapts CPU frequency to
the individual user and the workload through direct user feed-
back. Our UDFS algorithms dramatically reduce typical operat-
ing frequencies and voltages while maintaining performance at
a satisfactory level for each user. We evaluate our techniques
independently and together through user studies conductedon a
Pentium M laptop running Windows applications. We measure
the overall system power and temperature reduction achieved by
our methods. Combining PDVS and the best UDFS scheme re-
duces measured system power by 49.9% (27.8% PDVS, 22.1%
UDFS), averaged across all our users and applications, com-
pared to Windows XP DVFS. The average temperature of the
CPU is decreased by13.2◦C. User trace-driven simulation to
evaluate the CPU only indicates average CPU dynamic power
savings of 57.3% (32.4% PDVS, 24.9% UDFS), with a maxi-
mum reduction of 83.4%. In a multitasking environment, the
same UDFS+PDVS technique reduces the CPU dynamic power
by 75.7% on average.

1 Introduction
Dynamic Voltage and Frequency Scaling (DVFS) is one of

the most commonly used power reduction techniques in high-
performance processors and is an important OS power manage-
ment tool. DVFS is generally implemented in the kernel and it
varies the frequency and voltage of a microprocessor in real-time
according to processing needs. Although there are different ver-
sions of DVFS, at its core DVFS adapts power consumption and
performance to the current workload of the CPU. Specifically,

This work is in part supported by DOE Awards DE-FG02-05ER25691 and DE-
AC05-00OR22725 (via ORNL), NSF Awards CNS-0720691, CNS-0721978,
CNS-0715612, CNS-0551639, CNS-0347941, CCF-0541337, CCF-0444405,
CCF-0747201, IIS-0536994, IIS-0613568, ANI-0093221, ANI-0301108, and
EIA-0224449, by SRC award 2007-HJ-1593, by Wissner-SlivkaChair funds, and
by gifts from Symantec, Dell, and VMware.

existing DVFS techniques in high-performance processors select
an operating point (CPU frequency and voltage) based on the
utilization of the processor. While this approach can integrate in-
formation available to the OS kernel, such control is pessimistic.

Existing DVFS techniques are pessimistic about the user.
They assume that CPU utilization or the OS events prompting
it are sufficient proxies. A high CPU utilization simply leads to
a high frequency and high voltage, regardless of the user’s satis-
faction or expectation of performance.

Existing DVFS techniques are often pessimistic about the
CPU. They assume worst-case manufacturing process variation
and operating temperature by basing their policies on loose
worst-case bounds given by the processor manufacturer. A volt-
age level for each frequency is set such that even the slowest
shipped processor of a given generation will be stable at thehigh-
est specified temperature.

In response to these observations, on which we elaborate in
Sections 2.1 and 3.1, we have developed two new power man-
agement techniques that can be readily employed independently
or together. In particular, we introduce the following techniques.

User-Driven Frequency Scaling (UDFS)uses direct user feed-
back to drive an online control algorithm that determines the pro-
cessor frequency (Section 2.2). Processor frequency has strong
effects on power consumption and temperature, both directly and
also indirectly through the need for higher voltages at higher fre-
quencies. The choice of frequency is directly visible to theuser as
it determines observed performance. There is considerablevari-
ation among users with respect to the satisfactory performance
level for a given workload mix. UDFS exploits this variationto
customize frequency control policies dynamically to theindivid-
ual user. Unlike previous work (Section 5), we employ direct
feedback from the user during ordinary use of the machine.

Process-Driven Voltage Scaling (PDVS)creates a custom
mapping from frequency and temperature to the minimum volt-
age needed for CPU stability (Section 3.2), taking advantage of
process variation. This mapping is then used online to choose
the operating voltage by taking into account the current oper-
ating temperature and frequency. Researchers have shown that
process variation causes IC speed to vary up to 30% [2]. Hence,
using a single supply voltage setting does not exploit the variation
in timing present among processors. Although some processors
customize voltage–frequency mappings based on process varia-
tion, none adjust voltage as a function of temperature. PDVS
does both. We take advantage of the variation among ICs via a
customization process that determines the slack of theindividual

processor, as well as its dependence on operating temperature.
This offline measurement is used online to dynamically set volt-
age based on frequency and temperature.

We evaluate our techniques independently and together
through user studies conducted on a Pentium M laptop run-
ning Windows applications. Our studies, described in detail in
Section 4, include both single task and multitasking scenarios.
We measure the overall system power and temperature reduc-
tion achieved by our methods. Combining PDVS and the best
UDFS scheme reduces measured system power by 49.9% (27.8%
PDVS, 22.1% UDFS), averaged across all our users and applica-
tions, compared to the Windows XP DVFS scheme. The average
temperature of the CPU is decreased by13.2◦C on average. Us-
ing user trace-driven simulation to evaluate the CPU in isolation,
we find average CPU dynamic power savings of 57.3% (32.4%
PDVS, 24.9% UDFS), with a maximum reduction of 83.4%. In
a multitasking environment, the same UDFS+PDVS technique
reduces the CPU dynamic power by 75.7% on average.

1.1 Experimental setup

Our experiments were done using an IBM Thinkpad T43p
with a 2.13 GHz Pentium M-770 CPU and 1 GB memory run-
ning Microsoft Windows XP Professional SP2. Although eight
different frequency levels can be set on the Pentium M-770 pro-
cessor, only six can be used due to limitations in the SpeedStep
technology.

In all of our studies, we make use of three application tasks,
some of which are CPU intensive and some of which frequently
block while waiting for user input:

• Creating a presentation using Microsoft PowerPoint 2003
while listening to background music using Windows Media
Player 10. The user duplicates a presentation consisting of
complex diagrams involving drawing and labeling, starting
from a hardcopy of a sample presentation.

• Watching a 3D Shockwave animation using the Microsoft
Internet Explorer web browser. The user watches the
animation and is encouraged to press the number keys to
change the camera’s viewpoint. The animation was stored
locally. Shockwave options were configured so that
rendering was done entirely in software on the CPU.

• Playing the FIFA 2005 Soccer game. FIFA 2005 is a
popular and widely-used First Person Shooter game. There
were no constraints on user gameplay.

In the following sections, we describe the exact durations of these
tasks for each user study and additional tasks the user was asked
to undertake. In general, our user studies are double-blind, ran-
domized, and intervention-based. The default Windows DVFS
scheme is used as the control. We developed a user pool by adver-
tising our studies within Northwestern University. We selected a
random group of users from among those who responded to our
advertisement. While many of the selected users were CS, CE,
or EE graduate students, our users included staff members and
undergraduates from the humanities. Each user was paid $15 for
participating. Our studies ranged from number of usersn = 8 to
n = 20, as described in the material below.

2 User-Driven Frequency Scaling (UDFS)
Current DVFS techniques are pessimistic about the user,

which leads them to often use higher frequencies than necessary
for satisfactory performance. In this section, we elaborate on
this pessimism and then explain our response to it: user-driven
frequency scaling (UDFS). Evaluations of UDFS algorithms are
given in Section 4.

2.1 Pessimism about the user

Current software that drives DVFS is pessimistic about the in-
dividual user’s reaction to the slowdown that may occur when
CPU frequency is reduced. Typically, the frequency is tightly
tied to CPU usage. A burst of computation due to, for example,
a mouse or keyboard event brings utilization quickly up to 100%
and drives frequency, voltage, temperature, and power consump-
tion up along with it. CPU-intensive applications also cause an
almost instant increase in operating frequency and voltage.

In both cases, the CPU utilization (or OS events that drive it)
is functioning as a proxy for user comfort. Is it a good proxy?
To find out, we conducted a small (n = 8) randomized user
study, comparing four processor frequency strategies including
dynamic, static low frequency (1.06 GHz), static medium fre-
quency (1.33 GHz), as well as static high frequency (1.86 GHz).
The dynamic strategy is the default DVFS policy used in Win-
dows XP Professional. Note that the processor maximum fre-
quency is 2.13 GHz. We allowed the users to acclimate to the full
speed performance of the machine and its applications for 4 min-
utes and then carry out the tasks described in Section 1.1, with
the following durations:

• PowerPoint (4 minutes in total, 1 minute per strategy)
• Shockwave (80 seconds in total, 20 seconds per strategy)
• FIFA (4 minutes in total, 1 minute per strategy)

Users verbally ranked their comfort levels after each task /strat-
egy pair on a scale of 1 (discomfort) to 10 (very comfortable).
Note that for each application and user, strategies were tested in
random order.

Figure 1 illustrates the results of the study in the form of over-
lapped histograms of the participants’ reported comfort level for
each of four strategies. Consider Figure 1(a), which shows re-
sults for the PowerPoint task. The horizontal axis displaysthe
range of comfort levels allowed in the study and the verticalaxis
displays the count of the number of times that level was reported.
The other graphs are similar.

User comfort with any given strategy is highly dependent on
the application. For PowerPoint, the strategies result in indistin-
guishable satisfactions levels. For this task, we could simply set
the frequency statically to a very low value and never changeit,
presumably saving power. For animation, a higher static level is
preferred but the medium and high frequencies are statistically
indistinguishable from the dynamic strategy despite not using as
high a frequency. For the game, the high static setting is needed
to match the satisfaction level of the dynamic strategy. However,
that setting does not use the highest possible frequency, which
was used by the dynamic strategy throughout the experiment.

Comfort with a given strategy is strongly user-dependent, i.e.,

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10
Comfort level

U
se

r
co

un
t

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10
Comfort level

U
se

r
co

un
t

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Comfort Level

U
se

r
co

un
t

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

(a) Microsoft Powerpoint (b) 3D Shockwave Animation (c) FIFA Game.

Figure 1. User pessimism.

it is important to note that for any particular strategy, there is
considerable spread in the reported comfort levels. In addition
to the power-specific results just described, we note that Gupta et
al. [14] and Lin et al. [20] have also demonstrated a high variation
in user tolerance for performance in other contexts. Our dynamic
policy automatically adapts to different users and applications.
Hence, it can reduce power consumption while still achieving
high user satisfaction.

2.2 Technique

To implement user-driven frequency scaling, we have built a
system that consists of client software that runs as a Windows
toolbar task as well as software that implements CPU frequency
and temperature monitoring. In the client, the user can express
discomfort at any time by pressing the F11 key (the use of other
keys or controls can be configured). These events drive the UDFS
algorithm. The algorithm in turn uses the Windows API to con-
trol CPU frequency. We monitor the CPU frequency using Win-
dows Performance Counter and Log [26] and temperature using
CPUCool [39].

It is important to note that a simple strategy that selects a static
frequency for an application (and/or for a user) is inadequate for
three reasons. First, each user will be satisfied with a different
level of performance for each application. Finding these levels
statically would be extremely time consuming. Second, typical
users multitask. Capturing the effects of multiple applications
would necessitate examining the power set of the application set
for each individual user, resulting in a combinatoric explosion
in the offline work to be done. Finally, even when a user is
working with a single application, the behavior of the application
and the expected performance varies over time. Applications go
through phases, each with potentially different computational re-
quirements. In addition, the user’s expected performance is also
likely to change over time as the user’s priorities shift. For these
reasons, a frequency scaling algorithm should dynamicallyadjust
to the individual user’s needs.

Responding to these observations, we designed algorithms
that employ user experience feedback indicated via button
presses.

2.2.1 UDFS1 Algorithm

UDFS1 borrows from the adaptive algorithm in our user-
driven CPU scheduling work [21] and can be viewed as exten-
sions/variants of the TCP congestion control control algorithm.
The TCP congestion control algorithm [33, 38, 3, 10] is designed
to adapt the send rate dynamically to the available bandwidth in
the path. A congestion event corresponds to a user button press,
send rate corresponds (inversely) to CPU frequency, and TCPac-
knowledgments correspond to the passage of time.

UDFS1 has two state variables:r, the current control value
(CPU frequency, the smaller the value, the higher the frequency.)
andrt (the current threshold, integer value). Adaptation is con-
trolled by three constant parameters:ρ, the rate of increase,
α = f(ρ), the slow start speed, andβ = g(ρ), the additive
increase speed. Like TCP, UDFS1 operates in three modes, as
described below.
• Slow Start (Exponential Increase): Ifr < rt, we increaser

exponentially fast with time (e.g.,r ∝ 2αt). Note that
frequency settings for most processors are quantized and
thus the actual frequency changes abruptly upon crossing
quantization levels.

• User event avoidance (Additive Increase): If no user
feedback is received andr ≥ rt, r increases linearly with
time,r ∝ βt.

• User event (Multiplicative Decrease): When the user
expresses discomfort at levelr we immediately set
rt = r − 1 and setr to the initial (highest) frequency.

This behavior is virtually identical to that of TCP Reno, except
for the more aggressive setting of the threshold.

Unlike TCP Reno, we also controlρ, the key parameter that
controls the rate of exponential and linear increase from button
press to button press. In particular, for every user event, we up-
dateρ as follows:

ρi+1 = ρi

(

1 − γ ×
Ti − TAV I

TAV I

)

where Ti is the latest inter-arrival time between user events.
TAV I is the target mean inter-arrival time between user events,
as currently preset by us.γ controls the sensitivity to the feed-
back.

500

700

900

1100

1300

1500

1700

1900

2100

2300

8:36:52 8:37:43 8:38:43 8:39:40 8:40:35 8:41:38 8:42:32 8:43:26 8:44:28

Time

P
ro

ce
ss

or
 fr

eq
ue

nc
y

UDFS1 Windows DVFS

(a) UDFS1 scheme

500

700

900

1100

1300

1500

1700

1900

2100

2300

8:54:00 8:54:40 8:55:23 8:56:11 8:56:58 8:57:41 8:58:24 8:59:08 8:59:52 9:00:32 9:01:12 9:01:5

Time

P
ro

ce
ss

or
 fr

eq
ue

nc
y

UDFS2 Windows DVFS

(b) UDFS2 scheme

Figure 2. The frequency for UDFS schemes during
FIFA game for a representative user.

We set our constant parameters (TAV I = 120, α = 1, β =
1, γ = 0.8) based on the experience of two of the authors using
the system. These parameters were subsequently used when con-
ducting a user study to evaluate the system (Section 4). Ideally,
we would empirically evaluate the sensitivity of UDFS1 (and
UDFS2) performance to these parameters. However, it is impor-
tant to note that any such study would require having real users
in the loop, and thus would be quite slow. Testing five values of
each parameter on 20 users would require 312 days (based on 8
users/ day and 45 minutes/user). For this reason, we decidedto
choose the parameters based on qualitative evaluation by the au-
thors and then “close the loop” by evaluating the whole system
with the choices.

Figure 2(a) illustrates the execution of the UDFS1 and Win-
dows DVFS algorithms for a typical user during the FIFA game
task. Note that Windows DVFS causes the system to run at the
highest frequency during the whole execution period exceptthe
first few seconds. On the other hand, the UDFS1 scheme causes
the processor frequency to increase only when the user expresses
discomfort (by pressing F11). Otherwise, it slowly decreases.

2.2.2 UDFS2 Algorithm

UDFS2 tries to find the lowest frequency at which the user feels
comfortable and then stabilize there. For each frequency level
possible in the processor, we assign an intervalti, the time for
the algorithm to stay at that level. If no user feedback is received
during the interval, the algorithm reduces the frequency from ri

to ri+1, i.e., it reduces the frequency by one level. The default
interval is 10 seconds for all levels. If the user is irritated at

control levelri, we update all of our intervals and the current
frequency level as follows:

ti−1 = αti−1

tk = βtk,∀k : k 6= i − 1

i = min(i − 1, 0)

Hereα > 1 is the rate of interval increase andβ < 1 is rate
of interval decrease. In our study,α = 2.5 andβ = 0.8. This
strategy is motivated by the conjecture that the user was com-
fortable with the previous level and the algorithm should spend
more time at that level. Again, because users would have to be
in the inner loop of any sensitivity study, we have chosen thepa-
rameters qualitatively and evaluated the whole system using that
choice, as described in Section 4.

Figure 2(b) illustrates the execution of the algorithm for arep-
resentative user in the FIFA game task. Note that UDFS2 settles
to a frequency of approximately 1.86 GHz, after which littlein-
teraction is needed.

3 Process-Driven Voltage Scaling (PDVS)
Current DVFS techniques are pessimistic about the proces-

sor, which leads them to often use higher voltages than necessary
for stable operation, especially when they have low temperatures.
We elaborate on this pessimism and then explain our responseto
it, process-driven voltage scaling (PDVS). PDVS is evaluated in
Section 4.

3.1 Pessimism about the CPU

The minimum stable voltageof a CPU is the supply volt-
age that guarantees correct execution for given process varia-
tion and environmental conditions. It is mainly determinedby
the critical path delay of a circuit. This delay consists of two
components: transistor gate delay and wire delay. Gate delay
is inversely related to the operating voltages used in the criti-
cal paths of the circuit. Furthermore, temperature affectsthe
delay. Charge carrier mobility decreases with increasing tem-
perature. Although partially offset by decreased threshold volt-
ages, in current technologies this reduction in carrier mobility
causes circuits to slow down with increasing temperature. Wire
delay is also temperature-dependent and increases under higher
current/temperature conditions. The maximum operating fre-
quency (Fmax) varies in direct proportion to the sustained voltage
level in the critical timing paths, and inversely with temperature-
dependent RC delay [37].

In addition to the operating conditions, which dynamically
change, process variation has an important impact on the min-
imum voltage sufficient for stable operation. Even in identical
environments, a variation in timing slack is observed amongthe
manufactured processors of the same family. As a result, each
processor reacts differently to changes. For example, although
two processors can run safely at 2.8 GHz at the default supply
voltage, it is conceivable that these minimum supply voltages
will differ. Customizing voltage choices for individual processors
adapts to, and exploits, these variations. Despite these known ef-
fects of process variation and temperature on minimum stable

Operating Nominal StableVdd (V) at temp ranges (◦C)
Freq. (MHz) Voltage (v) 52–57 62–67 72–77 82–87

800 0.988 0.736 0.736 0.736 0.736
1,060 1.068 0.780 0.780 0.780 0.780
1,200 1.100 0.796 0.796 0.796 0.796
1,330 1.132 0.844 0.844 0.860 0.876
1,460 1.180 0.876 0.892 0.908 0.924
1,600 1.260 0.908 0.924 0.924 0.924
1,860 1.324 1.004 1.004 1.020 1.020
2,130 1.404 1.084 1.100 1.116 1.116

Figure 3. Minimum stable Vdd for different operat-
ing frequencies and temperatures.

voltage, DVFS ignores them: for a given frequency, traditional
DVFS schemes use a single voltage level for all the processors
within a family at all times.

The dynamic power consumption of a processor is directly re-
lated to frequency and supply voltage and can be expressed using
the formulaP ∝ V 2CF , which states that power is proportional
to the product of voltage squared, capacitance, and frequency. In
addition to its direct impact on the power consumption, reliable
operation at increased frequency demands increased supplyvolt-
age, thereby having an indirect impact on power consumption.
Generally, if the frequency is reduced, a lower voltage is safe.

As processors, memories, and application-specific integrated
circuits (ASICs) are pushed to higher performance levels and
higher transistor densities, processor thermal management is
quickly becoming a first-order design concern. The maximum
operating temperature of an Intel Pentium Mobile processorhas
been specified as100◦C [16, 17]. As a general rule of thumb,
the operating temperature of a processor can vary from50◦C to
90◦C during normal operation. Thus, there is a large difference
between normal and worst-case temperatures.

We performed an experiment that reveals the relationship be-
tween operating frequency and minimum stable voltage of the
processor at different temperature ranges. We used Notebook
Hardware Control (NHC) [18] to set a particularVdd value for
each operating frequency supported by the processor. When a
new voltage value is set, NHC runs an extensive CPU stabil-
ity check. Upon failure, the system stops responding and com-
puter needs to be rebooted. We execute a program that causes
high CPU utilization and raises the temperature of the processor.
When the temperature reaches a desired range, we perform the
CPU stability check for a particular frequency at a user-defined
voltage value.

Figure 3 shows the results of this study for the machine de-
scribed in Section 1.1. For reference, we also show the nominal
core voltage given in the datasheet [17]. Note that the nominal
voltage is the voltage used by all the DVFS schemes by default.
The results reveal that, even at the highest operating tempera-
ture, the minimum stable voltage is far smaller than the nominal
voltage. The results also show that at lower operating frequen-
cies, the effect of temperature on minimum stable voltage isnot
pronounced. However, temperature change has a significant im-
pact on minimum stable voltage at higher frequencies. In partic-
ular, at 1.46 GHz, the core voltage value can vary by 5.6% for a
temperature change of30◦C. This would reduce dynamic power

consumption by 11.4%.

As the results shown in Figure 3 illustrate, there is an oppor-
tunity for power reduction if we exploit the relationship between
frequency, temperature, and the minimum stable voltage. The
nominal supply voltage specified in the processor datasheethas
a large safety margin over the minimum stable voltages. Thisis
not surprising: worst-case assumptions were unnecessarily made
at a number of design stages, e.g., about temperature. Conven-
tional DVFS schemes are therefore pessimistic about particular
individualCPUs, often choosing higher voltages than are needed
to operate safely. They also neglect the effect of temperature,
losing the opportunity to save further power.

3.2 Technique

We have developed a methodology for exploiting the pro-
cess variation described in Section 3.1 that can be used to make
anyvoltage and frequency scaling algorithm adapt to individual
CPUs and their temperature, thereby permitting a reductionin
power consumption.

Our technique uses offline profiling of the processor to find
the minimum stable voltages for different combinations of tem-
perature and frequency. Online temperature and frequency mon-
itoring is then used to set the voltage according to the profile.
The offline profiling is virtually identical to that of Section 3.1
and needs to be done only once. Currently, it is implemented
as a watchdog timer-driven script on a modified Knoppix Live
CD that writes the profile to a USB flash drive. To apply our
scheme, the temperature is read from the online sensors thatexist
in the processor. The frequency, on the other hand, is determined
by the dynamic frequency scaling algorithm in use. By setting
the voltage based on the processor temperature, frequency,and
profile, we adapt to the operating environment. While the fre-
quency can be readily determined (or controlled), temperature
changes dynamically. Hence, the algorithm has built-in filtering
and headroom to account for this fact. Our algorithm behaves
conservatively and sets the voltage such that even if there is a
change of5◦C in temperature before the next reading (one Hertz
rate), the processor will continue working correctly.

A reader may at this point be concerned that our reduction of
the timing safety margin from datasheet norms might increase
the frequency of timing errors. However, PDVS carefully deter-
mines the voltage required for reliable operation for each pro-
cessor; that is, it finds theindividual processor’s safety margin.
Moreover, it decreases the operating temperature of the proces-
sor, which reduces the rates of lifetime failure processes.If char-
acteristics of processors change as a result of wear, PDVS can
adapt by infrequently, e.g., every six months, repeating the of-
fline characterization process. To determine processor reliability
when using reduced operating voltage, we ran demanding pro-
grams test the stability of different processor components, e.g.,
the ALU, at lower voltages. We have set the processor to work
at modified supply voltages as indicated in Figure 3. The system
remained stable for approximately two months, at which point
we terminated testing. Although observing the stable operation
of one machine does not prove reliability, it is strong evidence.

4 Evaluation
We now evaluate UDFS and PDVS in isolation and together.

We compare against the native Windows XP DVFS scheme, dis-
playing reductions in power and temperature.

Our evaluations are based on user studies, as described in
Section 1.1 and elaborated upon here. For studies not involv-
ing UDFS, we trace the user’s activity on the system as he uses
the applications and monitor the selections DVFS makes in re-
sponse. For studies involving UDFS, the UDFS algorithm is used
online to control the clock frequency in response to user button
presses. We begin by describing a user study of UDFS that pro-
vides both independent results and traces for later use. Next, we
consider PDVS as applied to the Windows DVFS algorithm. We
then consider UDFS with and without PDVS, comparing to Win-
dows DVFS. Here, we examine both dynamic CPU power (using
simulation driven from the user traces) and system power mea-
surement (again for a system driven from the user traces). In
measurement, we consider not only power consumption, but also
CPU temperature. Finally, we discuss a range of other aspects of
the evaluation of the system.

The following claims are supported by our results:
• UDFS effectively employs user feedback to customize

processor frequency to the individual user. This typically
leads to significant power savings compared to existing
dynamic frequency schemes that rely only on CPU
utilization as feedback. The amount of feedback from the
user is infrequent, and declines quickly over time as an
application or set of applications is used.

• PDVS can be easily incorporated into any existing DVFS
scheme, such as the default Windows scheme, and leads to
dramatic reductions in power use by lowering voltage
levels while maintaining processor stability.

• In most of the cases, the effects of PDVS and UDFS are
synergistic: the power reduction of UDFS+PDVS is more
than the sum of its parts.

• Multitasking increases the effectiveness of UDFS+PDVS.
• Together and separately, PDVS and UDFS typically

decrease CPU temperature, often by large amounts,
increasing both reliability and longevity. In addition, the
effects of PDVS and UDFS on temperature are synergistic.

There are limitations to using summary statistics to compare
results withn = 20. Although we have done statistical tests1 to
support our comparisons, we also try to provideunsummarized
data to the largest extent possible given space limitationsso that
the readers can use their own judgment. As can be seen from the
paper, the differences are very large and thus unlikely to bedue
to chance.

4.1 UDFS

To evaluate the UDFS schemes, we ran a study with 20 users.
Experiments were conducted as described in Section 1.1. Each
user spent 45 minutes to

1Although we have also done unpaired t-tests, we generally base our compar-
isons on Chebyshev bounds. Chebyshev bounds allow us to avoid assumptions
about the distribution of the data and are looser bounds, hence making our results
stronger.

Power Reduction (%)
Application over Max Freq.

DVFS DVFS+PDVS
PowerPoint + Music 83.08 90.67

3D Shockwave Animation 3.19 40.67
FIFA Game 1.69 39.69

Figure 4. Power reduction for Windows DVFS and
DVFS+PDVS

1. Fill out a questionnaire stating level of experience in the
use of PCs, Windows, Microsoft PowerPoint, music, 3D
animation video, and FIFA 2005 from among the following
set: “Power User”, “Typical User”, or “Beginner” (2
minutes);

2. Read a one page handout (2 minutes);

3. Acclimatize to the performance of our machine by using
the above applications (5 minutes);

4. Perform the following tasks for UDFS1: Microsoft
PowerPoint plus music (4 minutes); 3D Shockwave
animation (4 minutes); FIFA game (8 minutes); and

5. Perform the same set of tasks for UDFS2.

Each user was instructed to press the F11 key upon discomfort
with application performance. We recorded each such event as
well as the CPU frequency over time.

As one might expect, the average frequency at which users are
comfortable is higher for the Shockwave animation and the FIFA
game. However, there is a large variation in acceptable frequency
among the users for the animation and game. Generally, UDFS2
achieves a lower average frequency than UDFS1. For both al-
gorithms it is very rare to see the processor run at the maximum
CPU frequency for these applications. Even the most sophisti-
cated users were comfortable with running the tasks with lower
frequencies than those selected by the dynamic Windows DVFS
scheme. Sections 4.3 and 4.4 give detailed, per-user results for
UDFS (and UDFS+PDVS).

4.2 PDVS

Using the experimental setup described in Section 1.1, we
evaluate the effects of PDVS on the default Windows XP DVFS
scheme. In particular, we run the DVFS scheme, recording fre-
quency, then determine the power saving possible by settingvolt-
ages according to PDVS instead of using the nominal voltagesof
DVFS.

Figure 4 illustrates the average results, comparing stock Win-
dows DVFS and our DVFS+PDVS scheme. The baseline case
in this experiment is running the system with the highest possi-
ble CPU frequency and its corresponding nominal voltage. The
maximum power savings due to dynamic frequency scaling with
nominal voltages are observed for PowerPoint. For this ap-
plication, the system ran at the lowest clock frequency most
of the time, resulting in a reduction of 83.1% for the native
DVFS scheme. DVFS+PDVS reduces the power consumption
by 90.7%. For PowerPoint, adding PDVS to DVFS only reduces
power slightly.

-20

-10

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Users

%
 im

pr
ov

em
en

t
UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

Chebyshev bound
(0.99)

(0.99)

(a) Microsoft PowerPoint

-10

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

Users

%
 im

pr
ov

em
en

t

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

Chebyshev bound
(0.89)

(0.94)

(b) 3D Shockwave animation

-10

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

Users

%
 im

pr
ov

em
en

t

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

Chebyshev bound

(0.96)
(0.97)

(c) FIFA game

Figure 5. Comparison of UDFS algorithms,
UDFS+PDVS, and Windows XP DVFS (CPU Dy-
namic Power). Chebyshev bound-based (1 − p)
values for difference of means from zero are also
shown.

For the Shockwave animation and the FIFA game, the power
reductions due to dynamic frequency scaling are negligiblebe-
cause the Windows DVFS scheme runs the processor at the high-
est frequency most of the time. DVFS+PDVS, however, im-
proves the energy consumption of the system by approximately
40%, compared to the baseline. These results clearly demonstrate
the benefits of process-driven voltage scaling.

4.3 UDFS+PDVS (CPU dynamic power, trace-driven simu-
lation)

To integrate UDFS and PDVS, we used the system described
in Section 2.2, recording frequency over time. We then combine
this frequency information with the offline profile and techniques
described in Sections 3.1 and 3.2 to derive CPU power savings
for UDFS with nominal voltages, UDFS+PDVS, and the default
Windows XP DVFS strategy. We calculate the power consump-
tion of the processor. We have also measured online the power
consumption of the overall system, as described in Section 4.4.

We conducted a user study (n = 20) with exactly the same
structure presented in Section 2.2, except that Windows XP
DVFS was also considered. Figure 5 presents both individ-
ual user results and average results for UDFS1, UDFS1+PDVS,
UDFS2, and UDFS2+PDVS. In each case, power savings over
the default Windows DVFS approach are reported. To interpret
the figure, first choose an application. Next, note the last two bars
on the corresponding graph. These indicate the average perfor-
mance of UDFS1 and UDFS2, meaning the percentage reduction
in power use compared to Windows DVFS. Each bar is broken
into two components: the performance of the UDFS algorithm
without PDVS is the lower component and the improvement in
performance of the algorithm combined with PDVS is the up-
per component. The remaining bars on the graph have identical
semantics, but represent user-specific information.

For PowerPoint, UDFS1+PDVS and UDFS2+PDVS reduce
power consumption by an average of 56%. The standalone UDFS
algorithms reduce it by an average of 17–19%. User 3 with
UDFS2 is anomalous. This user pressed the feedback button sev-
eral times and as a result spent most of the time at high frequen-
cies.

For the Shockwave animation, we see much more mixed re-
sponses from the users, although on average we reduce power
by 55.1%. On average, UDFS1 and UDFS2 independently re-
duce the power consumption by 15.6% and 32.2%, respectively.
UDFS2 performs better for this application because the users
can be satisfied by ramping up to a higher frequency rather than
the maximum frequency supported by the processor. Note that
UDFS1 immediately moves to the maximum frequency on a
button press. User 17 with UDFS1 is anomalous. This user
wanted the system to perform better than the hardware permit-
ted and thus pressed the button virtually continuously evenwhen
it was running at the highest frequency. Adding PDVS lowers
average power consumption even more significantly. On aver-
age, the power is reduced by 49.2% (UDFS1+PDVS) and 61.0%
(UDFS2+PDVS) in the combined scheme.

There is also considerable variation among users for the FIFA
game. Using conventional DVFS, the system always runs at the
highest frequency. The UDFS schemes try to throttle down the
frequency over the time. They therefore reduce the power con-
sumption even in the worst case (0.9% and 2.1% for UDFS1
and UDFS2, respectively) while achieving better improvement,
on average (16.1% and 25.5%, respectively). Adding PDVS
improves the average power savings to 49.5% and 56.7% for
UDFS1 and UDFS2, respectively.

For the Shockwave animation and the FIFA game, we see a
large variation among users, but in all cases the combination of
PDVS and UDFS leads to power savings over Windows DVFS.
On average, in the best case, the power consumption can be re-
duced by 57.3% over existing DVFS schemes for all three appli-
cations. This improvement is achieved by combining the UDFS2
(24.9%) and PDVS (32.4%) schemes.

UDFS and PDVS are synergistic.The UDFS algorithms let us
dramatically decrease the average frequency, and PDVS’s bene-
fits increase as the frequency is lowered. At higher frequencies,

the relative change from the nominal voltage to the minimum
stable voltage is lower than that at lower frequencies. In other
words, the power gain from shifting to the minimum stable volt-
age is higher at the lower frequencies. However, at higher fre-
quencies, PDVS also gains from the variation in minimum stable
voltage based on temperature as shown in Figure 3. These two
different advantages of the PDVS result in power improvements
at at a wide range of frequencies.

UDFS+PDVS mean results have statistical significance even
with weak bounds.Figure 5 shows mean improvements across
our 20 users. Normality assumptions hold neither for the distri-
bution of individual user improvements nor for the error distri-
bution of the mean. Instead, to discard the null hypothesis,that
our mean improvements for UDFS+PDVS are not different from
zero, we have computed thep value for discarding the null hy-
pothesis using Chebyshev bounds, which are looser but rely on
no such assumptions. As can be seen from the figure,1 − p is
quite high, indicating that it is extremely unlikely that our mean
improvements are due to chance. We use Chebyshev bounds sim-
ilarly for other results.

User self-reported level of experience correlates with power
improvement. For example, for FIFA, experienced users ex-
pect faster response from the system causing the system to run
at higher frequencies, resulting in smaller power improvements.
Our interpretation is that familiarity increases both expectations
and the rate of user feedback to the control agent, making annoy-
ance with reduced performance more probable and thus leading
to higher frequencies when using the UDFS algorithms.

4.4 UDFS+PDVS (System power and temperature mea-
surement)

To further measure the impact of our techniques, we replay the
traces from the user study of the previous section on our laptop.
The laptop is connected to a National Instruments 6034E data
acquisition board attached to the PCI bus of a host workstation
running Linux, which permits us to measure the power consump-
tion of the entire laptop. The sampling rate is 10 Hz. During
the measurements, we have turned off the display of the laptop
to make our readings more comparable to the CPU power con-
sumption results of the previous section. Ideally, we wouldhave
preferred to measure CPU power directly for one-to-one compar-
ison with results of the previous section, but we do not have the
surface mount rework equipment needed to do so.

Power Figure 6 presents results for UDFS1, UDFS1+PDVS,
UDFS2, and UDFS2+PDVS, showing the power savings over the
default Windows DVFS approach. The Chebyshev bounds indi-
cate that the mean improvements are extremely unlikely to have
occured by chance.

For PowerPoint, UDFS1+PDVS and UDFS2+PDVS reduce
power consumption by averages of 22.6% and 22.7%, respec-
tively. For the Shockwave animation, although we see much
more variation, UDFS1 and UDFS2 reduce the power consump-
tion by 17.2% and 33.6%, respectively. Using UDFS together
with PDVS lowers average power consumption by 38.8% and
30.4% with UDFS1 and UDFS2, respectively. The FIFA game

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Users

%
 im

pr
ov

em
en

t

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

Chebyshev bound
(0.99)

(0.99)

(a) Microsoft PowerPoint

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Users

%
 im

pr
ov

em
en

t

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS Chebyshev bound
(0.75)

(0.89)

(b) 3D Shockwave animation

-10

0

10

20

30

40

50

60

70

80
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Users

%
 im

pr
ov

em
en

t

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS Chebyshev bound
(0.89)

(0.94)

(c) FIFA Game

Figure 6. Comparison of UDFS algorithms,
UDFS+PDVS, and Windows XP DVFS (measured
system power with display off). Chebyshev
bound-based (1−p) values for difference of means
from zero are also shown.

also shows considerable variation among users. On average,we
save 15.5% and 29.5% of the power consumption for UDFS1 and
UDFS2, respectively. Adding PDVS improves the average power
savings to 56.8% and 62.9% over Windows DVFS with UDFS1
and UDFS2, respectively.

On average, the power consumption of the overall system can
be reduced by 49.9% for all three applications. This improvement
is achieved by combining the UDFS2 scheme (22.1%) and PDVS
scheme (27.8%).

The results presented in the previous section, and in this sec-
tion, cannot be directly compared because the previous section
reports the simulated power consumption of the CPU and this
section reports the measured power consumption of the laptop.

40

50

60

70

80

90

100

DVFS UDFS1 UDFS2 DVFS+PDVS UDFS1+PDVS UDFS2+PDVS

D
eg

re
e

C
el

ci
us

Mean Max

(a) Microsoft Powerpoint

40

50

60

70

80

90

100

DVFS UDFS1 UDFS2 DVFS+PDVS UDFS1+PDVS UDFS2+PDVS

D
eg

re
e

C
el

ci
us

Mean Max

(b) 3D Shockwave animation

40

50

60

70

80

90

100

DVFS UDFS1 UDFS2 DVFS+PDVS UDFS1+PDVS UDFS2+PDVS

D
eg

re
e

C
el

ci
us

Mean Max

(c) FIFA game

Figure 7. Mean and peak temperature measure-
ment.

However, some conclusions can be drawn from the data in both
sections. For applications like PowerPoint, where the CPU con-
sumes only a small fraction of the system power, the benefit on
system power is low. On the other hand, for the applications
that originally result in high CPU power consumption, the system
power savings can be substantial due to the reduction in dynamic
power as well as the operating temperatures and consequently
leakage power.

Temperature We used CPUCool [39] to measure CPU tem-
perature in the system. Figure 7 shows the mean and peak tem-
peratures of the system when using the different combinations
of DVFS, PDVS, and UDFS schemes. The values reported for
UDFS and UDFS+PDVS are the averages over 20 users.

In all cases, the UDFS1 and UDFS2 schemes lower the tem-
perature compared to the Windows native DVFS scheme due
to the power reductions we have reported in the previous sec-
tions. The maximum UDFS temperature reduction is seen in
the case of the UDFS2 scheme used for the Shockwave appli-
cation (7.0◦C). On average, for all 3 applications, the UDFS1
and UDFS2 schemes reduce the mean temperature of the system
by 1.8◦C and3.8◦C, respectively. Similarly, PDVS reduces the
mean system temperature by8.7◦C on average for the three ap-
plications. The best improvement is observed for the FIFA game,
where temperature decreases by12.6◦C.

The combination of PDVS and UDFS is again synergistic,
leading to even greater temperature reductions than PDVS or
UDFS, alone. For the Shockwave application, UDFS2+PDVS re-

Algorithms
PowerPoint 3D animation FIFA Game

4 min 4 min 4 min 4 min
UDFS1 0.35 11.85 5.10 3.42
UDFS2 0.60 14.25 6.50 3.82

Figure 8. Average number of user events.

duces the mean temperature by19.3◦C. The average temperature
reductions in all three applications by the UDFS1+PDVS and
UDFS2+PDVS schemes are12.7◦C and 13.7◦C, respectively.
Our13.2◦C claim averages these two.

4.5 Discussion

We now discuss the degree of user interaction needed to make
UDFS work, the CPU reliability and longevity benefits of our
techniques, and the effects of multitasking.

User interaction While PDVS can be employed without user
interaction, UDFS requires occasional feedback from the user.
Minimizing the required rate of feedback button presses while
maintaining effective control is a central challenge. Our current
UDFS algorithms perform reasonably well in this respect, but
could be improved. Figure 8 presents the average number of an-
noyance button presses over a 4 minute period for both versions
of UDFS algorithms in our 20 user study. Generally, UDFS2
requires more frequent button presses than UDFS1, because a
single press only increments the frequency. The trade-off is that
UDFS1 generally spends more time at the maximum frequency
and thus is more power hungry. On average, a user pressed a
button every 8 minutes for PowerPoint, every 18 seconds for the
Shockwave animation, and every 50 seconds for the FIFA game.
During the course of the study, for the 3D animation, there were
some extreme cases in which the user kept pressing the button
even when the processor was running at the highest frequency.
This can be explained by the user’s dissatisfaction with theorig-
inal quality of the video or the maximum performance available
from the CPU, over which we had no control. If we omit the three
most extreme cases from both maximum and minimum number
of annoyances, on average a user presses the annoyance button
once every 30 seconds for the Shockwave application.

We also note that the system adapts to users quickly, leading
to a reduced rate of button presses. In the Figure 8, we show both
the first and second 4 minute interval for the FIFA game. The
number of presses in the second interval is much smaller thanthe
first. Our interpretation is that once a stable frequency hasbeen
determined by the UDFS scheme, it can remain at that frequency
for a long time, without requiring further user interaction.

Figure 9 records the average number of voltage transitions for
the six different schemes used in our study. A voltage transition
is caused either due to a button press or a significant change in
operating temperature. For the PowerPoint application, weob-
serve a reduction in the number of transitions because the spikes
observed for DVFS do not occur for UDFS1 and UDFS2. On
the other hand, the 3D animation and FIFA Game applications
have more voltage transitions than observed with Windows na-
tive DVFS, because they aim to reduce power by adjusting throt-
tle and, in effect, voltage. In contrast, conventional DVFSkeeps

Users

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 Mean

%
 im

pr
ov

em
en

t

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

Chebyshev bound

(0.75)

(0.97)

Figure 10. Power improvement in the multitask-
ing environment. Chebyshev bound-based (1− p)
values for difference of means from zero are also
shown.

the system at the highest frequency during the entire interval. The
increase in the number of transitions for the PDVS schemes im-
plemented on top of UDFS are caused by the extra voltage tran-
sitions due to changing temperature at a given frequency level.

Although we have not measured the “placebo effect” of pro-
viding a way to express irritation with computer performance in
this system, we have done so in similar earlier work related to
CPU resource management [14], where we found it to be small.
We did not measure the degree to which having to provide in-
put itself irritates the user, but we expect that the amount of such
direct input will decrease over time, especially using biometric
feedback, which we comment on in the related work.

Reliability and longevity In addition to its direct impact on
power consumption, our techniques may ultimately improve the
lifetime reliability of a system. Earlier research [32] showed that
the effect of operating temperature on integrated circuit’s mean
time to failure (MTTF) is exponential. As we show in Sec-
tion 4.4, our schemes can reduce the operating temperature by
13.2◦C on average, thereby potentially reducing the rate of fail-
ure due to temperature-dependent processes such as electromi-
gration.

Traditionally, the required supply voltage of a processor is
reported at the maximum operating temperature of the system.
Therefore, at temperatures below the maximum rated tempera-
ture, timing slack exists. As long as the current temperature is
below the highest rated operating temperature, the operating volt-
age can be reduced below the rated operating voltage withoutre-
ducing reliability below that of the same processor operating at
the rated voltage and at the maximum temperature.

Multitasking A natural question to ask is whether the ex-
tremely simple “press the button” user feedback mechanism we
use in UDFS is sufficient for describing user preferences in a
multitasking environment. To see the effect of UDFS in a multi-
tasking environment, we conducted a small study (n = 8) similar
to that of Section 4.1. Instead of several consecutive tasks, the
user was asked to watch a 3D animation using Microsoft Inter-
net Explorer while listening to MP3 music using Windows Media
Player in compact mode with visualization.

Figure 10 shows the measured system power improvements

compared to Windows DVFS. On average, the power consump-
tion of the overall system is reduced by 29.5% and 55.1% for
UDFS1 and UDFS2, respectively. Adding PDVS improves the
average power savings to 58.6% and 75.7% for UDFS1 and
UDFS2, respectively. Although these results are preliminary,
combined with the results from the combined PowerPoint+MP3
task described in Section 4.1, they suggest that the simple feed-
back mechanism is sufficient in a multitasking environment.It
is clearly a better proxy of the user’s satisfaction than theCPU
utilization of the combined task pool.

5 Related work
Dynamic voltage and frequency scaling (DVFS) is an effective

technique for microprocessor energy and power control for most
modern processors [13, 4]. Energy efficiency has been a major
concern for mobile computers. Fei et al. [11] proposed an energy
aware dynamic software management framework that improves
battery utilization for mobile computers. However, this technique
is only applicable to highly adaptive mobile applications.Re-
searchers have proposed algorithms based on workload decom-
position [6], but these tend to provide power improvements only
for memory-bound applications. Wu et al. [40] presented a de-
sign framework of a run-time DVFS optimizer in a general dy-
namic compilation system. The Razor [9] architecture dynami-
cally finds the minimal reliable voltage level. Dhar et al. [8] pro-
posed adaptive voltage scaling that uses a closed-loop controller
targeted towards standard-cell ASICs. These schemes are similar
to the PDVS scheme. However, our approach is completely op-
erating system controlled and does not require any architectural
modifications and therefore incurs no hardware overhead. In-
tel Foxton technology [19] provides a mechanism for select Intel
Itanium 2 processors to adjust core frequency during operation
to boost application performance. However, unlike PDVS it does
not perform any dynamic voltage setting.

Other DVFS algorithms use task information, such as measur-
ing response times in interactive applications [24, 42] as aproxy
for the user. Unlike our work, which monitors theuser, Ver-
tigo [12] monitors the application and PICSEL [25] monitorsthe
changes on the display. Xu et al. proposed novel schemes [41]
minimizing energy consumption in real-time embedded systems
that execute variable workloads. However, they try to adaptto
the variability of the workload rather than to the users. Au-
toDVS [15] is a dynamic voltage scaling (DVS) system for hand-
held devices. They used user activity as an indicator to detect
computationally intensive CPU intervals and use that to drive
DVS. In contrast, UDFS uses user activity to directly control the
frequency of the system. Ranga et al. proposed energy-aware
user interfaces [27] based on usage scenarios, but they concen-
trated on the display rather than the CPU.

Gupta et al. [14] demonstrated a high variation in user toler-
ance for different CPU, memory, and disk resource levels. Anand
et al. [1] discussed the concept of a control parameter that could
be used by the user. However, they focus on the wireless net-
working domain, not the CPU. Second, they do not propose or
evaluate a user interface or direct user feedback. The UDFS com-
ponent of our work is significantly different as compared to these

Applications DVFS DVFS+PDVS UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS
PowerPoint+Music 11.00 11.00 4.40 4.65 6.55 6.50

3D Animation 3.00 4.00 10.30 11.50 16.3 17.55
FIFA Game 6.00 6.00 18.06 18.05 28.85 29.30

Figure 9. Number of voltage transitions

approaches as it employs direct user feedback instead of a proxy
for the user. Theocharous, et al. [35] carefully investigated the
use of machine learning techniques to customize power manage-
ment to users. Shye et al. [29] study the relationship between
user satisfaction and hardware performance counters. Theyalso
present an algorithm that aims at learning user satisfaction with
different frequencies. However, their approach is not dynamic.
In addition, they do not evaluate their scheme in combination
with other schemes (such as the PDVS scheme we analyze in this
work). The same group has also proposed biometric approaches
for garnering user satisfaction, which can reduce or eliminate
user interaction with the power management system [30].

Dynamic thermal management is an important issue for mod-
ern microprocessors due to the expense of cooling solutions. Pre-
vious work has discussed microarchitectural modeling and opti-
mization based on temperature [7, 28, 31]. Liu and Svensson
made a trade-off between speed and supply voltage [23]. Brooks
and Martonosi [5] proposed dynamic thermal management for
high-performance processors. Transmeta’s Crusoe [36] andIn-
tel’s Pentium-M [13] are notable commercial products that uses
innovative dynamic thermal management. Leveraging core-to-
core process variation is studied in detail by Teodorescu and Tor-
rellas [34]. To the best of our knowledge, however, the PDVS
component of our work is the first to consider exploiting process
variation via per-CPU customization using profiling [22]. In ad-
dition, it is the first scheme to consider temperature in voltage
level decisions.

6 Conclusion

We have identified processor and user pessimism as key fac-
tors holding back effective power management for processors
with support for DVFS. In response, we have developed and
evaluated the following new, process- and user-adaptive DVFS
techniques: process-driven voltage scaling (PDVS) and user-
driven frequency scaling (UDFS). These techniques dramatically
reduce CPU power consumption in comparison with existing
DVFS techniques. Extensive user studies show that we can re-
duce power on average by over 50% for single task and over
75% for multitasking workloads compared to the Microsoft Win-
dows XP DVFS scheme. Furthermore, CPU temperatures can be
markedly decreased through the use of our techniques. PDVS
can be readily used along with any existing frequency scaling
approach. UDFS requires that user feedback be used to direct
processor voltage and frequency control. PDVS and UDFS are
synergistic. UDFS leads to lower average frequencies and PDVS
allows great decreases in voltage at low frequencies. We arecur-
rently exploring machine learning techniques to develop UDFS
algorithms that require even less input from the user.

References
[1] A NAND , M., NIGHTINGALE , E., AND FLINN , J. Self-tuning

Wireless Network Power Management. InThe Ninth Annual Inter-
national Conference on Mobile Computing and Networking (Mo-
biCom’03)(2003).

[2] BORKAR, S., KARNIK , T., NARENDRA, S., TSCHANZ, J., KE-
SHAVARZI , A., AND DE, V. Parameter Variations and Impact on
Circuits and Microarchitecture. InProceedings of the ACM/IEEE
Design Automation Conference (DAC)(2003).

[3] BRAKMO , L. S., O’MALLEY, S. W.,AND PETERSON, L. L. TCP
Vegas: New Techniques for Congestion Detection and Avoidance.
In Proceedings of the Conference on Communications Architec-
tures, Protocols and Applications(1994), pp. 24–35.

[4] BROCK, B., AND RAJAMANI , K. Dynamic Power Management
for Embedded Systems. InProceedings of the IEEE SOC Confer-
ence(2003).

[5] BROOKS, D., AND MARTONOSI, M. Adaptive Thermal Man-
agement for High-Performance Microprocessors. InWorkshop on
Complexity Effective Design(2000).

[6] CHOI, K., SOMA , R., AND PEDRAM, M. Dynamic Volt-
age and Frequency Scaling based on Workload Decomposition.
In Proceedings of The 2004 International Symposium on Low
Power Electronics and Design (ISLPED ’04)(2004), ACM Press,
pp. 174–179.

[7] COHEN, A., FINKELSTEIN, F., MENDELSON, A., RONEN, R.,
AND RUDOY, D. On Estimating Optimal Performance of CPU Dy-
namic Thermal Management.IEEE Computer Architecture Letters
2, 1 (2003), 6.

[8] DHAR, S., MAKSIMOVIC , D., AND KRANZEN, B. ClosedLoop
Adaptive Voltage Scaling Controller For Standard Cell ASICs. In
Proceedings of The International Symposium on Low Power Elec-
tronics and Design (ISLPED)(2005), pp. 251–254.

[9] ERNST, D., KIM , N. S., DAS, S., PANT, S., PHAM , T., RAO, R.,
ZIESLER, C., BLAAUW , D., AUSTIN, T., AND MUDGE, T. Ra-
zor: A Low-Power Pipeline Based on Circuit-Level Timing Specu-
lation. InACM/IEEE International Symposium on Microarchitec-
ture (MICRO)(2003).

[10] FALL , K., AND FLOYD , S. Simulation-based comparisons of
Tahoe, Reno and SACK TCP.SIGCOMM Computer Communi-
cation Review 26, 3 (1996), 5–21.

[11] FEI, Y., ZHONG, L., AND JHA , N. K. An Energy-aware Frame-
work for Coordinated Dynamic Software Management in Mobile
Computers. InIEEE/ACM Int. Symp. on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems(2004).

[12] FLAUTNER, K., AND MUDGE, T. Vertigo: Automatic
Performance-Setting for Linux. InProceedings of the 5th Sym-
posium on Operating Systems Design and Implementation (OSDI)
(December 2002).

[13] GOCHMAN, S.,AND RONEN, R. The Intel Pentium M Processor:
Microarchitecture and Performance. InIntel Technology Journal
(2003).

[14] GUPTA, A., L IN , B., AND DINDA , P. A. Measuring and Under-
standing User Comfort with Resource Borrowing. InProceedings
of the 13th IEEE International Symposium on High Performance
Distributed Computing (HPDC 2004)(June 2004).

[15] GURUN, S.,AND KRINTZ, C. AutoDVS: an Automatic, General-
purpose, Dynamic Clock Scheduling System for Hand-held De-
vices. InEMSOFT ’05: Proceedings of the 5th ACM international
conference on Embedded software(2005), pp. 218–226.

[16] INTEL CORPORATION. Intel Pentium M Datasheet.
http://developer.intel.com/design/mobile/
pentium-m/documentation.htm.

[17] INTEL CORPORATION. Intel Pentium M Processor Ther-
mal Management. http://www.intel.com/support/
processors/mobile/pm/sb/CS-007971.htm.

[18] JAIDER, M. Notebook Hardware Control Personal Edition.
http://www.pbus-167.com/chc.htm/.

[19] JOHN WEI. Foxton Technology Pushes Processor Fre-
quency, Application Performance.http://http://www.
intel.com/technology/magazine/computing/
foxton-technology-0905.htm.

[20] L IN , B. Human-driven Optimization. PhD thesis, Department of
Electrical Engineering and Computer Science, Northwestern Uni-
versity, July 2007. Available as Technical Report NWU-EECS-07-
04.

[21] L IN , B., AND DINDA , P. User-driven scheduling of interactive vir-
tual machines. InProceedings of the Fifth International Workshop
on Grid Computing(November 2004).

[22] L IN , B., MALLIK , A., DINDA , P., MEMIK , G., AND DICK , R.
Power reduction through measurement and modeling of users and
cpus: Summary. InProceedings of the ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS)(June 2007). Extended version appears as
Northwestern EECS technical report NWU-EECS-06-11.

[23] L IU , D., AND SVENSSON, C. Trading Speed for Low Power by
Choice of Supply and Threshold Voltages. InIEEE J. Solid-State
Circuits (1993), vol. 28, pp. 10–17.

[24] LORCH, J.,AND SMITH , A. Using User Interface Event Informa-
tion in Dynamic Voltage Scaling Algorithms. InTechnical Report
UCB/CSD-02-1190, Computer Science Division, EECS, Univer-
sity of California at Berkeley, August 2002.(2002).

[25] MALLIK , A., COSGROVE, J., DICK , R., MEMIK , G., AND

DINDA , P. PICSEL: Measuring User-Perceived Performance to
Control Dynamic Frequency Scaling. InProceedings of the ACM
Architectural Support for Programming Languages and Operating
Systems (ASPLOS)(2008).

[26] M ICROSOFT CORPORATION. Performance Logs and Alerts
overview.http://www.microsoft.com/windows2000/
en/advanced/help/.

[27] RANGANATHAN , P., GEELHOED, E., MANAHAN , M., AND

NICHOLAS, K. Energy-Aware User Interfaces and Energy-
Adaptive Displays.Computer 39, 3 (2006), 31–38.

[28] ROHOU, E., AND SMITH , M. Dynamically Managing Processor
Temperature and Power. In2nd Workshop on Feedback Directed
Optimization(Nov 1999).

[29] SHYE, A., OZISIKYILMAZ , B., MALLIK , A., MEMIK , G.,
DINDA , P., DICK , R., AND CHOUDHARY, A. Learning and
Leveraging the Relationship between Architecture-Level Measure-
ments and Individual User Satisfaction. InProceedings of the In-
ternational Symposium on Computer Architecture (ISCA)(2008).

[30] SHYE, A., PAN , Y., SCHOLBROCK, B., MILLER , J. S., MEMIK ,
G., DINDA , P., AND DICK , R. Power to the people: Leveraging
human physiological traits to control microprocessor frequency. In
Proceedings of the 41st Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO)(November 2008).

[31] SKADRON, K., STAN , M. R., SANKARANARAYANAN , K.,
HUANG, W., VELUSAMY, S., AND TARJAN, D. Temperature-
aware Microarchitecture: Modeling and Implementation.ACM
Trans. Archit. Code Optim. 1, 1 (2004), 94–125.

[32] SRINIVASAN , J., ADVE, S. V., BOSE, P., AND RIVERS, J. A.
The Case for Lifetime Reliability-Aware Microprocessors. InThe
International Symposium on Computer Architecture(ISCA)(2004).

[33] STEVENS, W. TCP Slow Start, Congestion Avoidance, Fast Re-
transmit and Fast Recovery Algorithms. InInternet RFC 2001
(1997).

[34] TEODORESCU, R.,AND TORRELLAS, J. Variation-aware applica-
tion scheduling and power management for chip multiprocessors.
In Proceedings of the International Symposium on Computer Ar-
chitecture (ISCA)(June 2008).

[35] THEOCHAROUS, G., MANNOR, S., SHAH , N., GANDHI , P.,
KVETON, B., SIDDIQI , S., AND YU, C.-H. Machine learning
for adaptive power management.Intel Technology Journal 10, 4
(November 2006).

[36] TRANSMETA CORPORATION. The Technology Behind the Crusoe
Processor, (2000).

[37] WAIZMAN , A., AND CHUNG, C. Resonant free Power Network
Design using Extended Adaptive Voltage Positioning (EAVP)
Methodology. IEEE Transactions on Advanced Packaging 24, 3
(August 2001), 236–244.

[38] WANG, Z., AND CROWCROFT, J. Eliminating Periodic Packet
Losses in the 4.3-Tahoe BSD TCP Congestion Control Algorithm.
In ACM Computer Communications Review(1992).

[39] WOLFRAM PODIEN. CPUCool. http://www.cpufsb.de/
CPUCOOL.HTM.

[40] WU, Q., REDDI, V., WU, Y., LEE, J., CONNORS, D., BROOKS,
D., MARTONOSI, M., AND CLARK , D. W. Dynamic Compila-
tion Framework for Controlling Microprocessor Energy and Per-
formance. In38th International Symposium on Microarchitecture
(MICRO-38)(2005).

[41] XU, R., MOSS, D., AND MELHEM, R. Minimizing Expected
Energy in Real-time Embedded Systems. InProceedings of the 5th
ACM international conference on Embedded software(EMSOFT)
(2005), pp. 251–254.

[42] YAN , L., ZHONG, L., AND JHA , N. K. User-perceived Latency
based Dynamic Voltage Scaling for Interactive Applications. In
Proceedings of ACM/IEEE Design Automation Conference (DAC
’05) (2005).

