Fault-tolerant Circuit Design

Yiping Kang
Zhi Qu
Zhan Wang
Oct 24th, 2013

Outline

e Introduction

* Fault-tolerance Design
 Module Redundancy
* Error Correction Code (ECC)
* Timing Error Detection (Razor)

 Conclusion

Introduction

* Circuits are becoming more unreliable as technology scale

. 'ISD e e s SRR e SRR :
* Microprocessors are everywhere

e Consumer Products
* Data Centers

1{}[] - - - - /;,./

7 S U W WA BN S 740 B

RHelative failure rate

e Better not to break, huh...

ol o—a e IR
180 130 90 65 45 32 22 16
Technology node (nm)

Shekhar Borkar, Intel Fellow

Microprocessor Reliability

Infant
Mortality

Device Failure Rate
(Population of Processors)

Potential Manufacturing
Defects

Future Generation Silicon
Process Technologies |

Soft Errors

|
|
|
Grace Peric%d

o

Process Variation

Breakdown
Period

Age-Related
Wearout

Gate-Oxide
Dielectric Breakdown

Operation

Time

Robust Computing in the
Nanoscale Era, Todd Austin

Error Classes

* Permanent Fault (hard fault)
* Physical damage
* Can NOT be reverted
* E.g, latent manufacturing defects

* Transient Fault (soft error)
 Single-event upsets (SEU)
 Particle strikes
* |[nterconnect noises

Fault-tolerance Design

« DMR, TMR
e Error Detection Code

* Timing Error Detection and Recovery

DMR Error Detection

* Context: Dual-modular redundancy for computation
* Problem: Error detection across blades

= f=ab + cd

fy = (a+b)(c+d)

Processor
' Oy A - f

P aT=20 AN .
YV Y, ' d— ﬁ; error if O

Processor E’3D7 ‘
Type B c

Triple Modular Redundancy (von Neumann)

* M are identical modules or black boxes

* Vis called a majority organ by Von Neumann. (a voting circuit)

N

""'h.,_____hh_

Myi=1)A

M

Figure I Triple redundancy as originally en-
visaged by Yon Neumann.

Mii-ne

"""H-HAI

| Mi-1C

= O

Wiy

Mii+1e

Miielic

0

Figure 2 Triple-modular-redundant configura-

tion.

Error Correction Code

* Assumption: only one bit is incorrect

* Checking bit: (i.e. 1, 2,4,8,16...)

* Each checking bit can check several other bits
* Several checking bit can check one single bit
(Puzzled?)

1 (2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Code 0 [0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 1

Error Correction Code

* Even Parity: make the number of bit 1 in checking range even.
e Simple illustration: Venn Diagram

A

Check bit: p1 p2 p3
Data bit: d1d2 d3 d4

http://en.wikipedia.org/wiki/File:Hamming(7.4).svg

Error Correction Code

* Assign slot: 1111000010101110 -> xx1x111x0000101x01110

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Code

X

X

1

X

1

1

1

X

0

0

0

0

1

0

1

X

0

1

1

1

0

Checking Bit = 2"
m=0,12...

Error Correction Code

* Assign checking bit: Each Bit = Z 2"
s 1=1 m=0,12...

e 2=2

® 3=1+2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Bit 1 X X X X X X X X X

* 4=4 s T T [D T I T Ix

° 5:1+4 E::Sm S N B E s e X [x [|x [x [x
Original | O 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 0

° 6=2+4 code

* 7=1+2+4 Use Even Parity to determine the value of checking bit

. ... Xx1x111x0000101x01110 -> 001011100000101101110

Error Correction Code

2 4 6 7 8 10 |11 (12 (13 |14 |15 (16 |17 |18 |19 (20 |21
Bit 1 X X X X X X X
Bit 2 X X X X X X X X X
Bit 4 X X X X X X X X X
Bit 8 X X X X X X X
Bit 16 X X X X X X
Original 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0
code
Wrong 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0
code 1

001011100000101101110->001001100000101101110

Error Correction Code

e Step 1: Check the Even Parity Invariant:

Check bit Number of 1s Result
1 5 Odd
2 6 Even
4 5 Odd
8 2 Even
16 4 Even

e Step 2: Ignore correct bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Bit1 X X X X X X X X X X X
Bit 2 X X X X X X X X X X
Bit 4 X X X X X X X X X X
Bit 8 X X X X X X X X
Bit 16 X X X X X X

e Step 3: Find the mutual wrong bit

1 |4 5
Bitl |X X
Bit 4 X |X

Detected bit 5 is wrong!

e Step 4: Invert bit 5
001001100000101101110 ->001011100000101101110

DVS and Timing Error

* Sometimes processor don’t need to operate a high frequency
* 1080P video playback vs MP3 playback

* Dynamic Voltage Scaling (DVS)

* Scale down clock frequency and supply voltage during non-critical instructions

* Critical voltage — lowest voltage under which the processor can ensure correct
operation

* Margins added to consider process and ambient variations
* Limit the degree of energy reduction
* Timing errors

* Computational logic does not finish during the intended clock cycle
* Next rising edge loses the value

Razor [Austin/Blaauw/Mudge]

* In-situ detection and correction of timing errors

dk cycle 1 cycle 2 cycle 3 cycle 4
[m o o o o o
- i ‘|:|_| clock
Logic Stage —————p! | D1 ™ Ma_V o Logic Stage -, ;
g o n T — i H
L1 —v‘ 11| Fip-Fop : L2 clock_d { ' 1 4,‘
Emor L '-, i
I ! :

1 — - !

D b . ;

|| sracon _:D X | instr 1 >< instr 2 E
Latch = { 5
comparator / LS f

|

1 / ;

*1) RAZOR FF ‘ i e Error 4 i

ck gel Q B instr 1 “Xj instr 2
| | I H ' '

(a) (b)

e L | S

Razor, Micro’03

Razor [Austin/Blaauw/Mudge]

* In-situ detection and correction of timing errors
* Tune supply voltages dynamically according to error rates
* Low error rates -> computation finished too quick -> lower voltage
* High error rates -> clock period constraints are being violated -> increase voltage

e Eliminate margins(process variation,temperature,dopant variations,coupling noise)
* There variations may be data-dependent
* Processor can operate under sub-critical voltage

Razor [Austin/Blaauw/Mudge]

* Meta-stability-tolerant design
 Voltage hovers near Vdd/2
* Have a meta-stability checker
* Tow inverters that switch at different voltage levels
* Error signal is double latched to detect a panic signal

e Up to 64.2% of energy savings

* With little performance overhead (less than 3%)

Conclusion

* Circuit reliability becomes a bigger issue as technology scales

* Fault-tolerant Design
* Double/Triple Module Redundancy
* Error Correction Code
* Timing Error Detection and Recovery (Razor)

 Research focus in architecture and circuit

References

R. E. Lyons and W. Vanderkul, “The Use of Triple-Modular Redundancy to Improve
Computer Reliability”. IBM JOURNAL APRIL 1962

Structured Computer Organization, 6" Edition, by Tanenbaum and Austin

Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation, Dan Ernst
et.al. MICRO’03

Designing Reliable Systems From Unreliable Components: The Challenges of
Transistor Variability and Degradation, Shekhar Borkar, Intel Fellow

* Robust Computing in the Nanoscale Era, Todd Austin, University of Michigan

* http://www.sourceresearch.com/newsletter/ESD.cfm?emART

