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Introduction

* Circuits are becoming more unreliable as technology scale
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* Microprocessors are everywhere

e Consumer Products
* Data Centers
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e Better not to break, huh...
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Shekhar Borkar, Intel Fellow



Microprocessor Reliability
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Error Classes

* Permanent Fault (hard fault)
* Physical damage
* Can NOT be reverted
* E.g, latent manufacturing defects

* Transient Fault (soft error)
 Single-event upsets (SEU)
 Particle strikes
* |[nterconnect noises



Fault-tolerance Design

« DMR, TMR
e Error Detection Code

* Timing Error Detection and Recovery



DMR Error Detection

* Context: Dual-modular redundancy for computation
* Problem: Error detection across blades
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Triple Modular Redundancy (von Neumann)

* M are identical modules or black boxes

* Vis called a majority organ by Von Neumann. (a voting circuit)
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Figure I Triple redundancy as originally en-
visaged by Yon Neumann.
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Figure 2 Triple-modular-redundant configura-

tion.



Error Correction Code

* Assumption: only one bit is incorrect

* Checking bit: (i.e. 1, 2,4,8,16...)

* Each checking bit can check several other bits
* Several checking bit can check one single bit
(Puzzled?)

1 (2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Code 0 [0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 1




Error Correction Code

* Even Parity: make the number of bit 1 in checking range even.
e Simple illustration: Venn Diagram

A

Check bit: p1 p2 p3
Data bit: d1d2 d3 d4

http://en.wikipedia.org/wiki/File:Hamming(7.4).svg



Error Correction Code

* Assign slot: 1111000010101110 -> xx1x111x0000101x01110
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m=0,12...




Error Correction Code

* Assign checking bit: Each Bit = Z 2"
s 1=1 m=0,12...

e 2=2

® 3=1+2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Bit 1 X X X X X X X X X

* 4=4 s T T [ D T I T Ix

° 5:1+4 E::Sm S N B E s e X [x [|x [x [x
Original | O 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 0

° 6=2+4 code

* 7=1+2+4 Use Even Parity to determine the value of checking bit

. ... Xx1x111x0000101x01110 -> 001011100000101101110



Error Correction Code

2 4 6 7 8 10 |11 (12 (13 |14 |15 (16 |17 |18 |19 (20 |21
Bit 1 X X X X X X X
Bit 2 X X X X X X X X X
Bit 4 X X X X X X X X X
Bit 8 X X X X X X X
Bit 16 X X X X X X
Original 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0
code
Wrong 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0
code 1

001011100000101101110->001001100000101101110




Error Correction Code

e Step 1: Check the Even Parity Invariant:

Check bit Number of 1s Result
1 5 Odd
2 6 Even
4 5 Odd
8 2 Even
16 4 Even

e Step 2: Ignore correct bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Bit1 X X X X X X X X X X X
Bit 2 X X X X X X X X X X
Bit 4 X X X X X X X X X X
Bit 8 X X X X X X X X
Bit 16 X X X X X X




e Step 3: Find the mutual wrong bit

1 |4 5
Bitl |X X
Bit 4 X |X

Detected bit 5 is wrong!

e Step 4: Invert bit 5
001001100000101101110 ->001011100000101101110



DVS and Timing Error

* Sometimes processor don’t need to operate a high frequency
* 1080P video playback vs MP3 playback

* Dynamic Voltage Scaling (DVS)

* Scale down clock frequency and supply voltage during non-critical instructions

* Critical voltage — lowest voltage under which the processor can ensure correct
operation

* Margins added to consider process and ambient variations
* Limit the degree of energy reduction
* Timing errors

* Computational logic does not finish during the intended clock cycle
* Next rising edge loses the value



Razor [Austin/Blaauw/Mudge]

* In-situ detection and correction of timing errors
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Razor [Austin/Blaauw/Mudge]

* In-situ detection and correction of timing errors
* Tune supply voltages dynamically according to error rates
* Low error rates -> computation finished too quick -> lower voltage
* High error rates -> clock period constraints are being violated -> increase voltage

e Eliminate margins(process variation,temperature,dopant variations,coupling noise)
* There variations may be data-dependent
* Processor can operate under sub-critical voltage



Razor [Austin/Blaauw/Mudge]

* Meta-stability-tolerant design
 Voltage hovers near Vdd/2
* Have a meta-stability checker
* Tow inverters that switch at different voltage levels
* Error signal is double latched to detect a panic signal

e Up to 64.2% of energy savings

* With little performance overhead (less than 3%)



Conclusion

* Circuit reliability becomes a bigger issue as technology scales

* Fault-tolerant Design
* Double/Triple Module Redundancy
* Error Correction Code
* Timing Error Detection and Recovery (Razor)

 Research focus in architecture and circuit



References

R. E. Lyons and W. Vanderkul, “The Use of Triple-Modular Redundancy to Improve
Computer Reliability”. IBM JOURNAL APRIL 1962

Structured Computer Organization, 6" Edition, by Tanenbaum and Austin

Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation, Dan Ernst
et.al. MICRO’03

Designing Reliable Systems From Unreliable Components: The Challenges of
Transistor Variability and Degradation, Shekhar Borkar, Intel Fellow

* Robust Computing in the Nanoscale Era, Todd Austin, University of Michigan

* http://www.sourceresearch.com/newsletter/ESD.cfm?emART



