
Operating system power minimization through run-time

processor resource adaptation

Tao Li a,*, Lizy Kurian John b

a Department of Electrical and Computer Engineering, University of Florida, 223 Larsen Hall, P.O. Box 116200, Gainesville, FL 32611, USA
b Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, USA

Available online 6 January 2006

Abstract

The increasingly constrained power budget of today’s microprocessor has resulted in a situation where power savings of all components in a

system have to be taken into consideration. The Operating System (OS), which manages both software and hardware resources, dissipates a

significant portion of power in the execution of many modern applications. This paper profiles run-time OS power/performance characteristics and

advocates a routine based OS-aware microprocessor resource adaptation mechanism to save run-time OS power. This approach permits precise

hardware reconfigurations for the OS with low overhead and allows fine-grained performance/power tuning at the microarchitectural level.

Simulation results show that compared to existing sampling-based adaptation schemes, this novel methodology yields a more attractive power and

performance trade-off on OS execution. To our knowledge, this work is the first to address the power saving issue of the OS itself, an increasingly

important area that has been largely overlooked in previous studies.

q 2006 Elsevier B.V. All rights reserved.

Keywords: Adaptive computing; Design; High-performance; Low-power-design; Performance trade-offs; Reconfigurable-systems; System-level
1. Introduction

Today’s high-performance microprocessor constitutes

millions of transistors clocked at Gigahertz frequency, which

results in significant power dissipation [24]. Its performance-

driven market and increasingly constrained power budget

necessitates an effort to save power in all of its components,

from circuits to the software it runs [3–5,11–14,23,27,29,36].

For example, dynamic thermal management [20,35] may have

to be used to slow down the chip’s execution when its

temperature exceeds a given threshold or in a battery-driven

computing environment, an application may have to be

executed with a degraded QoS setting when the available

battery energy is low [2,29].

The increasing concern on the power issue drives the need

for the above performance/energy trade-offs for all com-

ponents of a system [14]. The Operating System (OS) which

manages both hardware and software resources, constitutes a

major software component of today’s complex systems

implemented with high-end and general-purpose
0141-9331/$ - see front matter q 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2005.12.001

* Corresponding author. Tel.: C1 352 392 9510; fax: C1 352 846 1416.

E-mail addresses: taoli@ece.ufl.edu (T. Li), ljohn@ece.utexas.edu

(L.K. John).
microprocessors, memory hierarchy and heterogeneous I/O

devices. Many modern and emerging workloads (e.g. database,

web servers and file/e-mail applications) exercise the OS

significantly [1,6,21]. OS execution not only occupies a large

fraction of machine cycles, but also accounts for a significant

amount of power dissipation. Using an energy-aware full

system simulation framework, we profiled OS power charac-

teristics on various system workloads. We observed that the

OS draws 32% of the total energy (CPU, cache and main

memory) on the studied workloads. Note too, that the

proportion of OS power consumption is projected to increase

due to increasing demands for system management activities,

such as thermal sensor reading, energy accounting and power

control for memory and I/O devices [2,26,35,36]. Clearly, in a

power constrained environment, OS power saving needs to be

addressed. However, previous studies [3–5,11,20,26,27,29,35]

focused entirely on reducing power for user-only applications.

To our knowledge, power saving and optimization for the OS

itself has received little attention.

In this paper, we explore the adaptation of processor

resources to reduce OS power consumption on today’s high

performance superscalar processors. These processors exploit

aggressive hardware design to maximize performance across a

wide range of targeted applications. It has been observed that a

program’s computational requirement, generally measured by

the instruction per cycle (IPC), varies during its execution [25].
Microprocessors and Microsystems 30 (2006) 189–198
www.elsevier.com/locate/micpro

http://www.elsevier.com/locate/micpro

Table 1

Baseline machine

Processor core

Technology/Vdd/frequency 0.18 mm/2.0 V/900 MHz

Fetch/issue/retire width 8

Physical register file 64

Instruction window size 128

Reorder buffer size 256

Function units MIPS R10000 Like

Branch target buffer (BTB) 2048-entry, four-way

Return address stack 32-entry w/misprediction repair

Branch prediction/penalty 24K-entry hybrid/10 cycles

Load store queue size 64

Memory hierarchy

MMU Fully associative TLB, 48-entries, 4 kb

page size

L1 I-cache 32 kb, two-way, 64 b blocks, 1 cycle

L1 D-cache 32 kb, two-way, 32 b blocks, 1 cycle

L2 Cache 512 kb, two-way, 128 b blocks, 9 cycle

Memory 256 Mb, 180 cycle access

T. Li, L.K. John / Microprocessors and Microsystems 30 (2006) 189–198190
By appropriately tuning processor resources to the actual needs

of the program, significant power savings can be achieved with

minimal impact on performance. To reduce power, hardware

can be dynamically adapted to provide appropriate resources to

the program’s computational demand. The OS IPC does not

scale well with the increasing superscalar capability, making it

an ideal candidate for resource adaptation. Given the

assumption that OS execution can be timely and accurately

detected, significant power savings can be achieved (with

tolerable performance penalty) by tailoring appropriate

processor computational resources to match the OS

requirements.

Current adaptation techniques [3–5,11] rely on periodic

sampling to match the program computational requirements

with processor resources. However, we show in this paper that

resource adaptation based on a sampling window becomes less

efficient when applied to the exception-driven and short-lived

OS execution [13]. Moreover, for large and sophisticated

programs like the OS, a naı̈ve sampling scheme does not

guarantee the optimal solution when both energy and

performance are under consideration. Therefore, we advocate

a routine based OS-aware microprocessor resource adaptation

scheme. The proposed innovative technique ensures that

processor resources match to the computational demands of

the OS in a timely and optimal fashion yet with low overhead.

Compared with existing techniques, the proposed scheme has

the following advantages: (1) OS-aware resource adaptation

guarantees the timely and fine-grained resolution required to

capture the exception-driven, short-lived OS activity. (2)

Adapting processor resources only at OS routine boundaries

largely eliminates reconfiguration latency. (3) Routine based

adaptation selects the optimal configuration for each individual

routine, yielding a more attractive power and performance

trade-off. (4) Aggressive optimizations can be safely applied to

certain OS routines to further save energy without degrading

performance.

This work makes the following contributions: (1) employing

a full-system power simulation framework, we profile the

power behavior of a commercial operating system across a

wide range of applications. (2) We analyze performance/power

trade-offs at the OS service routine level to identify power

saving opportunities in the OS. (3) We propose a novel

mechanism that allows the microprocessor to adapt its

resources to OS execution for power saving without incurring

significant overhead.

The rest of this paper is organized as follows: Section 2

describes our experimental methodology, including SoftWatt

simulator, machine configuration and studied workloads.

Section 3 presents OS power characterization and perform-

ance/power trade-off analysis. Section 4 introduces the

sampling-adaptation scheme and demonstrates the challenges

in sampling OS activity. Section 5 proposes the routine based

OS-aware microarchitecture adaptation scheme and discusses

its benefits. Section 6 presents simulation results. Section 7

discusses related work. In Section 8, we conclude with some

final remarks.
2. Experimental methodology

We use the complete system power simulator SoftWatt [7]

that models the power dissipation of the CPU, memory

hierarchy and a low-power disk subsystem to investigate the

power behavior of the OS. The SoftWatt tool, built on top of

the SimOS infrastructure [8], uses validated energy models

similar to other low-level power simulators like Wattch and

SimplePower [9,28]. By leveraging the SimOS cycle-accurate

and full-system simulation capability, SoftWatt captures power

dissipation of both applications and OS running on a detailed

system model. The simulated OS is a commercial version of

the SGI IRIX 5.3.

Table 1 gives the target system configuration of SoftWatt

that is used for our experiments. The simulated processor is an

eight-way issue, out-of-order superscalar with function unit

latency like MIPS R10000. The CPU model runs at 900 MHz

on 2.0 V supply voltage and uses 0.18 mm processing

technology. The memory hierarchy includes separate L1 data

and instruction caches, unified L2 cache and multiple-banked

main memory. The disk model is a SCSI HP97560

incorporated with low power features.

We use 13 applications that have different characteristics.

Pmake [39] is a parallel program development workload.

Vortex and gcc are two benchmarks from the SPECint95. The

sendmail benchmark [22] forwards emails using the Simple

Mail Transport Protocol (SMTP). Db, jess, javac and jack are

Java programs from the SPECjvm98 [19] suite executed on a

SGI-ported Sun Java Virtual Machine (JVM). We also use two

benchmarks that run on a relational database management

system (DBMS) engine-PostgreSQL [10]. The database is

populated with relational tables for the TPC-C [31] benchmark.

Postgres.select performs a sequential table scan of a table with

1 million rows and a selectivity of 3%. Postgres.update updates

a field of a 300,000 row table. Fileman performs popular file

management activities, such as copy, remove, tar -cvf and tar -

xvf operations. Osboot executes a complete OS booting

Table 2

Benchmarks and execution statistics

Benchmarks Total instructions (M) Description

pmake 1117 Two parallel compilation processes compile the modified Andrew benchmark

gcc 1036 Compiles pre-processed source into optimized SPARC assembly code

vortex 1811 A full object oriented database

sendmail 1494 UNIX electronic mail transport agent

fileman 177 File management application

db 201 Performs multiple database functions on a memory resident database

jess 467 Java expert shell system based on NASA’s CLIPS expert system

javac 366 The JDK 1.0.2 Java compiler compiling 225,000 lines of code

jack 1782 Parser generator with lexical analysis

postgres.select 1516 Object -relational DBMS PostgreSQL executes a select query

postgres.update 1438 Object-relational DBMS PostgreSQL executes an update query

postgres.join 1849 Object-relational DBMS PostgreSQL executes a join query

osboot 48 A complete OS boot sequence

0%

10%

20%
30%

40%

50%

60%

pm
ak

e
gc

c

vo
rte

x

se
nd

mail

file
man db jes

s
jav

ac jac
k

po
stg

re
s.s

ele
ct

po
stg

re
s.u

pd
ate

os
bo

ot
AVG

% of OS Cycles

% of OS Energy

92% 89% 93% 90%

Fig. 1. Percentage of energy dissipated by the OS.

T. Li, L.K. John / Microprocessors and Microsystems 30 (2006) 189–198 191
sequence from a root disk image and then generates a shell for

the user. Table 2 summarizes the benchmarks and statistics.

3. OS power characterizatcion and performance/power
trade-offs

Employing the SoftWatt framework, we profiled the power

behavior of the OS running on the above-described appli-

cations. We analyzed the performance/power trade-offs at the

OS service routine level to identify power saving opportunities

in the OS.

Fig. 1 shows the percentage of total energy (microprocessor

and memory subsystems) dissipated by the OS on the simulated

experimented applications. As can be seen, on the average, the

processor spends 41% of its time on the OS and the OS draws

32% of the total energy, making it a major power consumer.

This suggests implies that overlooking the OS effect can cause

significant software energy estimation error.

Modern operating systems are large, sophisticated software

and their complexities are hidden behind a relatively simple

interface—the OS kernel service routines, which provide a

commonly used interface for all applications to exercise the OS.

Just as instructions are the fundamental units of software

execution, the OS service routines can be thought of as the

fundamental unit of OS execution. The power consumed by the

OS can be thought of as the aggregation of the power cost of each

OS routine that is executed in the OS. Fig. 2 reveals the run-time

routine-level OS energy distribution across different bench-

marks. The x-axis indicates the serial numbers of unique OS

service routines and the y-axis shows the percentage of run-time

OS energy dissipated by that specific OS routine. In this study,

we investigate a total number of 186 OS service routines. Fig. 2

shows that different benchmarks invoke different OS services

and hence show different energy distribution patterns. For

example, on benchmarks filename, db, jess and postgres.select,

the OS energy dissipation is dominated by a small fraction of

frequently invoked service routines while on benchmarks

sendmail, postgres.update and osboot, the OS energy consump-

tion is contributed by a wide range of service routines.

Today’s high-performance microprocessor designs attempt

to push the performance envelope by employing aggressive out-
of-order execution mechanisms [30]. As a result, in a complex,

high performance superscalar processor, circuits used to exploit

ILP consume a dominant portion of the power [4,32]. We found

that data-path and pipeline structures, which support multiple

issue and out-of-order execution, consume 50% of the total

power on the examined OS routines. The inherent instruction

level parallelism (ILP) in the OS has been found to be much

lower than in user applications [1,6,21,38]. The nature of OS

code limits the available instruction level parallelism. For

example, the OS usually uses serializing instructions to

synchronize I/O operations. A serializing instruction requires

that all other instructions in the pipeline complete before it

executes. Moreover, much architecture treat privilege instruc-

tions, such as move to/from special register, TLB management,

explicit cache operations, and interrupt/exception return, as

serialization instructions. To handle precise exceptions, the

processor pipeline must drain before OS code execution can

begin. Serializing instructions, interrupts and privilege level

changes, may spend considerable cycles in execution, forcing

the decoder to wait and thus increase the resource stalls, limiting

the available ILP. Fig. 3 compares the IPC of the user and the OS

running the twelve studied benchmarks on an eight-issue

machine. The OS IPC is 1.2!–2.4! lower than the user IPC,

suggesting that the OS does not exploit the superscalar

capabilities provided by the wide-issue, aggressive processor

as efficiently as user code does.

The energy consumed in the data-path during execution

usually depends on the number of instructions that flow

sendmail

0%

2%

4%

6%

8%

10%

12%

1 100 199

Unique OS Service Routine
Serial No.

%
 in

 T
ot

al

D
is

si
pa

te
d

E
ne

rg
y fileman

0%

10%

20%

30%

40%

50%

1 100 199

Unique OS Service Routine
Serial No.

%
 in

 T
ot

al
 D

is
si

pa
te

d
E

ne
rg

y

db

0%

10%

20%

30%

40%

50%

1 100 199

Unique OS Service Routine
Serial No.

%
 in

 T
ot

al
 D

is
si

pa
te

d
E

ne
rg

y

%
 in

 T
ot

al
 D

is
si

pa
te

d
E

ne
rg

y

jess

0%

10%

20%

30%

40%

1 100 199

postgres.
select

0%

10%

20%

30%

40%

50%

60%

1 100 199

postgres.
update

0%

10%

20%

osboot

0%

10%

20%

1 100 199

%
 in

 T
ot

al
 D

is
si

pa
te

d
E

ne
rg

y

Unique OS Service Routine
Serial No.

%
 in

 T
ot

al

D
is

si
pa

te
d

E
ne

rg
y

%
 in

 T
ot

al

D
is

si
pa

te
d

E
ne

rg
y

Unique OS Service Routine
Serial No.

Unique OS Service Routine
Serial No.

Unique OS Service Routine
Serial No.

1 100 199

Fig. 2. Routine level energy distributions in OS.

T. Li, L.K. John / Microprocessors and Microsystems 30 (2006) 189–198192
through it. The ILP performance measured by IPC certainly

impacts circuit switching activities in those microprocessor

components and can result in significant variation in power.

High IPC reflects the scenario in which most of the processor

structures are busy. On the other hand, main pipeline stalls or

bubbles (which lead to low IPC and can be easily clock gated)

will drastically reduce power dissipation.

To understand performance/power trade-offs on the OS, we

measure OS power and IPC on machines with different

configurations. As described in Table 1, the baseline machine

we consider is an aggressive, eight-issue superscalar processor.

To reduce its power consumption, the processor can be

reconfigured to six-issue, four-issue, two-issue and one-issue

modes by reducing its computational capacity. Previous studies

[3–5] observe that power consumption of a high-performance

superscalar machine is largely determined by the instruction

issue width and the scale of major microarchitectural

structures, such as: instruction window (IW), reorder buffer

(ROB) and load store queue (LSQ). Therefore, in six-issue

mode, we limit the instruction fetch, decode, issue and retire

width to be six and disable 1/4 of the IW, ROB and LSQ

entries. In four-issue, two-issue and one-issue modes, we

restrict the issue width to be 4, 2, and 1 and disable 1/2, 3/4, and

7/8 of the above resources (i.e. IW, ROB and LSQ)

respectively. Table 3 shows the OS IPC and power
0

0.5

1

1.5

2

2.5

IP
C

pmake vortex fileman jess jack p.update AVG
gcc sendmail db javac p.select osboot

User

OS

Fig. 3. IPC of user and OS on an eight-issue machine.
consumption (average over all benchmarks) on eight-issue,

six-issue, four-issue, two-issue, and one-issue machines

respectively. It can be seen that by reducing processor

resources, the four-issue machine saves 49% of power with a

performance loss of only 5%.

The OS IPC does not scale well with the increasing

superscalar capability, making it an ideal candidate for

resource adaptation. Given the assumption that OS execution

can be timely and accurately detected, significant power

savings can be achieved (with tolerable performance penalty)

by tailoring appropriate processor computational resources to

match the OS requirements.

4. Sampling based adaptation: challenges for OS

In prior research, the run-time periodic sampling of

measurable metrics (e.g. IPC) has ubiquitously been used to

estimate program computational demand and to guide

adaptations. In sampling based techniques, program execution

cycles are partitioned into fixed period intervals as in Fig. 4.

The duration of each interval is called a sampling window. A

performance metric, such as IPC, is measured within a

sampling window to estimate program computation demand

for the next execution interval window. At the boundaries of

each sampling window, adaptation decisions are made.

Current sampling-adaptation approaches [3,11] use a finite

state machine (FSM) to specify the transitions between

different configurations. For example, Fig. 5 shows a FSM

for transitioning between the normal mode (eight-issue) and

the low power modes (six-issue, four-issue, two-issue
Table 3

OS IPC and power on machines with different superscalar capability

One-issue Two-issue Four-issue Six-issue Eight-

issue

IPC 0.88 1.09 1.15 1.19 1.21

Power (W) 6.4 12.2 21.7 31.1 42.8

1 : !E6I&!E4I&!E2I&!E1I
2: E6I&!E4I&!E2I&!E1I
3: !D6I&!E4I
4: E4I
5: !D4I&!E2I
6: E2I
7: !D2I&!E1I
8: E1I
9: !D1I
10: D6I
11: D4I

2
issue

1
issue

8
issue

4 6

1

2

3
4

8

5

6

7 9

16

15

14

13

10

11

12

12: D2I

E6I : IPC<4.5 D6I : IPC>5.0 13:D1I
E4I : IPC<3.0 D4I : IPC>3.2 14:E4I&!E2I&!E1I
E2I : IPC<1.5 D2I : IPC>1.8 15:E2I&!E1I
E1I : IPC<0.5 D1I : IPC>0.8 16:E1I

issueissue

Fig. 5. FSM used in sampling based adaptation (trigger conditions and

thresholds are set and extended according to [3]).

Cycles

IPC (Inst. Per Cycle)

Adaptation

A B C D E F

Sampling
Window

Fig. 4. Sampling window.

T. Li, L.K. John / Microprocessors and Microsystems 30 (2006) 189–198 193
and one-issue) described in Section 3. The enabling (ExI) and

disabling conditions (DxI) and the IPC thresholds are set and

extended according to the one proposed by Bahar et al. [3]. For

example, the enabling conditions for entering the four-issue

mode are E4I or !D4I&!E2I or E4I&!E2I&!E1I, respectively. In

this paper, we consider this adaptation technique as the

baseline scheme.

At run-time, the estimated program IPC within the previous

sampling window serves as the input of the FSM to choose the

configurations for the current interval, as shown in Fig. 4. The

basic premise of this sampling algorithm is that past program

behavior indicates its future needs. The sampling window

period (Ts) determines the finest granularity at which program

phase changes can be resolved. Generally, Ts has to be small

enough to capture the changes in program behavior.

In practice, accomplishing an adaptation can cause a

performance penalty (latency marked as Ta in Fig. 6). In the

superscalar processor design, IW, LSQ and ROB are

implemented with a partitioned structure [5]. A reconfiguration

has to guarantee that there are no instructions left on the

partitions that will be deactivated. Additional care must be

taken in resizing the ROB and LSQ because of their circular
OS

User User UserOS OS

sampling window

smaller sampling
window

I II
Ta

Ts

Th

User Us

Fig. 6. Implications of sam
FIFO like structure [4]. Due to these restrictions, whenever an

adaptation decision is made, the dispatch unit stops pumping

instructions into the IW, LSQ and ROB until all existing

instructions are drained out from the partitions to be turned off.

This pipeline flushing like action can take a significant amount

of time, depending on the number of instructions already in the

pipeline and the number of cycles needed for them to complete

[11]. Moreover, compared with single mode only execution,

adaptations introduce extra latency due to pipeline warm-ups

after the reconfigurations. As shown in Fig. 6, reducing the

sampling window period (Th/Ts) provides the capability of

capturing fine-grained phase changes in execution. However,

the aggregated adaptation overhead can be prohibitive. This

fact prevents the use of a small sampling window without

significantly slowing down the program execution. In [4], a

sampling window of 2048 cycles is set. In [11], an even larger

resizing period is chosen for the entire program hotspot, which

could take several million cycles.

At run-time, user and OS execution appear alternately

within the sampling windows, as shown in Fig. 6. The OS is

activated voluntarily by a system call from the application, or

from a call by some other application, or implicitly by some

underlying periodic/asynchronous (timer/device interrupt)

mechanism. The IPC discrepancy between the user and the

OS indicates the different computational requirements when

the user/OS context switches. When the program phase shifts

(e.g. due to user/OS interactions), the prior interval becomes a

poor estimate for the next.

In traditional and performance-centric OS design, highly

optimized lightweight routines (e.g. faults and interrupt

handlers) are usually implemented in order to keep the number

of cycles down. Fig. 7 characterizes the average duration in

cycles of individual OS services (note that the y-axis uses

logarithmic scale). One can see that many OS service routines

show a short-lived execution period. Theoretically, given a

sampling interval of Ts, in order to accurately capture the phase

shift caused by an OS service and exploit the adapted

configuration for at least another sampling interval, the

duration of that OS service Tosd should be at least 2Ts cycles,

i.e. TosdR2Ts.

Fig. 7 shows that there are only 16 OS routines that satisfy

the above condition on the duration (R4096 cycles) required

by the 2048 cycle sampling interval, a window granularity

commonly used to avoid the costly reconfiguration overhead.

Fig. 8 further illustrates how OS service routines with different

duration contribute to the total OS energy dissipation (note that
OS

User

III

Userer

pling window sizes.

1 10 100 1,000 10,000 100,000

prctl
mmap

mprotect
msync

getrlimit
cacheflush

fchmod
sysinfo

xstat
lxstat
fxstat

ksigaction
sigprocmask
sigsuspend
getcontext
setcontext

waitsys

Duration (in Cycles)

4,096

1 10 100 1,000 10,000 100,000

time
brk

lseek
getpid
getuid
alarm

access
dup
pipe

getgid
ioctl

utssys
execve

fcntl
getdents
sigreturn

getsockname
sproc

Duration (in Cycles)

4,096

1 10 100 1,000 10,000 100,000

utlb
pfault
vfault

COW_fault
demand_zero

timein
simscsi_intr

if_etintr
du_poll

clock
syscall

exit
fork

read
write
open
close
unlink

Duration (in Cycles)

4,096

Fig. 7. Average duration of OS services (y-error bars show the maximum and minimum cycles).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 100 1,000 10,000 100,000

Duration of OS Services (in Cycles)

A
cc

um
ul

at
iv

e
O

S
 E

ne
rg

y

pmake
gcc
vortex
sendmail
fileman
db

4,096 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 100 1,000 10,000 100,000

Duration of OS Services (in Cycles)

A
cc

um
ul

at
iv

e
O

S
 E

ne
rg

y
jess
javac
jack
postgres.select
postgres.update
osboot

4,096

Fig. 8. Accumulative OS energy vs. OS service duration.

T. Li, L.K. John / Microprocessors and Microsystems 30 (2006) 189–198194
the x-axis uses logarithmic scale). It is observed that even

though some OS services are very efficiently implemented

from the execution cycle viewpoint, these lightweight OS

services can have significant impact on the total OS energy. For

example, on benchmark postgres.update, the OS service

routines with duration less than 4096 cycles draw 50% of the

OS energy. As described earlier, there is no guarantee that a

sampling window, which is larger than 2048 cycles, will

resolve these OS activities or will adapt processor resources in

a timely fashion in order to reduce that portion of OS energy

(shown in the left side of the dotted line in Fig. 8).

To summarize, a long window interval does not provide the

opportunity to switch modes when the program phases change

due to the exception-driven, non-deterministic and short-lived

nature of user/OS interactions. On the other hand, the fine-

grained switching required by the brief OS invocations makes

it difficult to amortize the performance degradation due to

frequent adaptations. To reconfigure the processor resources

for the short-lived OS activity without raising costly adaptation

overhead, we propose a routine based OS-aware processor

adaptation mechanism targeting run-time OS power savings, as

described in Section 5.
5. Proposed solution: OS-aware routine based adaptation

Routine based OS-aware adaptation is dedicated to

reconfiguring the processor upon OS execution. The current

machine execution mode is stored in the Processor Status

Register (PSR); therefore, separating out OS execution can

easily be done at run-time by looking at the PSR. Processor

adaptations occur only at the boundaries of the user/OS

context switches, as shown in Fig. 9. Today, almost all high-

performance, out-of-order machines support precise exception

to ensure the correctness of program execution. The OS

invocations, either explicitly (e.g. system calls and I/O

interrupts) or implicitly (e.g. fault handling) are treated as

exceptions on these processors. Upon receiving an exception,

the processor completes all previous instructions (specified in

program order) and then flushes the pipeline [18]. At this point,

a reconfiguration can be made with zero latency because there

is no instruction left in the pipeline and the partitioned

hardware structures. Similarly, when the processor returns

from an OS service, another adaptation happens immediately

by restoring the processor to the mode prior to the user/OS

context switch. The processor then fetches the instructions

disable
sampling

User User UserOS OS User

disable
sampling

User UserOS OS User

sampling window

dilated sampling windowAdaptation
overhead

I II III
Ta

Ts

OS Routine-based
Optimal Adaptations

Adaptations with
Minimum Overhead

Fig. 9. Routine based OS-aware adaptation.

T. Li, L.K. John / Microprocessors and Microsystems 30 (2006) 189–198 195
from the user applications and continuously executes using that

mode.

Therefore, routine based OS-aware adaptation is capable of

capturing all OS activity timely and accurately, while retaining

a zero adaptation overhead in the OS. Separating OS activity

out of the regular sampling interval creates a ‘dilated’ sampling

window (as shown in Fig. 9), diminishing the number of

reconfigurations and the total execution cycles of the user

program. Moreover, this technique prevents pathological IPC

degradations arising from erroneously matching processor

configurations tailored for the OS to the user program (as

shown in Fig. 9, windows II and III). This is critical since the

user program, with the context switched from the OS, generally

requires the full issuing capabilities of the machine to operate

on new data and on the working set.

As described earlier, processor resource adaptation saves

power but is detrimental to performance. The goal of such

adaptation is to reduce power with minimum performance lost.

The Energy-Delay product (EDP) is a reasonable metric to

evaluate energy efficiency, namely, the goal of achieving high

performance while minimizing energy consumption. However,

due to the different characteristics of programs, a solution that

is good for one program may not be an optimal solution for

another program. For example, as illustrated in Fig. 10, given

the power budget (Powerth), Energy!Delay trade-off-1 (T1)
Performance

P
ow

er

Program1(T1)

Program1(T2)

Program2(T1)

Program2(T2)

Perf11

Perf21

Perf22

Perf12

Powerth

Fig. 10. Effectiveness of energy!delay trade-offs is program dependent.
works better than Energy!Delay trade-off-2 (T2) does on

program 1 (Perf11OPerf12). However, the observation does not

hold on program 2 (Perf21!Perf22).

An individual OS routine performs a specific functionality

and can exhibit vast variation in computational requirements.

A configuration that is good for one routine may not be optimal

for another. For example, Fig. 11 shows the Energy!Delay

(normalized with eight-issue mode) of different OS

service routines (clock, COW_fault and read) running on

different modes. The routine Clock processes timer interrupts.

COW_ fault performs page level copy-on-write operations and

read transfers data from the OS file cache to the user address

space. Fig. 11 leads to a number of interesting observations. In

general, the eight-issue mode is not energy efficient as

indicated by the elevated Energy!Delay on all of the three

OS routines. The application of the one-issue, two-issue, four-

issue and six-issue modes yields better trade-off between power

and performance. More interestingly, the optimal configuration

changes depending on the OS routines. The optimal configur-

ation has the lowest Energy!Delay value. For example, on the

one-issue mode, clock shows its best Energy!Delay scenario

(0.3), while COW_fault yields an Energy!Delay value of 0.8.

The heterogeneous Energy!Delay behavior of various OS

routines makes a unified adaptation for the whole OS less

attractive. However, it provides an avenue to finely tune the OS

power/performance knob: the per-OS routine based optimal

configuration can be exploited by the hardware to achieve a

better OS Energy!Delay trade-off. In practice, a simple

profile-driven methodology [17] can be used for finding

the optimal configuration for an individual routine in a
Fig. 11. Energy!Delay of different OS services.

Fig. 12. Normalized power (ADPT with swZ2048 is sampling-based

adaptation with 2048-cycle window, ADPT with swZ128 is sampling based

adaptation with 128-cycle window, OS-aware ADPT is OS routine based

adaptation, and OS-aware ADPT w/AO is OS routine based adaptation with

aggressive optimizations).

Fig. 13. Normalized IPC.

T. Li, L.K. John / Microprocessors and Microsystems 30 (2006) 189–198196
pre-characterization stage. At run-time, the hardware selec-

tively applies the pre-characterized, optimal configuration to an

individual OS routine instantaneously, eliminating a search of

the configuration space. The optimal adaptation solution can be

encoded into each routine with ISA extension. A performance

degradation tolerance setting that specifies how aggressively to

trade-off additional delay for lower energy can be used to guide

configuration selection.

Knowing the nature and functionality of an OS invocation,

one can apply Energy!Delay optimizations even more

aggressively. In this paper, we consider the following two

optimizations (dubbed as OS-aware SDPT w/AO in Section 6).

5.1. Resizing register file

Modern superscalar machines exploit register renaming and

use a large register file to eliminate false dependencies between

instructions. In many hand-tuned and highly optimized OS

routines, however, the true dependencies dominate. In these

scenarios, the size of the physical register file can be reduced to

save more power. Specifically, we observe that disabling half

of the physical registers for the OS routines utlb, timein, clock,

close, brk, alarm, dup, pipe, ioctl, utsys, prctl, and msync saves

5–7% of the processor power with no performance loss [23].

Generally, the additional complexity in resizing a register file

greatly diminishes the value of any advantage that may be

achieved [5]. The proposed routine based OS-aware adaptation

scheme can safely and efficiently resize the register file because

it guarantees that no physical register is mapped whenever a

resizing occurs at the user/OS context switch boundaries.

5.2. OS-aware control flow speculation

Control flow speculation has been widely adopted in today’s

microprocessor design to exploit the ILP in programs.

Nevertheless, the fetches and subsequent processing of

misspeculated instructions will waste more energy and cycles

[12]. It has been observed that the conventional branch

predictors can frequently mispredict the control flow transfers

in the exception-driven and short-lived OS execution [37]. In

[13], Li et al. propose an OS-aware control flow speculation

scheme which allocates a dedicated branch prediction resource

to the OS to improve its branch prediction accuracy. In this

study, we integrate an OS-aware hybrid predictor [13] with the

proposed processor adaptation scheme to further optimize its

energy efficiency in light of the exception-driven and non-

deterministic OS execution.

6. Power savings and performance evaluation

This section presents power savings as well as performance

evaluations of the proposed technique and the baseline

adaptation mechanism (described in Section 4) on OS

execution. The schemes we compare are: (1) a baseline

adaptation scheme with a 2048-cycle sampling window

(ADPT with swZ2048); (2) a baseline adaptation scheme

with a fine-grained 128-cycle sampling window (ADPT with
swZ128); (3) the routine based OS-aware adaptation (OS-

aware ADPT); (4) the routine based OS-aware adaptation with

aggressive optimizations (OS-aware ADPT w/AO, see Section

3). Fig. 12 shows the average power of the simulated workloads

on different schemes. Figs. 13 and 14 show the performance

(IPC) and Energy!Delay metric on the same scenario. All

values are normalized with respect to the baseline eight-issue

machine without implementing any adaptation.

Fig. 12 shows that compared to the coarse-grained sampling

technique (ADPT with swZ2048), the OS-aware ADPT can

reduce power more aggressively by being able to accurately

capture the exception-driven, short-lived OS activity and

matching it with appropriate resources in a timely fashion.

For the same reason, the scheme using fine-grained sampling

window (ADPT with swZ128) is also observed to achieve

good power savings. The OS-aware ADPT w/AO has a dual

impact on power savings: reducing the size of register file

drops power while the improved control flow speculation tends

to increase power because the pipeline flushing stalls happen

less frequently. Intuitively, optimizations such as OS-aware

control-flow speculation could increase per-cycle processor

power. Nevertheless, it reduces program execution cycles and

the total clock power, on which both the processor and software

energy largely depends. Therefore, overall it will benefit the

targeted program Energy!Delay metric that we try to

optimize. Moreover, as can be seen in Fig. 12, one factor

Fig. 14. Normalized Energy!Delay.

T. Li, L.K. John / Microprocessors and Microsystems 30 (2006) 189–198 197
does not dominate another by showing drastic changes in

power compared with the OS-aware ADPT scheme.

Looking at Fig. 13, one can see that the performance of the

OS-aware ADPT is competitive with that of the ADPT (swZ
2048), despite that the ADPT (swZ2048) favors the OS

performance by overestimating its computational requirement

due to the interference of the higher user IPC. Fig. 13 also

shows that using the fine-grained window sampling scheme

(ADPT with swZ128) measurably degrades performance due

to the aggregated adaptation overhead. As described earlier, the

OS-aware ADPT does not incur adaptation overheads in the

OS. The use of the optimal solution for an individual routine

further eliminates the unnecessary adaptations within a routine,

leading to a better performance than the existing fine-grained

adaptation scheme. Another observation from Fig. 13 is that the

OS-aware ADPT w/AO further increases performance by

reducing the time spent on processing wrong-path instructions.

Note that the y-axis begins at 70% normalized IPC in Fig. 13.

The results shown in Fig. 14 indicate the OS-aware ADPT

retains performance while reducing power by showing the

desirable characteristics when both performance and energy

are under consideration. The OS-aware ADPT w/AO further

improves the OS Energy!Delay behavior, suggesting that

although the aggressive optimizations such as resizing register

file may yield an unbalanced machine for many user

applications, they produce more energy savings when

judiciously applied to certain OS routines.
7. Related work

Previous research [14] employs the OS to reduce power at

the system level. Recently, the energy behavior of embedded,

real-time operating systems has been studied in [15,16,33,34].

In [7,38], a full-system energy simulator is developed and the

necessity of simulating OS energy is quantified. There has been

much research [3–5,11,12,20,27,29] focusing on reducing the

run-time software power consumption (mostly, user appli-

cations). So far, techniques for run-time software power

savings exclusively focus on user-only applications. Among

those, microarchitecture level power management [3–5,11] has

been demonstrated to be an attractive solution for fine-grained

program Energy!Delay optimization. It has been observed

that by appropriately allocating microarchitectural resources
required by the actual program, significant power savings can

be achieved with a tolerable performance lost. In [3], Bahar et

al. exploit IPC variations in programs to reduce power. Our

proposed scheme further explores the IPC variations between

the user and the OS and the fine-grained phase changes due to

the user/OS context switches. By varying processor fetch and

execution rates, Marculescu et al. [17] studied power-

performance trade-off based on a profile-driven methodology,

which is employed in this study to characterize the per-OS

routine based Energy!Delay behavior. In [4,5], the authors

propose mechanisms for independently monitoring and

adapting multiple microarchitectural structures in one system.

By leveraging the pre-characterized Energy!Delay knowl-

edge, our approach avoids the complexity of the simultaneous

control and independent operation of multiple adaptive

structures.
8. Conclusion

Modern applications spend a significant proportion of their

execution time within the operating system, making the OS a

major power consumer. To save power, hardware can provide

resources that closely match the needs of the software.

However, with exception-driven and intermittent execution,

it becomes difficult to accurately predict and adapt processor

resources in a timely fashion. The novel approach we

propose in this paper permits precise hardware reconfigurations

for the OS with low overhead and allows fine-grained

performance/power tuning at the microarchitectural level.

This scheme is orthogonal to and can be integrated with

existing techniques proposed for user-only applications

to further enhance their efficiency in light of the prevalent,

OS-intensive and emerging workloads. With the increasing

impact of the leakage power, routine customized aggressive

adaptation tends to save more power by safely turning off more

transistors. The proposed scheme can be exploited in mobile

computing systems for energy saving, as well as in

conventional systems for dynamic thermal management.
References

[1] J.A. Redstone, S.J. Eggers, H.M. Levy, An analysis of operating system

behavior on a simultaneous multithreaded architecture, in: Proceedings of

the International Symposium on Architectural Support for Programming

Languages and Operating Systems, 2000.

[2] H. Zeng, X.B. Fan, C. Ellis, A. Lebeck, A. Vahdat, ECOSystem:

managing energy as a first class operating system resource, in:

Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems, 2002.

[3] R.I. Bahar, S. Manne, Power and energy reduction via pipeline balancing,

in: Proceedings of the International Symposium on Computer Archi-

tecture, 2001.

[4] D. Ponomarev, G. Kucuk, K. Ghose, Reducing power requirements of

instruction scheduling through dynamic allocation of multiple data-path

resources, in: Proceedings of the International Symposium on Micro-

architecture, 2002.

[5] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D.H. Albonesi, S.

Dwarkadas, G. Semeraro, G. Magklis, M.L. Scott, Integrating adaptive

T. Li, L.K. John / Microprocessors and Microsystems 30 (2006) 189–198198
on-chip storage structures for reduced dynamic power, in: Proceedings of

the International Conference on Parallel Architectures and Compilation

Techniques, 2002.

[6] K. Keeton, D.A. Patterson, Y.Q. He, R.C. Raphael, W.E. Baker,

Performance characterization of a quad pentium pro SMP using OLTP

workloads, in: Proceedings of the International Symposium on Computer

Architecture, 1998.

[7] S. Gurumurthi, A. Sivasubramaniam, M. Jane Irwin, N. Vijaykrishnan, M.

Kandemir, T. Li, L.K. John, Using complete machine simulation for software

power estimation: the softWatt approach, in: Proceedings of the International

Symposium on High Performance Computer Architecture, 2002.

[8] M. Rosenblum, S.A. Herrod, E. Witchel, A. Gupta, Complete computer

system simulation: the simOS approach, IEEE Parallel and Distributed

Technology: Systems and Applications 3 (4) (1995).

[9] D. Brooks, V. Tiwari, M. Martonosi, Wattch: a framework for

architectural-level power analysis and optimizations, in: Proceedings of

the International Symposium on Computer Architecture, 2000.

[10] ‘PostgreSQL’, http://www.us.postgresql.org/

[11] A. Iyer, D. Marculescu, Microarchitecture level power management,

IEEE Transactions on Very Large Scale Integration (VLSI) Systems 10

(3) (2002).

[12] S. Manne, A. Klauser, D. Grunwald, Pipeline gating: speculation control

for energy reduction, in: Proceedings of the International Symposium on

Computer Architecture, 1998.

[13] T. Li, L.K. John, A. Sivasubramaniam, N. Vijaykrishnan, J. Rubio,

Understanding and improving operating system effects in control flow

prediction, in: Proceedings of the International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS), 2002.

[14] L. Benini, A. Bogliolo, S. Cavallucci, B. Ricco, Monitoring system

activity for OS-directed dynamic power management, in: Proceedings of

the International Symposium on Low Power Electronics and Design,

1998.

[15] K Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Lohout, C. Smit, T.B.

Zhang, B. Jacob, The performance and energy consumption of three

embedded real-time operating systems, in: Proceedings of the Inter-

national Conference on Compilers, Architecture and Synthesis for

Embedded Systems, 2001.

[16] T.K. Tan, A. Raghunathan, N.K. Jha, Embedded operating system energy

analysis and macro-modeling, in: Proceedings of the International

Conference on Computer Design, 2002.

[17] D. Marculescu, Profile-driven code execution for low power dissipation,

in: Proceedings of the International Symposium of Low Power

Electronics and Design, 2000.

[18] J.L. Hennessy, David A. Patterson, Computer Architecture: A Quantitat-

ive Approach, Morgan Kaufman, Los Altos, CA, 1996.

[19] SPEC JVM98 Benchmarks, http://www.spec.org/jvm98/

[20] D. Brooks, M. Martonosi, Dynamic thermal management for high-

performance microprocessors, in: Proceedings of the International

Symposium on High Performance Computer Architecture, 2001.

[21] T. Li, L. John, N. Vijaykrishnan, A. Sivasubramaniam, J. Sabarinathan, A.

Murthy, Using complete system simulation to characterize SPECjvm98

benchmarks, in: Proceedings of the International Conference on Super-

computing (ICS), 2000.
[22] T. Li, L.K. John, Run-time modeling and estimation of operating system

power consumption, in: Proceedings of the International Conference on

Measurement and Modeling of Computer Systems (SIGMETRICS),

2003.

[23] T. Li, L.K. John, Routine based OS-aware microprocessor resource

adaptation for run-time operating system power saving, in: Proceedings of

the International Symposium on Low Power Electronics and Design,

2003.

[24] M.K. Gowan, L.L. Biro, D.B. Jackson, Power considerations in the design

of the alpha 21264 microprocessor, in: Proceedings of the Design

Automation Conference, 1998.

[25] D.H. Albonesi, Dynamic IPC/Clock rate optimization, in: Proceedings of

the International Symposium on Computer Architecture, 1998.

[26] R. Joseph, M. Martonosi, Run-time power estimation in high performance

microprocessors, in: Proceedings of the International Symposium on Low

Power Electronic Device, 2001.

[27] V. Tiwari, S. Malik, A. Wolfe, M.T.C. Lee, Instruction level power

analysis and optimization of software, Journal of VLSI Signal Processing

1–18 (1996).

[28] W. Ye, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, The design and use of

simplePower: a cycle-accurate energy estimation tool, in: Proceedings of

the Design Automation Conference, 2000.

[29] A. Sinha, A. Wang, A.P. Chandrakasan, Algorithmic transforms for

efficient energy scalable computation, in: Proceedings of the International

Symposium on Low Power Electronics and Design, 2000.

[30] S. Palacharla, N.P. Jouppi, J.E. Smith, Quantifying the complexity of

superscalar processors, CS-TR-1996-1328, University of Wisconsin,

Madison, WI, 1996.

[31] Transaction Processing Council, The TPC-C Benchmark, http://www.tpc.

org/tpcc/

[32] M. Valluri, L.K. John, Is compiling for performanceZcompiling for

power? in: Proceedings of the Fifth Annual Workshop on Interaction

between Compilers and Computer Architectures, 2001.

[33] T.K. Tan, A. Raghunathan, N.K. Jha, EMSIM: an energy simulation

framework for an embedded operating system, in: Proceedings of the

International Conference on Circuits and Systems, 2002.

[34] R.P. Dick, G. Lakshminarayana, A. Raghunathan, N.K. Jha, Power

analysis of embedded operating systems, in: Proceedings of the Design

Automation Conference, June 2000.

[35] F. Bellosa, The benefits of event-driven energy accounting in power-

sensitive systems, in: Proceedings of the Ninth ACM SIGOPS European

Workshop, 2000.

[36] A.R. Lebeck, X.B. Fan, H. Zeng, C. Ellis, Power aware page allocation,

in: Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems, 2000.

[37] T. Li, L.K. John, Understanding control flow transfer and its predictability

in java processing, in: Proceedings of the International Symposium on

Performance Analysis of Systems and Software, 2001.

[38] J.W. Chen, M. Dubois, P. Stenström, Integrating complete-system and

user-level performance/power simulators: the simWattch approach, in:

Proceedings of the International Symposium on Performance Analysis of

Systems and Software, 2003.

[39] J. Ousterhout, Why aren’t operating system getting faster as fast as

hardware? in: Proceedings of the Summer 1990 USENIX Conference,

1990.

http://www.us.postgresql.org/
http://www.spec.org/jvm98/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/

	Operating system power minimization through run-time processor resource adaptation
	Introduction
	Experimental methodology
	OS power characterizatcion and performance/power trade-offs
	Sampling based adaptation: challenges for OS
	Proposed solution: OS-aware routine based adaptation
	Resizing register file
	OS-aware control flow speculation

	Power savings and performance evaluation
	Related work
	Conclusion
	References

